东北师范大学 【精品】2016-2017学年第2 学期 高等数学A期末考试试卷

合集下载

吉林省东北师大附中2017-2018学年高一下学期期末数学试卷 Word版含解析

吉林省东北师大附中2017-2018学年高一下学期期末数学试卷 Word版含解析

吉林省东北师大附中2017-2018学年高一下学期期末数学试卷一、选择题:(每小题4分,共48分)1.设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.a b2<a2b C.D.2.在等比数列{a n}中,已知a1a3a11=8,那么a2a8等于()A.4B.6C.12 D.163.直线l1:mx+(1﹣m)y=3;l2:(m﹣1)x+(2m+3)y=2互相垂直,则m的值为()A.﹣3 B.1C.0或D.1或﹣34.不等式<0的解集为()A.{x|x<﹣2或0<x<3} B.{x|﹣2<x<0或x>3} C.{x|x<﹣2或x>0} D.{x|x<0或x>3}5.点M(x0,y0)在圆x2+y2=R2外,则直线与圆的位置关系是()A.相切B.相交C.相离D.不确定6.在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn7.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,1]C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,1)8.已知等差数列前n项和为S n.且S13<0,S12>0,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项9.若直线y=kx+1与圆x2+y2=1相交与P,Q两点,且此圆被分成的两段弧长之比为1:2,则k的值为()A.或B.C.或D.10.下列函数中,y的最小值为4的是()A.B.C.D.y=e x+4e﹣x11.过直线x+y=0上一点P作圆(x+1)2+(y﹣5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=﹣x对称时,∠APB=()A.30°B.45°C.60°D.90°12.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3C.2D.二、填空题:(每小题4分,共16分)13.不等式组表示的平面区域的面积等于.14.点(x,y)在直线x+3y﹣2=0上移动时,z=2x+8y的最小值为.15.等比数列{a n}的前n项和是S n,若S30=13S10,S10+S30=140,则S20的值是.16.直线y=x+b与曲线恰有一个公共点,则b的取值范围是.三、解答题:(共56分)17.已知等差数列{a n}中a2=9,a5=21.(1)求数列{a n}的通项公式;(2)若,求数列{log2b n}的前n项和S n.18.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?19.已知关于x的一元二次不等式(a+1)x2+ax+a>b(x2+x+1)对任意实数x都成立,试比较实数a,b的大小.20.已知平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖.(1)试求圆C的方程.(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.21.如图,直角三角形ABC的顶点坐标A(﹣2,0)、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.四.附加题22.以数列{a n}的任意相邻两项为坐标的点P n(a n,a n+1)(n∈N*)都在一次函数y=2x+k的图象上,数列{b n}满足.(1)求证:数列{b n}是等比数列;(2)设数列{a n},{b n}的前n项和分别为S n,T n,且S6=T4,S5=﹣9,求k的值.吉林省东北师大附中2017-2018学年高一下学期期末数学试卷一、选择题:(每小题4分,共48分)1.设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.a b2<a2b C.D.考点:一元二次不等式的应用;不等关系与不等式.专题:综合题.分析:由不等式的相关性质,对四个选项逐一判断,由于a,b为非零实数,故可利用特例进行讨论得出正确选项解答:解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选C.点评:本题考查不等关系与不等式,解题的关键是熟练掌握不等式的有关性质,且能根据这些性质灵活选用方法进行判断,如本题采用特值法排除三个选项,用单调性判断正确选项.2.在等比数列{a n}中,已知a1a3a11=8,那么a2a8等于()A.4B.6C.12 D.16考点:等比数列的性质.专题:计算题.分析:根据等比数列的通项公式化简a1a3a11=8后,得到关于第5项的方程,求出方程的解即可得到第5项的值,然后根据等比数列的性质得到a2a8等于第5项的平方,把第5项的值代入即可求出所求式子的值.解答:解:a1•a3•a11=a13•q12=(a1q4)3=a53=8,∴a5=2,则a2•a8=a52=4.故选:A点评:此题考查学生灵活运用等比数列的通项公式化简求值,掌握等比数列的性质,是一道综合题.3.直线l1:mx+(1﹣m)y=3;l2:(m﹣1)x+(2m+3)y=2互相垂直,则m的值为()A.