2020年高考文科数学重难点05 概率与统计(教师版)
(新课标)2020版高考数学二轮复习第三部分教材知识重点再现回顾9概率与统计学案文新人教A版

回顾9 概率与统计[必记知识]概率的几个基本性质(1)任何事件A 的概率都在0~1之间,即0≤P (A )≤1. (2)若A ⊆B ,则P (A )≤P (B ).(3)必然事件发生的概率为1,不可能事件发生的概率为0.(4)当事件A 与事件B 互斥时,P (A +B )=P (A )+P (B ).注意没有事件A 与事件B 互斥这一条件时,这个公式不成立.(5)若事件A 与事件B 互为对立事件,则P (A )+P (B )=1. 古典概型与几何概型的异同(1)古典概型的概率计算公式P (A )=事件A 包含的基本事件的个数基本事件的总数.(2)几何概型的概率计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).简单随机抽样、系统抽样、分层抽样.(1)从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为n N. (2)分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.统计中的四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).(4)方差与标准差方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].[必会结论]直方图的三个结论 (1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1.(3)小长方形的高=频率组距,所有小长方形高的和为1组距.线性回归方程线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ).独立性检验利用随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的这种判断犯错误的可能性越小.[必练习题]1.(2019·洛阳尖子生第二次联考)已知x 与y 之间的一组数据如表:已求得y 关于x 的线性回归方程y =2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7D .0.5解析:选D.x -=0+1+2+34=1.5,y ^=m +3+5.5+74=m +15.54,因为点(x -,y -)在回归直线上,所以m +15.54=2.1×1.5+0.85,解得m =0.5,故选D.2.(2019·福州市第一学期抽测)随机抽取某中学甲班9名学生、乙班10名学生的期中考试数学成绩,获得茎叶图如图.估计该中学甲、乙两班期中考试数学成绩的中位数分别是( )A .75,84B .76,83C .76,84D .75,83解析:选B.甲班9名学生的期中考试数学成绩分别为52,66,72,74,76,76,78,82,96,中位数为76,乙班10名学生的期中考试数学成绩分别为62,74,76,78,82,84,85,86,88,92,中位数为82+842=83,所以估计该中学甲、乙两班期中考试数学成绩的中位数分别是76,83,故选B.3.(2019·昆明市诊断测试)高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作试验基地.这n 座城市共享单车的使用量(单位:人次/天)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( )A .x 1,x 2,…x n 的平均数B .x 1,x 2,…x n 的标准差C .x 1,x 2,…x n 的最大值D .x 1,x 2,…x n 的中位数解析:选B.平均数、中位数可以反映一组数据的集中程度;方差、标准差可以反映一组数据的波动大小,同时也反映这组数据的稳定程度.故选B.4.(2019·济南市学习质量评估)如图,在△ABC 中,∠C =90°,BC =2,AC =3,三角形内的空白部分由三个半径均为1的扇形构成,向△ABC 内随机投掷一点,则该点落在阴影部分的概率为()A.π6 B .1-π6C.π4D .1-π4解析:选B.三个空白部分的面积之和为一个半径为1的圆的面积的二分之一,即π2,△ABC 的面积为3,故所求的概率为1-π23=1-π6.5.某校为了了解学生一天的休息状况,分别从高一年级的510名学生、高二年级的480名学生、高三年级的450名学生中用分层抽样的方法抽取一个容量为n 的样本进行调查,其中从高三年级抽取了15名,则n =________.解析:由题意知抽样比为15450=130,所以n 510+480+450=130,解得n =48.答案:486.(一题多解)(2019·武昌区调研考试)甲盒中有红、黑皮笔记本各2本,乙盒中有黄、黑皮笔记本各1本,从两盒中各取1本,则取出的2本笔记本是不同颜色的概率为________.解析:法一:依题意,从甲盒、乙盒中各取1本笔记本共有4×2=8(种)取法,取出的2本笔记本是不同颜色的方法有2×2+2×1=6(种),所以取出的2本笔记本是不同颜色的概率P =68=34.法二:依题意,从甲盒、乙盒中各取1本笔记本共有4×2=8(种)取法,取出的2本笔记本是相同颜色的方法有2种,所以取出的2本笔记本是相同颜色的概率P ′=28=14,所以取出的2本笔记本是不同颜色的概率P =1-14=34.答案:347.(2019·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据频率分布直方图完成以下表格;(3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩? 解:(1)填表如下.23)2×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101.(3)进入复赛选手的成绩为80+350-(380-100)350×10=82(分),所以初赛成绩为82分及其以上的选手均可进入复赛.(说明:回答82分以上,或82分及其以上均可)8.2019年国际篮联篮球世界杯,于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举办.为了宣传世界杯,某大学从全校学生中随机抽取了120名学生,对是否会收看篮球世界杯赛进行了问卷调查,统计数据如下:(1)(2)现从参与问卷调查且会收看篮球世界杯赛的学生中,采用按性别分层抽样的方法选取4人参加2019年国际篮联篮球世界杯志愿者宣传活动.(ⅰ)求男、女学生各选取多少人;(ⅱ)若从这4人中随机选取2人到校广播站开展2019年国际篮联篮球世界杯宣传介绍,求恰好选到2名男生的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)因为K 2=80×40×80×40=7.5>6.635,所以有99%的把握认为收看篮球世界杯赛与性别有关. (2)(ⅰ)根据分层抽样的知识得,选取的男生有6060+20×4=3(人),女生有2060+20×4=1(人),所以选取的4人中,男生有3人,女生有1人.(ⅱ)设选取的3名男生分别为A ,B ,C ,1名女生为甲.从4人中随机选取2人,有(A ,B ),(A ,C ),(A ,甲),(B ,C ),(B ,甲),(C ,甲),共6种情形,其中恰好选到2名男生,有(A ,B ),(A ,C ),(B ,C ),共3种情形,所以,所求概率P =36=12.。
2020版高考数学大二轮文科通用版 教师课件:专题五 第2讲 概率

支付金额 支付方式
不大于 2 000 元
大于 2 000 元
仅使用 A
27 人
3人
仅使用 B
24 人
1人
(1)估计该校学生中上个月A,B两种支付方式都使用的人数; (2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金 额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使 用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结 合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.
为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.
现从这6人中随机抽取2人接受采访.
员工 项目 子女教育 继续教育 大病医疗 住房贷款利息 住房租金 赡养老人
ABC
○○× ××○ ××× ○○× ××○ ○○×
DEF
○ ×○ ×○○ ○ ×× ×○○ × ×× × ×○
3.(2019北京,文17)改革开放以来,人们的支付方式发生了巨大转变.
近年来,移动支付已成为主要支付方式之一.为了解某校学生上个
月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中
随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,
样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月 的支付金额大于2 000元”. 假设样本仅使用B的学生中,本月支付金额大于2 000 元的人数没有 变化,则由(2)知,P(E)=0.04. 答案示例1:可以认为有变化.理由如下: P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理 由认为本月支付金额大于2 000元的人数发生了变化.所以可以认 为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生 的.所以无法确定有没有变化.