﹣3 B.1C.0或D.1或﹣3考点:直线的一般式方程与直线的垂直关系.专题:计算题;直线与圆.分析:根据两条直线垂直的条件,结合题意建立关于m的方程,解之即可得到实数m的值.解答:解:∵直线l1:mx+(1﹣m)y=3;l2:(m﹣1)x+(2m+3)y=2互相垂直,∴m(m﹣1)+(1﹣m)(2m+3)=0,解之得m=﹣3或1故选:D点评:本题给出两条直线互相垂直,求实数m的值.着重考查了直线的方程和直线的位置关系等知识,属于基础题.4.不等式<0的解集为()A.{x|x<﹣2或0<x<3} B.{x|﹣2<x<0或x>3} C.{x|x<﹣2或x>0} D.{x|x<0或x>3}考点:其他不等式的解法.专题:计算题;转化思想.分析:将“不等式<0”转化为:“x(x+2)(x+3)<0”,用穿根法求解.解答:解:依题意:原不等式转化为:x(x+2)(x+3)<0解得:x<﹣2或0<x<3故选A点评:本题主要考查分式不等式的解法,一般是转化为整式不等式,再用穿根法求解.5.点M(x0,y0)在圆x2+y2=R2外,则直线与圆的位置关系是()A.相切B.相交C.相离D.不确定考点:点与圆的位置关系.专题:直线与圆.分析:由已知得x02+y02>R2,从而圆心(0,0)到直线x0x+y0y=R2的距离d<R,由此推导出直线x0x+y0y=R2与圆相交.解答:解:∵点M(x0,y0)在圆x2+y2=R2外,∴x02+y02>R2,∴圆心(0,0)到直线x0x+y0y=R2的距离:d=<R,∴直线x0x+y0y=R2与圆相交.故选:B.点评:本题考查直线与圆的位置关系的判断,是基础题,解题时要认真审题.6.在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.解答:解:∵,,…∴=故选:A.点评:数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.7.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,1]C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,1)考点:简单线性规划的应用.专题:计算题.分析:先根据约束条件的可行域,再利用几何意义求最值,z=kx+y表示直线在y轴上的截距,﹣k表示直线的斜率,只需求出k的取值范围时,直线z=kx+y在y轴上的截距取得最大值的一个最优解为(1,2)即可.解答:解:由可行域可知,直线AC的斜率=,直线BC的斜率=,当直线z=kx+y的斜率介于AC与BC之间时,C(1,2)是该目标函数z=kx+y的最优解,所以k∈[﹣1,1],故选B.点评:本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于基础题.8.已知等差数列前n项和为S n.且S13<0,S12>0,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项考点:等差数列的前n项和;数列的应用.专题:等差数列与等比数列.分析:由等差数列的性质可得a6+a7>0,a7<0,进而得出|a6|﹣|a7|=a6+a7>0,可得答案.解答:解:∵S13===13a7<0,S12===6(a6+a7)>0∴a6+a7>0,a7<0,∴|a6|﹣|a7|=a6+a7>0,∴|a6|>|a7|∴数列{a n}中绝对值最小的项是a7故选C.点评:本题考查等差数列的前n项和以及等差数列的性质,解题的关键是求出a6+a7>0,a7<0,属中档题.9.若直线y=kx+1与圆x2+y2=1相交与P,Q两点,且此圆被分成的两段弧长之比为1:2,则k的值为()A.或B.C.或D.考点:直线与圆相交的性质.专题:综合题;直线与圆.分析:根据直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),求出圆心到直线的距离;再根据点到直线的距离公式即可求出k的值.解答:解:因为直线y=kx+1与圆x2+y2=1相交于P、Q两点,且此圆被分成的两段弧长之比为1:2,所以∠POQ=120°(其中O为原点),如图可得∠OPE=30°;OE=OPsin30°=,即圆心O(0,0)到直线y=kx+1的距离d==,所以k=.故选:A.点评:本题考查直线和圆的位置关系,点到直线的距离公式,考查计算能力,求出圆心(0,0)到直线的距离是解题的关键.10.下列函数中,y的最小值为4的是()A.B.C.D.y=e x+4e﹣x考点:基本不等式.专题:不等式的解法及应用.分析:由基本不等式求最值的规则,逐个选项验证可得.解答:解:选项A错误,因为x可能为负数;选项B错误,化简可得y=2(+)由基本不等式可得取等号的条件为=即x2=﹣1,显然没有实数满足x2=﹣1;选项C错误,由基本不等式可得取等号的条件为sinx=2,但由三角函数的值域可知sinx≤1;选项D,由基本不等式可得当e x=2即x=ln2时,y取最小值4.故选:D.点评:本题考查基本不等式求最值,涉及基本不等式取等号的条件,属基础题.11.过直线x+y=0上一点P作圆(x+1)2+(y﹣5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=﹣x对称时,∠APB=()A.30°B.45°C.60°D.90°考点:圆的切线方程.专题:直线与圆.分析:判断圆心与直线的关系,在直线上求出特殊点,利用切线长、半径以及该点与圆心连线构成直角三角形,求出∠APB的值.解答:解:显然圆心C(﹣1,5)不在直线y=﹣x上.由对称性可知,只有直线y=﹣x上的特殊点,这个点与圆心连线垂直于直线y=﹣x,从这点做切线才能关于直线y=﹣x对称.所以该点与圆心连线所在的直线方程为:y﹣5=x+1即y=6+x,与y=﹣x联立,可求出该点坐标为(﹣3,3),所以该点到圆心的距离为=2,由切线长、半径以及该点与圆心连线构成直角三角形,又知圆的半径为.所以两切线夹角的一半的正弦值为=,所以夹角∠APB=60°故选C.点评:本题是中档题,考查直线与圆的位置关系,直线与圆相切的关系的应用,考查计算能力,常考题型.12.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3C.2D.考点:基本不等式在最值问题中的应用.专题:压轴题.分析:因为a+b+c的平方与已知等式有关,现将(a+b+c)2用已知等式表示,根据一个数的平方大于等于0得不等式,然后解不等式得范围.解答:解:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=(a2+2ab+2ac+4bc)+b2+c2﹣2bc=12+(b ﹣c)2≥12,当且仅当b=c时取等号,∴a+b+c≥故选项为A点评:若要求的代数式能用已知条件表示,得不等式,通过解不等式求代数式的范围.二、填空题:(每小题4分,共16分)13.不等式组表示的平面区域的面积等于25.考点:二元一次不等式(组)与平面区域.专题:计算题.分析:画出约束条件表示的可行域,求出交点坐标,然后求出三角形面积,即可求解解答:解:作出不等式组所表示的平面区域,如图所示的三角形ABC由由题意可得A(﹣2,2),B(3,7),C(3,﹣3)∴BC=10,A到直线BC的距离d=5∴S△ABC==25故答案为:25点评:本题考查二元一次不等式(组)与平面区域,考查学生作图能力,计算能力,是基础题.14.点(x,y)在直线x+3y﹣2=0上移动时,z=2x+8y的最小值为4.考点:基本不等式.专题:不等式.分析:根据基本不等式的性质进行计算即可.解答:解:∵x+3y﹣2=0,∴x+3y=2,∴z=2x+23y≥2=2=2=4,当且仅当x=3y,即x=1,y=时,“=”成立,故答案为:4.点评:本题考查了基本不等式的性质,应用性质是注意满足条件;一正二定三相等,本题是一道基础题.15.等比数列{a n}的前n项和是S n,若S30=13S10,S10+S30=140,则S20的值是40.考点:等比数列的性质.专题:计算题.分析:首先根据题意求出S10=10,S30=130,再根据S n,S2n﹣S n,S3n﹣S2n也是等比数列,得到S20=40,或者S20=﹣30,然后利用等比数列的求和公式得到答案.解答:解:因为S30=13S10,S10+S30=140,所以S10=10,S30=130.∵数列{a n}为等比数列,∴S n,S2n﹣S n,S3n﹣S2n也是等比数列,即S10,S20﹣S10,S30﹣S20也是等比数列,所以S20=40,或者S20=﹣30,因为S20=S10(1+q10),所以S20=40.故答案为40.点评:本题主要考查了等比数列的性质和数列的求和.解题的关键是利用了等比数列中S n,S2n﹣S n,S3n﹣S2n也是等比数列的性质.16.直线y=x+b与曲线恰有一个公共点,则b的取值范围是﹣3<b≤3或.考点:函数的零点.专题:计算题.分析:先整理C的方程可知曲线C的图象为半圆,要满足仅有一个公共点,有两种情况,一种是与半圆相切,根据原点到直线的距离为半径3求得b,一种是与半圆相交但只有一个交点,根据图象可分别求得b的上限和下限,最后综合可求得b的范围.解答:解:依题意可知曲线C的方程可整理成y2+x2=9(x≥0)要使直线l与曲线c仅有一个公共点,有两种情况:如下图:(1)直线与半圆相切,原点到直线的距离为3,切于A点,d==3,因为b<0,可得b=﹣3,满足题意;(2)直线过半圆的下顶点(0,﹣3)和过半圆的上顶点(3,0)之间的直线都满足,y=x+b过点(0,﹣3),可得b=﹣3,有两个交点,y=x+b过点(0,3),可得b=3,有一个交点,∴﹣3<b<3,此时直线y=x+b与曲线恰有一个公共点;综上:﹣3<b≤3或;故答案为:﹣3<b≤3或;点评:本题主要考查了直线与圆的位置关系,考查了学生对数形结合思想,分类讨论思想,转化和化归的思想的综合运用,是一道好题;三、解答题:(共56分)17.已知等差数列{a n}中a2=9,a5=21.(1)求数列{a n}的通项公式;(2)若,求数列{log2b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)利用a5﹣a2=3d计算可得公差,进而可得结论;(2)通过对数的性质化简可知数列是以4为首项、4为公差的等差数列,进而计算可得结论.解答:解:(1)∵a2=9,a5=21,∴a5﹣a2=3d,∴d=4,∴a n=a2+(n﹣2)•d=4n+1;(2)∵a n=4n+1,∴,∴log2==4n,∴数列是以4为首项、4为公差的等差数列,∴.点评:本题考查数列的通项及前n项和,考查运算求解能力,涉及对数的性质等基础知识,注意解题方法的积累,属于中档题.18.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?考点:基本不等式在最值问题中的应用.专题:应用题.分析:设矩形栏目的高为acm,宽为bcm,则依题意可知ab=9000,代入广告的面积中,根据基本不等式的性质求得广告面积的最小值.