北师大版2020版新一线高考文科数学一轮复习教学案:高考大题增分课(六)概率与统计中的高考热点问题含答案

六概率与统计中的高考热点问题[命题解读] 1. 统计与概率是高考中相对独立的一块内容,处理问题的方式、方法体现了较高的思维含量,该类问题以应用题为载体,注重考查学生的数学建模及阅读理解能力、分类讨论与化归转化能力.2.概率问题的核心是概率计算,其中事件的互斥、对立是概率计算的核心. 统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,统计与概率内容相互渗透,背景新颖.以统计图表或文字叙述的实际问题为载体,通过对相关数据的分析、抽象概括,作出估计、判断. 常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生的数据处理能力与运算能力及应用意识.【例1】已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人.(1)求n的值;(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析能否在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”?附:χ2=.(a+b)(c+d)(a+c)(b+d)[解] (1)依题意得⎩⎨⎧10×(0.035+0.025+c +2b +a )=1,2b =a +c , 解得b =0.01.因为成绩在[90,100]内的有6人, 所以n =60.01×10=60.(2)由于2b =a +c ,而b =0.01,可得a +c =0.02,则不及格的人数为0.02×10×60=12,及格的人数为60-12=48,设及格的人中,女生有x 人,则男生有x -4人,于是x +x -4=48,解得x =26,故及格的人中,女生有26人,男生有22人.于是本次测试的及格情况与性别的2×2列联表如下:所以χ2=60×(22×4-8×26)30×30×48×12=1.667<2.706,故不能在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”.糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将如图的列联表补充完整.若用分层抽样的方法在患三高疾病的人群中抽9人,其中女生抽多少人?(2)为了研究患三高疾病是否与性别有关,请计算出统计量χ2,并说明是否可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.(参考公式χ2=(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )[解] (1)完善补充列联表如下:在患三高疾病人群中抽9人,则抽取比例为936=14, 所以女性应该抽取12×14=3(人).(2)根据2×2列联表,则χ2=60×(24×18-6×12)230×30×36×24=10>7.879.所以可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.件的概率. 解决简单的古典概型试题可用直接法(定义法),对于较为复杂的事件的概率,可以利用所求事件的性质将其转化为互斥事件或对立事件的概率求解.【例2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.[解](1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100,所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖,其余结果为不中奖.(1)求中二等奖的概率;(2)求不中奖的概率.[解](1)记“中二等奖”为事件A.从五个小球中一次任意摸出两个小球,不同的结果有{0,1},{0,2},{0,3},{0,4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共10个基本事件.记两个小球的编号之和为x,由题意可知,事件A包括两个互斥事件:x=5,x=6.事件x=5的取法有2种,即{1,4},{2,3},故P(x=5)=210=15;事件x=6的取法有1种,即{2,4},故P(x=6)=1 10.所以P(A)=P(x=5)+P(x=6)=15+110=310.(2)记“不中奖”为事件B,则“中奖”为事件B,由题意可知,事件B包括三个互斥事件:中一等奖(x=7),中二等奖(事件A),中三等奖(x=4).事件x=7的取法有1种,即{3,4},故P(x=7)=1 10;事件x=4的取法有{0,4},{1,3},共2种,故P(x=4)=210=15.由(1)可知,P(A)=3 10.所以P(B)=P(x=7)+P(x=4)+P(A)=110+15+310=35.所以不中奖的概率为P(B)=1-P(B)=1-35=25.统计和概率知识相结合命题统计概率解答题已经是一个新的命题趋向,概率和统计知识初步综合解答题的主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键,在此基础上掌握好样本数字特征及各类概率的计算.【例3】(本小题满分12分)(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)[信息提取]看到作频率分布直方图,想到作频率分布直方图的作图规则;看到求概率,想到利用频率分布直方图求概率的方法;看到估计节水量,想到求使用节水龙头前后的用水量.[规范解答](1)如图所示.4分(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,6分因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48.7分(3)该家庭未使用节水龙头50天日用水量的平均数为x -1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.9分该家庭使用了节水龙头后50天日用水量的平均数为x -2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.11分估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3). 12分 [易错与防范] 作频率分布直方图时注意纵轴单位是“f iΔx i”,计算平均数时运算要准确,避免“会而不对”的失误.[通性通法] 概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)你能否估计哪个班级平均每周上网时间较长?(2)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.[解] (1)A 班样本数据的平均值为15(9+11+14+20+31)=17,由此估计A 班学生每周平均上网时间为17小时; B 班样本数据的平均值为15(11+12+21+25+26)=19,由此估计B 班学生每周平均上网时间为19小时. 所以B 班学生上网时间较长.(2)A 班的样本数据中不超过19的数据a 有3个,分别为9,11,14,B 班的样本数据中不超过21的数据b也有3个,分别为11,12,21.从A班和B班的样本数据中各随机抽取一个共有9种不同的情况,分别为(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),其中a>b的情况有(14,11),(14,12),2种,故a>b的概率P=29.[大题增分专训]1.某校高三期中考试后,数学教师对本次全部数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a,b的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值小于或等于10的概率.[解](1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人,∴a =0.1,b=3.∵成绩在[90,110)范围内的频率为1-0.1-0.25-0.25=0.4,∴成绩在[90,110)范围内的样本数为20×0.4=8.估计这次考试全校高三学生数学成绩的及格率为P=1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差小于或等于10的结果为(100,102),(100,106),(100,106),(102,106),(102,106),(106,106),(106,116),(106,116),(116,118),(118,128),共10个,∴P (A )=1021.2.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的线性回归方程y =bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘估计分别为b =∑ni =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x .)[解] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况共有4种,所以P (A )=1-410=35,故选取的2组数据恰好是不相邻的2天数据的概率为35.(2)由数据,求得x =13×(11+13+12)=12,y =13×(25+30+26)=27,∑3i =1x i y i =11×25+13×30+12×26=977,∑3i =1x 2i =112+132+122=434, 所以b =∑3i =1x i y i -3x y∑3i =1x 2i -3x2=977-3×12×27434-3×122=52,a =27-52×12=-3. 所以回归直线方程为y =52x -3.(3)当x =10时,y =22,|22-23|<2,同理当x =8时,y =17,|17-16|<2. 所以该研究得到的线性回归方程是可靠的.。
文科高考数学重难点05 概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
2019-2020年高考数学文科二轮分类突破课件:题型分类突破第一篇考点五 概率与统计

答案 解析
刷最新模拟题
6.(2018
江西上饶二模)在
-
������ ������
,
������ ������
上随机取一个数
x,则
cos
x
的值介于������与
������
������之间
������
的概率为( A ).
A. ������������
B.������������
题型分析
例 3 甲、乙两人约定 7:10 在某处会面,已知甲在 7:00~ 7:20 内某一
时刻随机到达,乙在 7:05~7:20 内某一时刻随机到达,则甲至少需等待乙 5
分钟的概率是( C ).
A.������
B.������
C.������
D.������
������
������
������
������
������-������ ≤ ������ ������, 例 2 设不等式组 ������ + ������ ≥ -������ ������,所表示的区域为 M,函数 y=- ������-������������的图象与 x轴所围成
������ ≤ ������
的区域为 N,向 M内随机投一个点,则该点落在 N内的概率为( A ).
������������������������ ������
方法技巧 (1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设 出变量,在坐标系中表示所需要的区域. (3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但 它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.