根据等号成立的条件确定广告的高和宽.解答:解:设矩形栏目的高为acm,宽为bcm,则ab=9000.①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+2.当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140cm,宽为175cm时,可使广告的面积最小.点评:本题主要考查了基本不等式在最值问题中的应用.基本不等式在解决生活问题中常被用到,也是2015届高考应用题中热点,平时应用注意这方面的训练.19.已知关于x的一元二次不等式(a+1)x2+ax+a>b(x2+x+1)对任意实数x都成立,试比较实数a,b的大小.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式化为关于x的一元二次不等式,由不等式恒成立列出条件,求出a、b的大小关系.解答:解:不等式(a+1)x2+ax+a>b(x2+x+1)可变形为(a﹣b+1)x2+(a﹣b)x+a﹣b>0,…又不等式对任意的实数x都成立,则,…即,解得a﹣b>0;所以a>b.…点评:本题考查了一元二次不等式的恒成立问题,是基础题目.20.已知平面区域恰好被面积最小的圆C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖.(1)试求圆C的方程.(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.考点:直线和圆的方程的应用;直线的一般式方程;圆的标准方程.专题:计算题.分析:(1)根据题意可知平面区域表示的是三角形及其内部,且△OPQ是直角三角形,进而可推断出覆盖它的且面积最小的圆是其外接圆,进而求得圆心和半径,则圆的方程可得.(2)设直线l的方程是:y=x+b.根据CA⊥CB,可知圆心C到直线l的距离,进而求得b,则直线方程可得.解答:解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,所以圆C的方程是(x﹣2)2+(y﹣1)2=5.(2)设直线l的方程是:y=x+b.因为,所以圆心C到直线l的距离是,即=解得:b=﹣1.所以直线l的方程是:y=x﹣1.点评:本题主要考查了直线与圆的方程的应用.考查了数形结合的思想,转化和化归的思想.21.如图,直角三角形ABC的顶点坐标A(﹣2,0)、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.考点:圆方程的综合应用;平面向量数量积的运算.专题:综合题;直线与圆.分析:先求出圆M的方程,再设过圆心M的任意一直线为x=my+1与圆的方程联立,利用向量的数量积公式,即可得出结论.解答:解:由题意,△AOB∽△BOC,∴=,∴|CO|=4 …∴C(4,0),AC中点为M(1,0),半径为3∴圆M的方程(△ABC的外接圆)为(x﹣1)2+y2=32…设过圆心M的任意一直线为x=my+1,…∴∴(m2+1)y2=9…设直线x=my+1与圆(x﹣1)2+y2=9的两个交点为D(x1,y1),E(x2,y2)则=(x1+1,y1),=(x2+1,y2),∴•=(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(m2+1)y1y2+4…由(m2+1)y2=9,得代入上式•=﹣9+4=﹣5…当ED为横轴时,D(﹣2,0),E(4,0),=(﹣1,0),=(5,0)∴•=﹣5…点评:本题考查圆的方程,考查直线与圆的位置关系,考查向量的数量积公式,考查学生分析解决问题的能力,属于中档题.四.附加题22.以数列{a n}的任意相邻两项为坐标的点P n(a n,a n+1)(n∈N*)都在一次函数y=2x+k的图象上,数列{b n}满足.(1)求证:数列{b n}是等比数列;(2)设数列{a n},{b n}的前n项和分别为S n,T n,且S6=T4,S5=﹣9,求k的值.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(1)通过将点代入y=2x+k可知a n+1=2a n+k,利用b n+1=a n+2﹣a n+1计算即得结论;(2)通过b n=(a1+k)•2n﹣1=a n+1﹣a n可知a2﹣a1=(k+a1)•20、a3﹣a2=(k+a1)•21、…、a n﹣a n﹣1=(k+a1)•2n﹣2,累加整理得b n﹣a n=k,计算即得结论.解答:(1)证明:∵点都在一次函数y=2x+k图象上,∴a n+1=2a n+k,∴b n+1=a n+2﹣a n+1=(2a n+1+k)﹣(2a n+k)=2(a n+1﹣a n)=2b n,∴=2,故{b n}是以b1=a2﹣a1=2a1+k﹣a1=k+a1为首项、2为公比的等比数列;(2)解:∵b n=(a1+k)•2n﹣1=a n+1﹣a n,∴a2﹣a1=(k+a1)•20,a3﹣a2=(k+a1)•21,…a n﹣a n﹣1=(k+a1)•2n﹣2,累加得:a n﹣a1=(k+a1)•=(k+a1)•(2n﹣1﹣1),整理得:a n=(a1+k)•2n﹣1﹣k,∴b n﹣a n=[(a1+k)•2n﹣1]﹣[(a1+k)•2n﹣1﹣k]=k,又S6=T4,即a1+a2+…+a6=b1+b2+b3+b4,∴a5+a6=4k,即,∴,∴,又S5=﹣9,∴,∴k=8.点评:本题考查等比数列的判定以及数列的求和,考查运算求解能力,注意解题方法的积累,属于中档题.。