(完整)2020年高考文科数学《概率与统计》题型归纳与训练,推荐文档

2020年高考文科数学《概率与统计》题型归纳与训练【题型归纳】 题型一 古典概型例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ).A.15 B. 25 C. 825D. 925【答案】B【解析】 可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有种选法,其中只有前4种是甲被选中,所以所求概率为.故选B. 例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:4263p ==. 【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数.1042105=题型二 几何概型例1 如图所示,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ).A.14 B. π8 C. 12 D. π4【答案】B【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为822122ππ=⎪⎭⎫⎝⎛⨯⨯a a .故选B.例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为________. 【答案】32【解析】方程22320x px p ++-=有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p ++-=有两个负根的p 的取值范围为2(,1][2,5]3U ,故所求的概率2(1)(52)23503-+-=-,故填:32.【易错点】“有两个负根”这个条件不会转化.【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参D数p 的范围.在利用几何概型的计算公式计算即可. 题型三 抽样与样本数据特征例1 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ________件.【答案】18【解析】按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件). 例2 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】 因为样本数据,,⋅⋅⋅,的均值,又样本数据,,,的和为()122n x x x n ++++L ,所以样本数据的均值为=11.例3 某电子商务公司对10000名网络购物者2018年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.30.9],内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.50.9],内的购物者的人数为 .【答案】3a = 人数为0.6100006000⨯=1x 2x n x 5x =121x +221x +⋅⋅⋅21n x +21x+/万元a【解析】 由频率分布直方图及频率和等于1,可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=, 所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.例 4 某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图所示.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[)220,240的用户中应抽取多少户? 【答案】见解析【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 得0.0075x =./度(2)由图可知,月平均用电量的众数是2202402302+=. 因为()0.0020.00950.011200.450.5++⨯=<,又()0.0020.00950.0110.0125200.70.5+++⨯=>, 所以月平均用电量的中位数在[)220,240内.设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=, 得224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=(户); 月平均用电量为[)240,260的用户有0.00752010015⨯⨯=(户); 月平均用电量为[)260,280的用户有0.0052010010⨯⨯=(户); 月平均用电量为[]280,300的用户有0.0025201005⨯⨯=(户). 抽取比例为11125151055=+++,所以从月平均用电量在[)220,240的用户中应抽取12555⨯=(户). 【易错点】没有读懂题意,计算错误.不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式;2牵涉到策略问题,一般可以转化为比较两个指标的大小. 题型四 回归与分析例1下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量.参考数据:,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为: 【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得,,,,.y年生活垃圾无害化处理量年份代码ty t y t 0.012016719.32i i y ==∑7140.17i i i t y ==∑0.55= 2.646≈()()niit t y y r --=∑$$y abt =+$121()()()nii i nii tt y y b tt ==--=-∑∑$,$=.a y bt-$4t =()27128i i t t =-=∑0.55=()()77711140.1749.32 2.89i i i i i i i i t t y y t y t y ===--=-=-⨯=∑∑∑ 2.890.990.552 2.646r ≈≈⨯⨯因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系.(1)变量与的相关系数,又,,,所以 ,故可用线性回归模型拟合变量与的关系.(2),,所以, ,所以线性回归方程为. 当时,.因此,我们可以预测2016年我国生活垃圾无害化处理亿吨.【易错点】没有读懂题意,计算错误.【思维点拨】将题目的已知条件分析透彻,利用好题目中给的公式与数据. 题型五 独立性检验例1 甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:y t 0.99y t y t y t 7777()()7iii i i it t y y t y t y r ---⋅==∑∑∑∑7128i i t ==∑719.32i i y ==∑7140.17i i i t y ==∑ 5.292==0.55=740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯y t 4t =y =7117i i y =∑7172211740.17749.327ˆ0.10287i ii ii t y t yb tt ==-⋅-⨯⨯⨯===-∑∑1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈ˆ0.10.93y t =+9t =ˆ0.190.93 1.83y=⨯+=1.83则哪位同学的试验结果体现A、B两变量更强的线性相关性?() A.甲B.乙C.丙D.丁【答案】D【解析】D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数r的绝对值越趋向于1,相关性越强.残差平方和m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于的概率是.【答案】【解析】将先后两次点数记为,则基本事件共有(个),其中点数之和大于等于有,共种,则点数之和小于共有种,所以概率为.2.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是().A.112B.114C.115D.118【答案】C 1,2,3,4,5,621056(),x y6636⨯=10()()()()()()4,6,5,5,5,6,6,4,6,5,6,661030305 366=【解析】不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两数有45(种)情况,其中两数相加和为30的有7和23,11和19,13和17,共3种情况,根据古典概型得314515P ==.故选C .3.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 【答案】56P =【解析】1只白球设为a ,1只红球设为b ,2只黄球设为c ,d , 则摸球的所有情况为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d ,共6件, 满足题意的事件为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,共5件,故概率为56P =.题型二 几何概型1.某公司的班车在7:00,8:00,8:30发车,学.小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ).A .B .C .D . 【答案】B【解析】 如图所示,画出时间轴.小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或时,才能保证他等车的时间不超过分钟.根据几何概型,所求概率.故选B . 13122334A 8:208:307:30AB AC DB 1010101402P +==2. 从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率的近似值为( ).A .B .C .D .【答案】C【解析】由题意得:在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知,所以.故选C .3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅰ,其余部分记为Ⅰ,在整个图形中随机取一点,此点取自Ⅰ,Ⅰ,Ⅰ的概率分别记为1p ,2p ,3p ,则 A .12p p = B .13p p = C .23p p = D .123p p p =+【答案】A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅰ,Ⅰ区域面积即可.设直角三角形ABC 的三个角A ,B ,C 所对的边长分别为a ,b ,c ,则区域Ⅰ的面积为112S ab =,[]0,11x 2x n x 1y 2y n y ()11,x y ()22,x y (),n n x y π4n m2n m4m n2m n()()12i i x y i n =⋅⋅⋅,,,,π41m n=4πmn=区域Ⅰ的面积为222211111111πππ22222222S c b ab a ab ⎛⎫⎛⎫⎛⎫=++-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 区域Ⅰ的面积为22231111111πππ2222282S c b ab a ab ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 显然12p p =.故选A .题型三 抽样与样本的数据特征1.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 . 