东北师大附中2016年高二数学下学期期末试题

东北师大附中2016年高二数学下学期期末试题

.精选文档 .东北师大附中2016 年高二数学放学期期末试题2015---2016学年(高二)年级上学期期末考试(理科)数学试卷一、选择题(本大题共 12 个小题,每题 5 分,在每题中,只有一项为哪一项切合题目要求的)(1)已知会合 , 则( A)(B)()( D)(2)已知复数,则实数(A)( B)()(D)(3)将点的极坐标化成直角坐标为(A)( B)()(D)(4)在同一平面的直角坐标系中,直线经过伸缩变换后,获得的直线方程为(A)(B)()( D)(5)如图,曲线和围成几何图形的面积是次抽(A)(B)()( D)(6) 10 件产品中有 3 件次品,不放回的抽取1 件,在已知第 1 次抽出的是次品的条件下,第2 件,每2 次抽到仍为次品的概率为(A)(B)()(D)(7)以下说法中,正确说法的个数是① 命题“若,则”的逆否命题为:“若,则”;② “ ” 是“ ” 的充足不用要条件;③会合,,若,则实数的全部可能取值组成的会合为(A)0 (B)1 ()2 (D)3(8)设某批产品合格率为,不合格率为,现对该产品进行测试,设第次初次测到正品,则等于(A)(B)()(D)(9)在 10 件产品中,有 3 件一等品, 7 件二等品,从这10 件产品中任取 3 件,则拿出的 3 件产品中一等品件数多于二等品件数的概率(A)( B)()(D)(10)函数存在与直线平行的切线,则实数的取值范围是(A)( B)()(D)(11)函数的大概图象为(A)( B)()(D)(12)已知曲线:上一点,曲线 : 上一点,当时,关于随意,都有恒成立,则的最小值为(A)1 (B) () (D)二、填空题(本大题共 4 个小题,每题 5 分,共20 分)13.已知随机变量听从正态散布,,则的值为.14.若函数在处取极值,则.15.如图的三角形数阵中,知足:(1)第 1 行的数为 1;(2)第 n( n≥ 2) 行首尾两数均为 n,其他的数都等于它肩上的两个数相加.则第 10 行中第 2 个数是 ________.16.在平面直角坐标系中,直线与曲线和均相切,切点分别为和 , 则的值是.三、解答题(本大题共 6 小题,共 70 分,解答应写出必需的字说明、证明过程及演算步骤)17.(本小题满分10 分)在平面直角坐标系中,圆的参数方程为,直线过点(0,2 )且倾斜角为.( Ⅰ) 求圆的一般方程及直线的参数方程;( Ⅱ) 设直线与圆交于,两点,求弦的长.18.(本小题满分12 分).精选文档.在直角坐标系中,已知直线(为参数),以坐标原点为极点,轴正半轴为极轴成立极坐标系,曲线.(Ⅰ)写出直线的一般方程和曲线的直角坐标方程;(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的值.19.(本小题满分12 分)生产甲乙两种元件,其质量按检测指标区分为:指标大于或许等于为正品,小于为次品,现随机抽取这两种元件各件进行检测,检测结果统计以下:测试指标元件甲元件乙(Ⅰ)试分别预计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记为生产 1 件甲和 1 件乙所得的正品数,求随机变量的散布列和数学希望.20.(本小题满分12 分)设函数.(Ⅰ)当时,求函数的单一区间;(Ⅱ)若对都有成立,求的取值范围.21.(本小题满分12 分)为认识家用轿车在高速公路上的车速状况,交通部门随机选用了 100 名家用轿车驾驶员进行检查,获得其在高速公路上行驶时的均匀车速状况为:在55 名男性驾驶员中,平均车速超出的有40 人,不超出的有15 人,在45 名女性驾驶员中,均匀车速超出的20 人,不超出的有25 人.(Ⅰ)依据检查数据,达成以下列联表,并判断能否有 99.5%的掌握以为“车速与性别相关” ,说明原因;(Ⅱ)以上述样本数据预计整体,且视频次为概率,若从高速公路上行驶的家用轿车中随机抽取 3 辆,记这 3 辆车均匀车速超出且为男性驾驶员的车辆数为,求随机变量的散布列和数学希望.参照公式:,此中 .参照数据:共计男性驾驶员女性驾驶员共计 10022.(此题满分12 分)已知函数.(Ⅰ)若函数在上是单一递加函数,务实数的取值范围;(Ⅱ)若,对随意,不等式恒成立,求的最小值.2015---2016学年(高二)年级上学期期末考试(理科)数学试卷答案一、选择题: DBB AB D二、填空题: 13. 0.3 14. 2 15. 46 16. 43三、解答题:17. (10分)( Ⅰ) 圆的一般方程为,直线的参数方程为,( Ⅱ) 依题意,直线的直角坐标方程为圆心到直线 l 的距离18. (12分)解:(Ⅰ),(Ⅱ)把代入中,整理得,设A,B对应的参数分别为由韦达定理由得几何意义可知,.19. (12分)解:(Ⅰ)元件甲为正品的概率约为:元件乙为正品的概率约为:(Ⅱ)随机变量的全部取值为0,1, 2,;;因此随机变量的散布列为:X012P因此:20. (12分)解:(Ⅰ)定义域为当时,,当时,;当时,;当时,,∴ 的单一增区间为,,单一减区间为.(Ⅱ)即在区间上恒成立,令,故当时,单一递减,当时,单一递加,时,,即.21. (12分)超出不超出共计男性驾驶员401555女性驾驶员202545共计 6040100解:(Ⅰ),因此有 99.5% 以上的掌握以为“车速与性别相关”.(Ⅱ)由已知得“均匀车速超出且为男性驾驶员”的概率为,而且~,因此,其散布列以下0123因此,.22.(12分)(Ⅰ)∵在上是增函数,∴ 恒成立,因此只要(Ⅱ)由于,由(Ⅰ)知,函数在上单一递加,不如设,则,可化为,设,则.因此为上的减函数,即在上恒成立,等价于在上恒成立,设,因此,因,因此,因此函数在上是增函数,因此(当且仅当时等号成立).因此.即的最小值为.。