【答案】10【解析】平均数()146587666x =+++++=.2.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅰ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】3;6000【解析】频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=, 解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000. 3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情x x x况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照, ,, 分成组,制成了如图所示的频率分布直方图. (1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数,请说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由. 【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在中的频率为,同理,在,,, ,,中的频率分别为,, , , , .由,解得.(2)由(1),位居民每人月均用水量不低于吨的频率为. 由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为.(3)因为前组的频率之和为, 而前组的频率之和为,所以 由,解得. 题型四 回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:100[)0,0.5[)0.5,1⋅⋅⋅[)4,4.59a 30385%x x [)00.5,0.080.50.04⨯=[)0.5,1[)1.5,2[)22.5,[)33.5,[)3.54,[)44.5,0.080.200.260.060.040.020.04+0.08+0.50.200.260.50.060.040.021a a ⨯+++⨯+++=0.30a =10030.06+0.04+0.02=0.123033000000.1236000⨯=60.040.080.150.200.260.15=0.880.85----->50.04+0.08+0.150.200.26=0.730.85--< 2.5 3.x <…()0.3 2.50.850.73x ⨯-=- 2.9x =根据上表可得回归直线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B【解析】由已知得8.28.610.011.311.9105x ++++==(万元),6.27.58.08.59.885y ++++==(万元),故ˆ80.76100.4a =-⨯=, 所以回归直线方程为ˆ0.760.4y x =+.当社区一户收入为15万元,家庭年支出为 ˆ0.7615y =⨯+0.411.8=(万元).故选B .2.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为( ).A .B .C .D . 【答案】C 【解析】,,所以,时,.ˆˆˆybx a =+101225i i x ==∑1011600i i y ==∑ˆ4b =16016316617022.5x =160y =$160422.570a =-⨯=24x =42470166y =⨯+=故选C .3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i =⋅⋅⋅数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =8118i i w w ==∑,(1)根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)? (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系式为0.2z y x =-,根据(2)的结果回答下列问题:(Ⅰ)年宣传费49x =时,年销售量及年利润的预报值是多少?年宣传费/千元(Ⅰ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据()11,u v ()22,u v ,⋅⋅⋅,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-. 【答案】见解析【解析】(1)由散点图变化情况可知选择y c =+较为适宜.(2)由题意知()()()81821108.8681.6iii ii w w y y d w w ==--===-∑∑.又y c =+一定过点(),y ω,所以c y d ω=-=56368 6.8100.6-⨯=, 所以y 与x的回归方程为100.6y =+(3)(Ⅰ)由(2)知,当49x =时,()100.668576.6t y =+=, 0.2576.649z =⨯-=66.32(千元), 所以当年宣传费为49x =时,年销售量为()576.6t ,利润预估为66.32千元. (Ⅰ)由(2)知,(0.20.2100.6z y x x =-=+-=x +20.12=)226.8 6.820.12-++6.8时,年利润的预估值最大,即26.846.24x ==(千元). 题型五 独立性检验1.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H :“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K 2≈3.918,则下列表述中正确的是( )A .有95℅的把握认为“这种血清能起到预防感冒的作用”B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒C .这种血清预防感冒的有效率为95℅D .这种血清预防感冒的有效率为5℅ 【答案】A【解析】由题可知,在假设H 成立情况下,)841.3(2≥K P 的概率约为0.05,即在犯错的概率不错过0.05的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用”.这里的95℅是我们判断H 不成立的概率量度而非预测血清与感冒的几率的量度,故B 错误.C ,D 也犯有B 中的错误.故选A 2.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是( )A .B .C .D . 【答案】D【解析】在频率等高条形图中,a ab +与cc d+相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类变量,x y 关系越强,故选D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg , 新养殖法的箱产量不低于50kg ,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bc K a b c d a c b d -=++++ .频率频率组距箱产量/kg新养殖法旧养殖法箱产量/kg【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=,()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=,()()()0.4092P A P B P C ==.(2)由计算可得2K 的观测值为()222006266383415.70510010096104k⨯⨯-⨯==⨯⨯⨯,因为15.705 6.635>,所以()2 6.6350.001P K ≈≥,从而有99%以上的把握认为箱产量与养殖方法有关.(3)150.2÷=,()0.10.0040.0200.0440.032-++=,80.0320.06817÷=,85 2.3517⨯≈,50 2.3552.35+=,所以中位数为52.35.。
2020届高考数学二轮复习第一篇 专题5 概率与统计

专题5 概率与统计一、概率1.频率等于概率吗?频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小.通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件的概率的估计值.2.如何求互斥事件之间至少一个发生的概率?若事件A 1、A 2、A 3、…、A n 彼此互斥,它们至少有一个发生的概率P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).3.古典概型与几何概型有何不同点?不同点是基本事件数,一个是有限的,一个是无限的.基本事件可以抽象为点,对于几何概型,这些点尽管是无限的,但它们所占据的区域是有限的,根据等可能性,这个点落在区域的概率与该区域的几何度量成正比,而与该区域的位置和形状无关.二、统计初步与统计案例1.频率分布直方图的三个结论是什么? (1)小长方形的面积=组距×频率组距=频率.(2)各小长方形的面积之和等于1. (3)小长方形的高=频率组距,所有小长方形高的和为1组距.2.如何根据频率分布直方图计算频率、频数、样本容量? (1)频率组距×组距=频率;(2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.3.茎叶图的绘制需注意哪些问题?(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据. 4.样本的数字特征有哪些?(1)众数:在样本数据中,出现次数最多的数据.(2)中位数:在样本数据中,将数据按大小顺序排列,位于最中间的数据.如果数据的个数为偶数,就取最中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即x −=1n(x 1+x 2+…+x n ).(4)方差与标准差方差:s 2=1n[(x 1-x −)2+(x 2-x −)2+…+(x n -x −)2]. 标准差:s=√1n[(x 1-x −)2+(x 2-x −)2+⋯+(x n -x −)2]. 5.怎样判断两个变量是否线性相关?(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有 线性相关关系 ,这条直线叫作 回归直线 .(2)相关系数:当r>0时,表明两个变量 正相关 ;当r<0时,表明两个变量 负相关 .r 的绝对值越接近于1,表明两个变量的线性相关性 越强 .r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常当|r|大于0.75时,认为两个变量有很强的线性相关性.6.回归直线必过的定点是哪个点?回归直线y ^=b ^x+a ^一定过样本点的中心(x −,y −).7.利用独立性检验判断表来判断“X 与Y 的关系”的注意点是什么? (1)独立性检验的关键是正确列出2×2列联表,并计算出K 2的值.(2)独立性检验是对两个变量有关系的可信程度的判断,而不是对它们是否有关系的判断.近三年统计与概率问题主要以现实生活、古代文化为背景来考查统计图表的识别,排列与组合与古典概型的交汇,二项式定理,几何概型,双图(茎叶图、频率直方图)与离散型随机变量的分布列,统计案例相结合等,呈现考点模式化与考题应用化的特点,难度中等,题目为两小一大,分值在17到20分左右.一、选择题和填空题的命题特点(一)考查古典概型、几何概型的计算,试题难度中等,综合考查事件的概率,几何图形,数学文化等知识.1.(2018年全国Ⅲ卷,文T5改编)若某超市的顾客群体中,只用现金支付的概率为0.4,既用现金支付也用非现金支付的概率为0.2,则不用现金支付的概率为( ). A .0.3 B .0.4 C .0.6 D .0.7解析▶ 由题意,不用现金支付的概率P=1-0.4-0.2=0.4. 答案▶ B(二)考查用样本估计总体,统计数据的分析,试题难度中等,综合考查对条形图,频率分布直方图,扇形统计图,折线统计图,茎叶图及统计数表的识别与数据的数字特征分析.2.(2018年全国Ⅰ卷,文T3改编)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:有以下结论:①新农村建设后,种植收入减少;②新农村建设后,其他收入增加了一倍以上; ③新农村建设后,养殖收入未变;④新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半.其中结论不正确的是( ). A .①② B .②④ C .①③ D .③④解析▶ 假设新农村建设前总收入为a ,则新农村建设后总收入为2a ,所以种植收入在新农村建设前为60%a ,新农村建设后为37%·2a ;其他收入在新农村建设前为4%·a ,新农村建设后为5%·2a ,养殖收入在新农村建设前为30%·a ,新农村建设后为30%·2a.故结论不正确的是①③. 答案▶ C3.(2019年全国Ⅱ卷,文T14改编)我国高铁发展迅速,技术先进.经统计,经停某站的高铁列车的车次与正点率之间的关系如下:正点率 0.970.980.99车次占比14 1214则经停该站高铁列车所有车次的平均正点率的估计值为 .解析▶ 由题意得,经停该站高铁列车所有车次的平均正点率的估计值为14×0.97+12×0.98+14×0.99=0.98. 答案▶ 0.984.(2016年山东卷,文T3改编)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生每周的自习时间的中位数是 .解析▶ 设自习时间的中位数为x ,则0.02×2.5+0.10×2.5+0.16×(x-22.5)=0.5,解得x=23.75.答案▶ 23.75(三)考查统计及统计案例,试题难度中等,综合考查概率与抽样方法的应用,回归分析,独立性检验等统计案例的数据分析及应用.5.(2019年全国Ⅲ卷,文T4改编)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,若从该校学生中抽取10人进行座谈,则其中阅读过《西游记》的学生数的估计值为( ). A .5 B .6 C .7 D .8解析▶ 由题意得,100位学生中阅读过《西游记》的学生人数为90-80+60=70,70÷100=0.7.故抽取的10人中阅读过《西游记》的学生数的估计值为0.7×10=7,故选C .答案▶ C6.(2017年山东卷,理T5改编)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1600,a ^=70.该班某学生的脚长为24,据此估计其身高为( ). A .160B .163C .166D .170解析▶ ∵x −=22.5,y −=160,∴a ^=160-22.5b ^=70,∴b ^=4,∴y ^=4×24+70=166,故选C . 答案▶ C二、解答题的命题特点概率与统计综合试题一般难度不大,主要考查古典概型,用样本估计总体,利用回归方程进行预测,独立性检验的应用等.1.(2018年全国Ⅱ卷,文T18改编)如图所示的是某地区2010年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的线性回归模型.根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型:y ^=a ^+17.5t. (1)求回归直线方程;(2)求该地区2018年的环境基础设施投资额的预测值.解析▶ (1)根据题意,t −=4,y −=169,代入y ^=a ^+17.5t ,可得a ^=99,所以回归直线方程为y ^=99+17.5t.(2)该地区2018年的环境基础设施投资额的预测值为y ^=99+17.5×9=256.5(亿元). 2.(2018年全国Ⅲ卷,文T18改编)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由.(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99.9%的把握认为两种生产方式的效率有差异? 附:K2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),P (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.828解析▶ (1)第二种生产方式效率更高.观察茎叶图可知,第二组数据集中在70 min ~80 min 之间,而第一组数据集中在80 min ~90 min 之间,故第二组生产方式效率更高.(2)由茎叶图数据得到m=80,故列联表为超过m 不超过m 第一种生产方式 15 5 第二种生产方式515(3)K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d) =40×(15×15−5×5)220×20×20×20=10<10.828,所以没有99.9%的把握认为两种生产方式的效率有差异.1.求复杂事件的概率的方法有哪些?(1)直接法:将所求事件分解为一些彼此互斥的事件的和.(2)间接法(正难则反):判断事件A 的概率计算是否适合用间接法,而判断的标准是正向思考时分类较多,而其对立的分类较少,此时应用间接法.2.怎样在实际问题中利用样本的均值与方差做决策?均值与方差从整体和全局上刻画了随机变量,是实际生产中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.3.进行分层抽样的相关计算时,什么是抽样比? (1)抽样比=样本容量总体容量=各层样本数量各层个体数量;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比. 4.如何根据频率分布直方图估计样本的众数、中位数、平均数? (1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积与小长方形底边中点的横坐标之积的总和.5.如何求回归直线方程中的系数?(1)公式法:利用公式,求出回归系数b ^,a ^.(2)待定系数法:利用回归直线过样本点中心(x −,y −)求系数. 6.利用独立性检验的思想,解决实际应用的基本步骤有哪些? (1)根据样本数据制成2×2列联表; (2)根据公式K2=n(ad -bc)2(a+b)(a+c)(c+d)(b+d),计算K 2的值;(3)查表比较K 2与临界值的大小关系,做统计判断.11概率1.(2019陕西宝鸡一模)如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机扔一粒豆子,它落在阴影区域内的概率是16,则阴影部分的面积是( ).A .16B .13C .12D .23解析▶ 根据几何概型的概率公式,可得P=S阴影S正方形,因为P=16,所以S 阴影=16×22=23.答案▶ D2.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”的关系为( ). A .互斥但非对立事件 B .对立事件 C .和事件是可能事件D .以上都不对解析▶ 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A . 答案▶ A3.(原创)某市一个健身房在注册会员中举行“7天健康挑战赛”,在未来连续7天中每天完成室外跑2公里,即可获得奖励.会员小李由于有事仅完成了2天,则这2天恰好为连续2天的概率为( ).A .17B .27C .13D .821解析▶ 从7天中任意选2天的所有可能事件为(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共21种,其中选到连续2天的所有可能事件为(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),共6种.所以在7天中能够选中连续2天的概率为621=27. 答案▶ B能力1 ▶ 求随机事件的概率【例1】 (2019湖北武汉模拟)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙 丁 100 √×√√ 217 ×√ ×√200 √ √√ × 300 √ × √× 85 √×× × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)若顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解析▶ (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3. (3)顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,若顾客购买了甲,则该顾客同时购买丙的可能性最大.若事件A 1、A 2、A 3、…、A n 彼此互斥,它们至少有一个发生的概率P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).(2019山东德州模拟)某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解析▶ (1)P (A )=11000,P (B )=101000=1100,P (C )=501000=120. 故事件A ,B ,C 的概率分别为11000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M=A ∪B ∪C.∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501000=611000. 故1张奖券的中奖概率为611000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-(11000+1100)=9891000.故1张奖券不中特等奖且不中一等奖的概率为9891000.能力2 ▶ 求古典概型的概率【例2】 (2019年天津卷,文T15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F.享受情况如表所示,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目 A B C D E F子女教育 ○ ○ × ○ × ○继续教育 × × ○ × ○ ○ 大病医疗 × × × ○ × × 住房贷款利息 ○ ○ × × ○ ○住房租金 × × ○ × × ×赡养老人○ ○ × × × ○①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.解析▶ (1)由题意可得老、中、青员工人数之比为6∶9∶10, 因为采取分层抽样的方法从中抽取25位员工,所以应从老、中、青员工中分别抽取6人,9人,10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,.所以事件M发生的概率P(M)=1115确定基本事件个数的方法:列举法、列表法、树状图法.(2018年天津卷,文T15)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.解析▶(1)由题意可得甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,因为采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E, F},{E,G},{F,G},共21种.②不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种..