吉林省长春2016-2017学年高一下期末数学试题(文)含答案

吉林省长春2016-2017学年高一下期末数学试题(文)含答案

B
.1
C
.2
D
.3
7. 已知直线 l1 、 l2 , 平面 , l1 // l 2,l1 // ,那么 l 2 与平面 的关系是(
).
A. l1 //
B.
l2
C. l2 // 或l2
D.
l2 与 相交
8.原点和点 (1,1) 在直线 x y a 两侧,则 a 的取值范围是 ( )
A. a 0或a 2 B . 0 a 2 C . a 0或 a 2 D . 0 a 2
题目要求的。
1. 已知 | a | | b | 2 , 向量 a 与 b 的夹角为 60 ,则 a b 等于(

1
A.
B
.3
C
.2
D
.4
2
2
2. 有一个几何体的三视图如右图所示,这个几何体应是一个
()
A. 棱台 B. 棱锥 C. 棱柱 D. 都不对
3. 如图, ABCD- A1B1C1D1 为正方体,下面结论错AC1⊥BD
,
x≤3
(1)求此不等式组表示的平面区域的面积;
(2)求 z1 2 x 3 y 的最大值;
y3
(3)求 z2
的取值范围 .
x1
22.( 本小题满分 12 分 ) 已知直线 l 过定点 (1.4 ), 求当直线 l 在第一象限与坐标轴围成的三
角形面积最小时 , 此直线的方程 .
长春外国语学校 2016-2017 学年第二学期期末考试高一年级 数学试卷(文科)参考答案
长春 2016-2017 学年第二学期期末考试高一年级
数学试卷(文科)
出题人:马双
审题人:王先师
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共

【经典期末卷】大学高数(下)期末测试题及答案

【经典期末卷】大学高数(下)期末测试题及答案

第 1 页 (共 10 页)班级(学生填写): 姓名: 学号: 命题: 审题: 审批: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)LQdx Pdy +⎰=( )dxdy )P dxdy x 二重积分的积分区域D 是221≤+x y π C .2π+⎰L Pdx Qdy在A.∂∂-=∂∂P Qy x第 2 页(共10 页)第 3 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)()Lx y ds +⎰= ()Lx y ds +⎰= Lydx xdy +⎰= 2sin y t =上对应22xy De dxdy --⎰⎰= 2.第 4 页 (共 10 页)三. 计算题(一)(每小题6分,共36分)1.计算:22xy De d σ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域。

2.计算三重积分xdxdydz Ω⎰⎰⎰,其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域。

3.计算xyzdxdydz Ω⎰⎰⎰,其中Ω是由曲面2221x y z ++=,0,0,0x y z ≥≥≥所围成.第 5 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)4.求2d d Dxx y y⎰⎰,其中D 为1xy =,y x =及2x =所围成的区域。

完整word版,浙江大学2016-2017学年第2学期高等数学A期末考试试卷

完整word版,浙江大学2016-2017学年第2学期高等数学A期末考试试卷

复旦大学高等数学A 期末考试试卷2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。

2. 设向量(2,1,2)a =r ,(4,1,10)b =-r,c b a λ=-r r r ,且a c ⊥r r ,则λ= 。

3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。

4.设yz u x =,则du = 。

5.级数11(1)np n n∞=-∑,当p 满足 条件时级数条件收敛。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xy x y y +=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)lim x y →= ( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上C .直线L 垂直于平面πD .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= ( )A .33()2b a π- B .332()3b a π- C .334()3b a π- D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。

2. 计算二重积分22Dx ydxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。

XX大学2016—2017学年度第二学期考试试卷A卷高数1-2(A)

XX大学2016—2017学年度第二学期考试试卷A卷高数1-2(A)

XX 大学2016—2017学年度第二学期考试试卷A 卷高等数学1—2注意事项:1. 请考生在下列横线上填写姓名、学号和年级专业。

2 .请仔细阅读各种题目的回答要求,在规定的位置填写答案。

3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。

4. 满分100分,考试时间120分钟专业 学号 姓名_________________一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________. 4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________. 5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段. 8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.高等数学1--2 参考答案与评分标准一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yz x e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分) 解:10(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n n x n 6分1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=⎰5分()13202xx x dx =-+6分=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-= 3分 又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。

2016级高等数学(A)(下)期末试卷含答案

2016级高等数学(A)(下)期末试卷含答案

2016级高等数学(A )(下)期末试卷一。

填空题(本题共10小题,每小题3分,满分30分)1.已知曲面z xy =上一点0000(,,)M x y z 处的法线垂直于平面390x y z +++=,则0x = ,0y = ,0z = ;2.交换积分次序2111d (,)d x x f x y y --=⎰⎰;3.设{},,,x y z r ==r 3divr=r; 4.设正向闭曲线C :1x y +=,则曲线积分22d d Cx y x xy y +=⎰ ;5.设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 ;6.设2()e xf x =,则(2)(0)n f= ;7. 设0,0()1,0x f x x x ππ-<≤⎧=⎨+<≤⎩,其以2π为周期的Fourier 级数的和函数记为()S x ,则(3)S π= ;8.设正向圆周:1C z =,则cos d Czz z=⎰; 9.函数1()cosf z z z=的孤立奇点0z =的类型是 (如为极点,应指明是几级极点),[]Res (),0f z = ;二.(本题共2小题,每小题8分,满分16分)11.判断级数1342n n nn ∞=-∑的敛散性. 12.求幂级数1121n n n n x n ∞+=+∑的收敛域与和函数. 三.(本题共2小题,每小题9分,满分18分)14.将函数21()43f z z z =-+ 在圆环域13z <<内展开为Laurent 级数.四.(15)(本题满分9分)验证表达式 22(cos 21)d (3)d x xy x x y y +++-+ 为某一函10.使二重积分()2244d Dxy σ--⎰⎰的值达到最大的平面闭区域D 为 .13.将函数()f x x x =+ 在(1,1]-上展开为以2为周期的Fourier 级数.数的全微分,并求其原函数.五.(16)(本题满分9分)利用留数计算反常积分41d 1x x+∞+⎰. 六.(17)(本题满分10分) 已知流体的流速函数{}33333(,,),,2x y z y z z x z =--v ,求该流体流过由上半球面1z =z = 所围立体表面的外侧的流量.七.(18)(本题满分8分) 设函数([0,1])f C ∈,且0()1f x ≤<,利用二重积分证明不等式:11100()d ()d 1()1()d f x x f x x f x f x x ≥--⎰⎰⎰2016级高等数学(A )(下)期末试卷一。

东北师范大学数学与统计学院2016学年秋季学期高等代数1期末试卷

东北师范大学数学与统计学院2016学年秋季学期高等代数1期末试卷

2
证明: (1)W1和W2都是Kn的子空间; (2)Kn = W1 ⊕W2. 9. 设V1和V2是线性空间V 的真子空间, 证明
V = V1 V2.
10. 设V 是 数 域K上 的 线 性 空 间, ε1, ε2, · · · , εn是V 的 一 组 基, 证 明V 上 的 线 性 变 换 f 是 单 的 当 且 仅 当 f (ε1), f (ε2), · · · , f (εn)线性无关.
1
2016学年秋季学期期末考试试题: 高等代数1
一、 简答题 1. 举出教材中至少三个等价关系的例子. 2. 设 f (x)和g(x)是 数 域K上 的 两 个 次 数 小 于2016的 多 项 式, 如 果 数 域K上 有2016个 不 同 的 数ai(i = 1, 2, · · · , 2016)使得
有无穷多组解, 计算a的值, 并在此前提下计算该线性方程组的所有解. 5. 设V = K4, V1 = L(α1, α2, α3), V2 = L(β1, β2), 其中


1 3 −1


2 −1
(α1, α2, α3)
=

2
1
0


,
(β1, β2)
=

5
2


.
−1 1 1
f (ai) = g(ai), i = 1, 2, · · · , 2016.
判断 f (x)和g(x)是否一定相等, 如果一定相等, 说明理由, 否则举出一个例子进行说明. 二、 计算题 3. 在K3中给出两组基:
ε1 = (1, 0, 1) , ε2 = (2, 1, 1) , ε3 = (1, 1, 1) ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东北师范大学2016-2017学年第2 学期高等数学A 期末考试试卷2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。

2. 设向量(2,1,2)a =r ,(4,1,10)b =-r,c b a λ=-r r r ,且a c ⊥r r ,则λ= 。

3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。

4.设yz u x =,则du = 。

5.级数11(1)npn n ∞=-∑,当p 满足 条件时级数条件收敛。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xy x y y +=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →=( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 ( )A .直线L 平行于平面πB .直线L 在平面π上C .直线L 垂直于平面πD .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= ( )A .33()2b a π-B .332()3b a π-C .334()3b a π-D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。

2. 计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。

3.设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z z x y∂∂+∂∂。

4.求曲线积分()()Lx y dx x y dy ++-⎰,其中L 沿222(0,0)x y a x y +=≥≥,逆时针方向。

5.计算Dy ⎰⎰,其中D是由y =1x =-及1y =所围成的区域。

6.判断级数1(1)1n n n n ∞=-+∑的敛散性,并指出是条件收敛还是绝对收敛。

7.将函数1(1)(2)x x --展开成x 的幂级数,并求其成立的区间。

四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.抛物面22z x y =+被平面1x y z ++=截成一椭圆,求原点到这椭圆的最长与最短距离。

2. 求幂级数1(1)(1)!n nn nx n ∞=-+∑的和函数。

3. 设函数()f x 和()g x 有连续导数,且(0)1f =,(0)0g =,L 为平面上任意简单光滑闭曲线,取逆时针方向,L 围成的平面区域为D ,已知[()()]()LDxydx yf x g x dy yg x d σ++=⎰⎰⎰Ñ,求()f x 和()g x 。

参考答案一、填空题(本大题共5小题,每小题3分,共15分) 1.2{(,)|210}x y y x -+> 2.33.920y z --= 4.1ln ln yz yz yz yzx dx zx xdy yx xdz -++ 5.01p <≤ 二、单项选择题(本大题共5小题,每小题3分,共15分)1.C 2.C 3.C 4.B 5.A三、计算题(本大题共7小题,每小题7分,共49分)1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。

解:先求'0y y +=的通解,得1x y C e -=………………2分采用常数变易法,设()x y h x e -=,得''()()x x y h x e h x e --=-………3分 代入原方程得'()()()x x x x h x e h x e h x e e ----+=………………4分得21()2x h x e C =+………………5分故通解为12x x y e Ce -=+………………6分将初始条件0x =,2y =带入得32C =,故特解为1322x x y e e -=+…………7分2. 计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,):1,1}D x y x y x y =+≤+≥。