所以事件M发生的概率P(M)=521能力3▶求几何概型的概率【例3】(2017年全国Ⅰ卷,文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是().A.14B.π8C.12D.π4解析▶ 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P=S黑S正方形=π24=π8.故选B.答案▶ B判断几何概型中的几何度量形式的方法: (1)当题干是双重变量问题时,一般与面积有关.(2)当题干是单变量问题时,要看变量可以等可能到达的区域,若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量可以等可能变化的区域.(2019广东深圳一模)古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出已知线段的黄金分割点,具体方法如下:(1)取线段AB=2,过点B 作AB 的垂线,并用圆规在垂线上截取BC=12AB ,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC 于点D ;(3)以A 为圆心,以AD 为半径画弧,交AB 于点E.则点E 即为线段AB 的黄金分割点.若在线段AB 上随机取一点F ,则使得BE ≤AF ≤AE 的概率约为( ).(参考数据:√5≈2.236)A .0.236B .0.382C .0.472D .0.618解析▶ 由勾股定理可得AC=√5,由图可知BC=CD=1,AD=AE=√5-1≈1.236,BE ≈2-1.236=0.764,则0.764≤AF ≤1.236,由几何概型中的线段型,可得使BE ≤AF ≤AE 的概率约为1.236−0.7642=0.236. 答案▶ A一、选择题1.(2019年全国Ⅱ卷,文T4改编)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则至少有2只测量过该指标的概率为( ).A .710B .35C .25D .15解析▶ 设测量过该指标的3只兔子为a ,b ,c ,剩余的2只兔子为A ,B ,则从这5只兔子中任取3只的所有取法有{a ,b ,c },{a ,b ,A },{a ,b ,B },{a ,c ,A },{a ,c ,B },{a ,A ,B },{b ,c ,A },{b ,c ,B },{b ,A ,B },{c ,A ,B },共10种,其中至少有2只测量过该指标的取法有{a ,b ,A },{a ,b ,B },{a ,c ,A },{a ,c ,B },{b ,c ,A },{b ,c ,B },{a ,b ,c },共7种,所以至少有2只测量过该指标的概率为710,故选A .答案▶ A2.(2019安徽淮北期末)从1,3,5,7这四个数中随机取出两个数组成一个两位数,则组成的两位数是5的倍数的概率是( ). A .18B .16C .14D .12解析▶ 任取两个数可组成4×3=12个两位数,其中5的倍数有3个,故所求概率P=312=14.故选C .答案▶ C3.(原创)任取θ∈(0,π2),使得sin (π-θ)≥√3sinπ2+θ的概率为( ).A .23B .12C .13D .16解析▶ sin (π-θ)≥√3sin (π2+θ),即sin θ≥√3cos θ,即tan θ≥√3,故θ∈[π3,π2).则所求概率为π2-π3π2=13.答案▶ C4.(2019湖南湘潭模拟改编)近期中央电视台播出的《中国诗词大会》火遍全国,组委会在选拔赛中随机抽取了100名选手的成绩,按成绩分为五组,得到的频率分布表如下所示.组号 成绩 频数频率 第1组 [160,165) 0.1第2组 [165,170) ①第3组 [170,175) 20 ②第4组 [175,180) 20 0.2 第5组[180,185]100.1则频率分布表中①、②位置的相应数据分别为( ). A .40和0.4 B .40和0.2 C .20和0.2 D .20和0.4解析▶ 第1组的频数为100×0.1=10,∴①处应填的数为100-(10+20+20+10)=40.第3组的频率为20100=0.2, ∴②处应填的数为0.2.答案▶ B5.(原创)五个数组成公差为2的等差数列,他们的中位数、平均数与方差均相等,若从中任取3个不同的数,则这3个数之和能被5整除的概率为( ). A .15B .25C .35D .710解析▶ 设这五个数为a-4,a-2,a ,a+2,a+4,这组数的中位数和平均数为a ,方差为15(22+42+02+42+22)=8,故a=8,所以这五个数为4,6,8,10,12.从中任取3个不同的数共有10种不同的结果:(4,6,8),(4,6,10),(4,6,12),(4,8,10),(4,8,12),(4,10,12),(6,8,10),(6,8,12),(6,10,12),(8,10,12).其中3个数之和能被5整除的所有可能情况为(4,6,10),(8,10,12),共2种.故所求概率为210=15.答案▶ A6.(2019河南郑州一模)箱中装有6张卡片,上面分别写着如下6个定义域为R 的函数:f 1(x )=2x ,f 2(x )=2x,f 3(x )=x2,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=1−2x1+2x ,现从箱中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是( ). A .25B .35C .12D .13解析▶ f 1(x )=2x 为奇函数;f 2(x )=2x 为非奇非偶函数; f 3(x )=x 2为偶函数; f 4(x )=sin x 为奇函数; f 5(x )=cos x 为偶函数;f 6(x )=1−2x1+2x ,可得f 6(-x )=1−2-x1+2-x =-(1−2x1+2x )=-f (x ),故f 6(x )为奇函数.在6个函数中任选2个,有15种选法,要使2个函数的乘积为奇函数,必须其中1个为奇函数,另1个为偶函数,有6种选法,则所得新函数为奇函数的概率P=615=25.答案▶ A7.(2019新疆乌鲁木齐一模)《史记》中讲述了田忌与齐王赛马的故事.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ).A .13B .14C .15D .16解析▶ 设齐王的上,中,下三个等次的马分别为a ,b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种可能,根据题设其中Ab ,Ac ,Bc 是胜局,共3种可能,则田忌获胜的概率为39=13.答案▶ A8.(2019安徽合肥一模)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2.在圆O 内,将线段MN 绕点N 沿逆时针方向转动,使点M 移动到圆O 上的新位置,继续将线段NM 绕点M 沿逆时针方向转动,使点N 移动到圆O 上的新位置,依此顺序继续转动,点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则此点取自阴影部分内的概率为( ). A .4π-6√3 B .1-3√32πC .π-3√32D .3√32π解析▶阴影部分的面积S 阴=6×16(π×22)-12×2×2×√32=4π-6√3,设“在圆O 内随机取一点,则此点取自阴影部分内”为事件A ,由几何概型中的面积型可得P (A )=S阴S圆=4π-6√34π=1-3√32π. 答案▶ B9.(2019福建漳州二模)已知边长为2√3的正方形的中心为点P ,在正方形内任取一点Q ,则点Q 满足|PQ|≤2的概率为( ).A .π+3√39 B .π+3√312 C .2π+√39D .2π+√312解析▶在Rt △PAO 中,由题意可知,|PA|=2,|PO|=√3,则∠APO=π6,从而∠APB=π3,|AB|=2,则阴影部分的面积为S=12×2π3×22+12×2×√3×4=4π3+4√3,故所求概率为P=S阴S正=4π3+4√312=π+3√39.答案▶ A 二、填空题10.(2019湖北黄冈质检)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:人 x 数y ABCA 1440 10B a36 bC28834若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.若a ≥7,b ≥6,则数学成绩为A 等级的人数比C 等级的人数多的概率为 .解析▶ 由题意知14n=0.07,解得n=200,由14+a+28>10+b+34得a>b+2,又a+b=30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a>b+2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率P=818=49. 答案▶4911.(2019广东佛山一模)不透明的布袋中有3个白球,2个黑球,2个红球,共7个球(除颜色外完全相同),从中随机摸出2个球,则 (1)两个球同色的情况有 种; (2)两个球不同色的概率是 .解析▶ (1)两个球同色的情况有3+1+1=5种.(2)基本事件总数n=21,两个球不同色的包含的基本事件个数m=21-5=16,∴两个球不同色的概率为1621.答案▶ (1)5 (2)1621三、解答题12.(2019安徽合肥一模)部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基于1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图所示.(1)现在上述图3中随机选取一个点,求此点取自阴影部分的概率. (2)依照规律,在图4中随机选取一个点,求此点取自阴影部分的概率.解析▶ (1)设图3中1个小阴影三角形的面积为S ,则图3中阴影部分的面积为9S ,又图3中大三角形的面积为16S ,由几何概型中的面积型可得,此点取自阴影部分的概率为9S 16S =916. (2)图1的此点取自阴影部分的概率为1;图2的此点取自阴影部分的概率为34;图3的此点取自阴影部分的概率为(34)2.故可得图4的此点取自阴影部分的概率为(34)3=2764.13.(2019河北沧州模拟)长时间用手机上网会影响学生的身体健康,某校为了解A 、B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中茎表示十位数字,叶表示个位数字).(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均每周手机上网时间较长.(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.(9+11+14+20+31)=17.解析▶(1)A班样本数据的平均值为15B班样本数据的平均值为1(11+12+21+25+26)=19.5由此估计B班学生每周平均手机上网时间较长.(2)A班的样本数据中不超过19的数据有3个,分别为9,11,14,B班的样本数据中不超过21的数据有3个,分别为11,12,21,故(a,b)共有9种不同情况,分别为(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),.其中a>b的情况有(14,11),(14,12)2种,故a>b的概率P=2912统计与统计案例1.(2019安徽黄山一模)某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的办法抽取一个容量为6的样本.已知学号为3,11,19,35,43的同学在样本中,那么还有一个同学的学号应为().A.27B.26C.25D.24解析▶∵从48名学生从中抽取一个容量为6的样本,∴系统抽样的分段间隔为48÷6=8,∵学号为3,11,19,35,43的同学在样本中,∴抽取的另一个同学的学号应为27.答案▶ A2.(2019四川攀枝花三模)某商场一年中各月份的收入、支出情况的统计图如图所示,下列说法中正确的是().。
【人教A版】2020年高考数学文科二轮《概率与统计》讲义案及中档题型精讲卷

2020年高考数学文科二轮《概率与统计》讲义案及中档题型精讲卷一、考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2.了解两个互斥事件的概率的加法公式。
3.掌握古典概型及其概率计算公式。
4.了解随机数的意义,能运用模拟方法估计概率。
5.了解几何概型的意义。
二、命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下.三、知识点精讲(一).必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件;②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。
(二).概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。
对于必然事件A ,;对于不可能事件A ,=0(三).两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为A μ.()P A =AμμΩ。
(四).互斥事件1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。
事件A 与事件B 互斥,则()()()P A B P A P B =+ 。
2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。
()()1P A p A =-。
3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。
四、解答题总结1.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.2.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)3.记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是.4.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.5.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.6.甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.7.在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是__________;8.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =.9.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______答案:1.310【解析】记2名男生分别为A ,B ,3名女生分别为a ,b ,c ,则从中任选2名学生有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc ,共10种情况,其中恰好选中2名女生有ab ,ac ,bc ,共3种情况,故所求概率为310.2.660【解析】由题意可得:总的选择方法为:411843C C C ⨯⨯种方法,其中不满足题意的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.3.59【解析】由260x x +-≥,解得23x -≤≤,根据几何概型的计算公式得概率为3(2)55(4)9--=--.4.1和3【解析】为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C 从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一张,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .5.23【解析】设2本数学书分别为A 、B ,语文书为G ,则所有的排放顺序有ABC 、ACB 、BAC 、BCA 、CAB 、CBA ,共6种情况,其中数学书相邻的有ABC 、BAC 、CAB 、CBA ,共4种情况,故2本数学书相邻的概率4263P ==.6.13【解析】甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为13P =.7.13【解析】设3张奖券中一等奖、二等奖和无奖分别为,,a b c ,甲、乙两人各抽取一张的所有情况有,,,,,ab ac ba bc ca cb 共六种,其中两人都中奖的情况有,ab ba 共2种,所以概率为138.3【解析】由几何概型,得(2)54(2)6m --=--,解得3m =.9.13【解析】从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件为{1,2},{2,4}共2个,所以概率为13.统计与统计案例一、考纲解读1.理解随机抽样的必要性和重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2019·四川高考模拟(文))空气质量指数AQI是一种反映和评价空气质量的方法,AQI 指数与空气质量对应如下表所示:如图是某城市2018年12月全月的指AQI数变化统计图.根据统计图判断,下列结论正确的是()A.整体上看,这个月的空气质量越来越差B.整体上看,前半月的空气质量好于后半月的空气质量C.从AQI数据看,前半月的方差大于后半月的方差D.从AQI数据看,前半月的平均值小于后半月的平均值【答案】C【分析】根据题意可得,AQI指数越高,空气质量越差;数据波动越大,方差就越大,由此逐项判断,即可得出结果.【详解】从整体上看,这个月AQI数据越来越低,故空气质量越来越好;故A,B不正确;从AQI数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C正确;从AQI数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D不正确.故选C.【点睛】本题主要考查样本的均值与方差,熟记方差与均值的意义即可,属于基础题型. 2.(2020·陕西高三月考(理))如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是()A.回答该问卷的总人数不可能是100个B.回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的受访者中,选择“学校团委会宣传”的人数最少D.回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个【答案】D【分析】先对图表数据分析处理,再结合简单的合情推理逐一检验即可得解.【详解】对于选项A,若回答该问卷的总人数不可能是100个,则选择③③③的同学人数不为整数,故A正确,对于选项B,由统计图可知,选择“设置分类明确的垃圾桶”的人数最多,故B正确,对于选项C,由统计图可知,选择“学校团委会宣传”的人数最少,故C正确,对于选项D,由统计图可知,选择“公益广告”的人数比选择“学校要求”的少8%,故D 错误,故选D.【点睛】本题考查了对图表数据的分析处理能力及简单的合情推理,属中档题. 3.(2018·湖南高考模拟(文))已知变量x 、y 之间的线性回归方程为0.710.3y x =-+,且变量x 、y 之间的一-组相关数据如下表所示,则下列说法错误..的是( )A .可以预测,当20x =时, 3.7y =-B .4m =C .变量x 、y 之间呈负相关关系D .该回归直线必过点()9,4【答案】B 【分析】将20x =的值代入回归直线方程可判断出A 选项的正误;将(),x y 的坐标代入回归直线方程可计算出实数m 的值,可判断出B 选项的正误;根据回归直线方程的斜率的正负可判断出C 选项的正误;根据回归直线过点(),x y 可判断出D 选项的正误. 【详解】对于A 选项,当20x =时,0.72010.3 3.7y =-⨯+=-,A 选项正确;对于B 选项,6810+1292x ++==,6321144m m y ++++==,将点(),x y 的坐标代入回归直线方程得110.7910.344m +=-⨯+=,解得5m =,B 选项错误; 对于C 选项,由于回归直线方程的斜率为负,则变量x 、y 之间呈负相关关系,C 选项正确;对于D 选项,由B 选项可知,回归直线0.710.3y x =-+必过点()9,4,D 选项正确.故选:B.【点睛】本题考查回归直线方程有关命题的判断,解题时要熟悉与回归直线有关的结论,考查分析问题和解决问题的能力,属于基础题.4.(2019·莒县第二中学高考模拟(文))我国现代著名数学家徐利治教授提出:图形的对称性是数学美的具体内容.如图,一个圆的外切正方形和内接正方形构成一个优美的几何图形,正方形ABCD 所围成的区域记为③,在圆内且在正方形ABCD 外的部分记为③,在圆外且在大正方形内的部分记为③.在整个图形中随机取一点,此点取自③,③,③的概率分别记为123,,P P P ,则( )A .123P P P =+B .132P P P >>C .123P P P >=D .123P P P => 【答案】A 【分析】首先要将小正方形旋转45度,由此看出大正方形与小正方形边长的比值,进而得到面积比,从而可确定概率间的关系. 【详解】将小正方形旋转45度,图像转化为:由图像易知:小正方形的面积是大正方形面积的一半,所以123P P P =+. 则选A.【点睛】本题考查了几何概型,着重考查了利用相似比求面积比,突显了对数学抽象与直观想象的考查.5.(2019·湖北高考模拟(理))七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .18【答案】A 【解析】设2AB =,则1BC CD DE EF ====.③1124BCI S ∆==,112242BCI EFGH S S ∆==⨯=平行四边形③所求的概率为113422216P +==⨯ 故选A.二、解答题6.(2019·陕西高考模拟(文))某公司在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图,计算图中各小长方形的宽度;(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:表中的数据显示,x 与y 之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y 关于x 的回归方程.附公式:1221ni ii nii x y nx ybxnx==-=-∑∑$,a y bx =-$$.【答案】(1)2;(2)5;(3) 1.20.2y x =+. 【分析】(③)根据频率分布直方图,由频率分布直方图各小长方形面积总和为1,可计算图中各小长方形的宽度;(③)以各组的区间中点值代表该组的取值,即可计算销售收益的平均值; (③)求出回归系数,即可得出结论. 【详解】(③)设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知()0.080.10.140.120.040.020.51m m +++++⋅==,故2m =;(③)由(③)知各小组依次是[)[)[)[)[)[]0,2,2,4,4,6,6,8,8,10,10,12, 其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04, 故可估计平均值为10.