解:设cos ,sin x r y r θθ==………………1分则10,12sin cos r πθθθ≤≤≤≤+………………3分所以1212220sin cos cos sin Dx y r r dxdy d rdr x y r πθθθθθ+++=+⎰⎰⎰⎰………………5分 20(sin cos 1)d πθθθ=+-⎰………………6分42π-=………………7分3. 设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z zx y∂∂+∂∂。

解:设(,,)432sin(23)F x y z x y z x y z =-+-+-………………1分12cos(23),44cos(23),36cos(23)x y z F x y z F x y z F x y z =-+-=--+-=++-………………4分2cos(23)14cos(23)4,3[12cos(23)]3[12cos(23)]y x z z F F z x y z z x y z x F x y z y F x y z ∂+--∂+-+=-==-=∂++-∂++-……6分 所以1z z x y∂∂+=∂∂………………7分4. 求曲线积分()()Lx y dx x y dy ++-⎰,其中L 沿222(0,0)x y a x y +=≥≥,逆时针方向。

解:圆的参数方程为:cos ,sin (0)2x a t y a t t π==≤≤……………1分220()()(cos sin (cos sin )cos )sin Lx y dx x y dy a t a t da a t a t da t t ππ++-=+-+⎰⎰⎰……3分220(cos 2sin 2)at t dt π=-⎰………………4分220[sin 2cos 2]2a t t π=+………………6分 2a =-………………7分(本题也可以利用“曲线积分与路径无关”来解)5.计算Dy ⎰⎰,其中D是由y =1x =-及1y =所围成的区域。

解:{(,)|1,11}D x y y x =≤≤-≤≤………………1分111Dydx y -=⎰⎰⎰………………2分31262112[(1)63x y -=-⨯+-⎰………………4分1311(||1)9x dx -=--⎰………………5分 1302(1)9x dx =--⎰………………6分16=………………7分 6.判断级数1(1)1n n n n ∞=-+∑的敛散性,并指出是条件收敛还是绝对收敛。

解:(1)11n n n n n -=++1分)n →∞:………………3分 所以级数发散。

………………4分 又(1)1(1)(111n n n n n -=--++5分1n n +=………………6分显然,交错级数1n n ∞=1nn ∞=都收敛,所以原级数收敛。

因此是条件收敛。

………………7分7. 将函数1(1)(2)x x --展开成x 的幂级数,并求其成立的区间。

解:111(1)(2)12x x x x=-----………………2分而1,||11n n x x x ∞==<-∑………………3分 211[1()](||2)2222x xx x =+++<-L ………………4分所以22111[1()](1)(2)222x xx x x x =+++-+++--L L ………………5分101(1)2n n n x ∞+==-∑………………6分 成立范围||1x <………………7分四、 解答题(本大题共 3 小题,每小题 7 分,共 21 分)1. 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求原点到这椭圆的最长与最短距离。

解:设椭圆上任一点P 的坐标为(,,)P x y z ,P 点满足抛物面和平面方程。

原点到这椭圆上任一点的距离的平方为222x y z ++,………………1分 构造拉格朗日函数22222()(1)F x y z x y z x y z λμ=++++-+++-………………2分2222022020010x yzF x x F y y F z F x y z F x y z λμλμλμλμ=++=⎧⎪=++=⎪⎪=-+=⎨⎪=+-=⎪=++-=⎪⎩………………4分解得1(12x =-………………5分得两个驻点为121111(2(22222P P =---=---- …………………6分………………7分2. 求幂级数1(1)(1)!n nn nx n ∞=-+∑的和函数。

解:因为0!n xn x e n ∞==∑,所以0(1)!n n xn x e n ∞-=-=∑,………………1分00(1)(1)(11)()(1)!(1)!n n n nn n nx n x S x n n ∞∞==--+-==++∑∑………………2分00(1)(1)!(1)!n n n nn n x x n n ∞∞==--=-+∑∑………………3分(1)!n nx n x e n ∞-=-=∑………………4分 110010010(1)(1)!11(1)1(11(1)1)(1)!(1)!1(1)1(1)1!1!!n n n n n n n n n n n n n n n n n x n x x x n x n x x x x n x e x x n x xn x n ∞+++∞∞==∞∞=∞-===--=-++⎡⎤--=-=--⎢⎥⎣⎦=-=+--=-∑∑∑∑∑∑ (0)x ≠…………5分所以1()(1)(0)x x S x e e x x --=--≠故1()(1)(0)x x S x e e x x--=--≠……6分当0x =时,()0S x =。

………7分另解:当0x ≠时,11110(1)1(1)1(1)(1)!(1)!(1)!n n n n x n n n n n n x x n x n x n x n d x +∞∞∞===⎡⎤---==⎢⎥++-⎣⎦⎰∑∑∑ 1111001(1)1(1)(1)!(1)!n n n x n n n x x n x n x x dx x dx -∞∞==-⎧⎫⎡⎤⎡⎤--⎪⎪==-⎨⎬⎢⎥⎢⎥--⎪⎪⎣⎦⎣⎦⎩⎭⎰⎰∑∑ 001(1)!n x n n x n x x dx ∞=-=-∑⎰11xxx x x dx e x d e x x --=-=⎰⎰()11x x e e x x--=+- 11x x e e x x --=+-当0x =时,()0S x =。

相关文档
最新文档