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=; (③)由(③)知空白栏中填5. 由题意可知,1234535x ++++==,232573.85y ++++==,51122332455769i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555ii x==++++=∑,根据公式,可求得26953 3.8121.2555310ˆb-⨯⨯===-⨯, 3.8 1.230ˆ.2a =-⨯=,即回归直线的方程为 1.2.2ˆ0yx =+. 【点睛】本题考查回归方程,考查频率分布直方图,考查学生的读图、计算能力,属于中档题.7.(2019·宁夏高考模拟(文))2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求李师傅比张师傅早到小区的概率.附:临界值表参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.【答案】(1)有把握;(2)218. 【分析】(1)由直方图得到22⨯列联表,利用公式求得2K 的值,与临界值比较即可作出判定,得到结论.(2)设李师傅、张师傅到小区的时间分别为,x y ,得到试验的全部结果所构成的区域及事件A 表示“李师傅比张师傅早到小区”, 根据几何概型,利用面积比可求()78P A =,则李师傅比张师傅早到小区的天数的分布列为二项分布,利用二项分布的期望公式可得结果. 【详解】 (1)如下表:()225030695 4.046 3.84139113515K ⨯⨯-⨯=≈>⨯⨯⨯所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关. (2)设李师傅、张师傅到小区的时间分别为,x y ,则(,x y )可以看成平面中的点.试验的全部结果所构成的区域为(){,|78,7.58.5}Q x y x x =≤≤≤≤,则S Ω=1,事件A 表示“李师傅比张师傅早到小区”,所构成的区域为A ={(x ,y )|y ≥x ,7≤x ≤8,7.5≤y ≤8.5}, 即图中的阴影部分面积为111712228A S =-⨯⨯=,所以()78A QS P A S ==, 李师傅比张师傅早到小区的天数的分布列为二项分布73,8B ξ⎛⎫~ ⎪⎝⎭,721388E ξ=⨯=. 【点睛】本题主要考查了独立性检验的应用,以及几何概型概率的计算问题,以及二项分布的数学期望公式的应用,属于中档试题. “求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(),X B n p ~),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 8.(2019·江西高二月考(文))通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下22⨯列联表:()1从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率; ()2根据以上22⨯列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?下面的临界值表供参考:(参考公式:()()()()22()n ad bc K a b c d a c b d -=++++,其中)n a b c d =+++【答案】(③) 7(10P =③)见解析 试题分析:(③)根据分层抽样原理求出样本中挑同桌有3人,不挑同桌有2人,利用列举法求出基本事件数,计算对应的概率值;(③)根据2×2列联表计算观测值,对照临界值表得出结论. 解析:(③)根据分层抽样方法抽取容量为5的样本,挑同桌有3人,记为A 、B 、C ,不挑同桌有2人,记为d 、e ; 从这5人中随机选取3人,基本事件为ABC ABd ABe ACd ACe Ade BCd BCe Bde Cde ,,,,,,,,,共10种;这3名学生中至少有2名要挑同桌的事件为概率为ABC ABd ABe ACd ACe BCd BCe ,,,,,,,共7种;故所求的概率为710P =; (③)根据以上22⨯列联表,计算观测值22100(30102040) 4.7619 3.84170305050K ⨯⨯-⨯=≈>⨯⨯⨯,对照临界值表知,有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关. 9.(2019·四川棠湖中学高三(文))省环保厅对A 、B 、C 三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:已知在这180个数据中随机抽取一个,恰好抽到记录B 城市空气质量为优的数据的概率为0.2.(I )现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在C 城中应抽取的数据的个数;(II )已知23y ≥,24z ≥,求在C 城中空气质量为优的天数大于空气质量为良的天数的概率.【答案】(1)9;(2)38.【试题分析】(1)由0.2180x=计算出x ,再由总数计算出y z +,按比例计算得应抽人数.(2) 由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,利用列举法和古典概型计算公式计算得相应的概率. 【试题解析】 (1)由题意得0.2180x=,即36x =. ③1802832363054y z +=----=, ③在C 城中应抽取的数据个数为30549180⨯=. (2)由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,③满足条件的数对(),y z 可能的结果有()23,31,()24,30,()25,29,()26,28,()27,27,()28,26,()29,25,()30,24共8种.其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有()28,26,()29,25,()30,24共3种.③在C 城中空气质量为优的天数大于空气质量为良的天数的概率为38. 10.(2019·江西高考模拟(文))某书店为了了解销售单价(单位:元)在[8,20]]内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照[8,10),[10,12),[12,14),[14,16),[16,18),[18,20]分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在[14,16)内的图书数是销售单价在[18,20]内的图书数的2倍.(1)求出x 与y ,再根据频率分布直方图估计这100本图书销售单价的平均数(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从销售单价在[8,20]内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.【答案】(1)见解析;(2)6本;(3)25【解析】(1)先求出x 与y ,再根据直方图求出平均值; (2)根据分层抽样是按比例抽样可得结果; (3)用列举法和古典概型概率公式求出结果 【详解】(1)样本中图书的销售单价在[)14,16内的图书数是2100200x x ⨯=g ,样本中图书的销售单价在[)1820,内的图书数是2100200y y ⨯=g , 依据题意,有2002200x y =⨯,即2x y =,③根据频率分布直方图可知()0.120.0250.0521x y ⨯++++⨯=,③ 由③③得0.15,0.075x y ==.根据频率分布直方图估计这100本图书销售单价的平均数为810101212141416161818200.02520.0520.120.1520.120.0752222222++++++⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯ =0.45+1.1+2.6+4.5+3.4+2.85=14.9(元)(2)因为销售单价在[)[)[)[)[)[]8,10,10,12,12,14,14,16,16,18,18,20的图书的分层抽样比为1:2:4:6:4:3,故在抽取的40本图书中,销售单价在[)[)[)[)[)[]8,10,10,12,12,14,14,16,16,18,18,20内的图书分别为124643402,404,408,4012,408,406202020202020⨯=⨯=⨯=⨯=⨯=⨯=(本) (3)这40本书中价格低于12元的共有6本,其中价格低于10元的2本,记这2本为12,A A ,另外4本记为1234,,,B B B B ,从中抽取2本的基本事件有:121112131421222324121314232434,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B B B B B B B B B B B B B共15个,其中价格不低于10元的有6个,所以: 这2本书价格都不低于10元的概率62155P ==. 【点睛】本题考查了频率分布直方图、分层抽样及概率问题,较为简单11.(2019·四川高考模拟(文))目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了100名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.有声书公司将付费高于20元的用户定义为“爱付费用户”,将年龄在30岁及以下的用户定义为“年轻用户”.已知抽取的样本中有38的“年轻用户”是“爱付费用户”. (1)完成下面的22⨯列联表,并据此资料,能否有95%的把握认为用户“爱付费”与其为“年轻用户”有关?(2)若公司采用分层抽样方法从“爱付费用户”中随机选取5人,再从这5人中随机抽取2 人进行访谈,求抽取的2人恰好都是“年轻用户”的概率.()()()()()22n ad bc K a b c d a c b d -=++++.【答案】(1)有95%的把握认为“爱付费用户”和“年轻用户”有关;(2)35. 【解析】 【分析】(1)根据题意可得列联表,然后根据表中的数据求出2K 后与临界值表中的数据对照后可得结论.(2)根据古典概型概率公式求解可得所求概率. 【详解】(1)根据题意可得22⨯列联表如下:由表中数据可得()()()()()()2221002430406 4.76 3.84130706436n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯,所以有95%的把握认为“爱付费用户”和“年轻用户”有关.(2)由分层抽样可知,抽取的5人中有4人为“年轻用户”,记为1A ,2A ,3A ,4A ,1人为“非年轻用户”,记为B .则从这5人中随机抽取2人的基本事件有:()12,A A ,()13,A A ,()14,A A ,()1,A B ,()23,A A ,()24,A A ,()2,A B ,()34,A A ,()3,A B ,()4,A B ,共10个基本事件.其中满足抽取的2人均是“年轻用户”的事件有:()12,A A ,()13,A A ,()14,A A ,()23,A A ,()24,A A ,()34,A A ,共6个.所以从中抽取2人恰好都是“年轻用户”的概率为63P 105==. 【点睛】独立性检验的方法是得到列联表后求出2K 的值后与临界值表进行对照后得到结论,查表时要根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k 值与求得的2K 相比较.另外,表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1p -.以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。