利用旋转法解几何最值问题应用举例 教师版

合集下载

推荐人教版九年级数学上册:期中难点突破突破八旋转中的最值问题

推荐人教版九年级数学上册:期中难点突破突破八旋转中的最值问题

【解析】(1)证△ACDSASCR 4^ I * * * ?(2)如图1,当点D 在上时,BD 取最小值,如图2,当点£>在BA 的延长线上时,BD取得最大值.4.如图1,四边形ABCD 是正方形,AABE 是等边三角形,M 为对角线上任意一点,将BM 绕点B 逆时针旋转60°得到BIV ,连AM 、CM 、EN.(1)求证:/\AMB 给AENB;.突破八旋转中的最值问题【方法归纳】:在旋转过程中注意旋转特殊度数时,图形产生的特殊的位置关系,如多点共钱等.% ?1.如图,线段AB=5,BC-2,将线段BC 绕点B 逆时针进行旋转,求在旋转过程中,线段的最大值与最小值?解:当点C 旋转至线段AS 的延长线上时,AC 最大,最大值为AB +BC =7;,? % .当点(:旋转至线段上时,AC 最小,最大值为AB —SC =3.2.如图,在△ABE 中,BE =V 2 ,AE =2,以为边向形外作正方形ABCD ,连接DE ,求的最大值.解:将AASE 绕 A 逆时针旋转90°得AADF ,遂 EF ,DF=BE= V2 , EF = 4lAE = 2^2 , 9VDE<DF+EF, :.D 、E 、F 三点共线时Df :最大,最大值为3#3.如图,等腰直角AABC 中,AC=-BC=V5,等腰直角ACDP 中,CD-CP,且P J B=V^,将ACDP 绕点 C ?旋转.?> (1)求证:AD=PB ;(2)gZPBC= 45°时,BD 有最小值;当ZPBC=135°时,BD 有最大值.画图并说明理由.(2)如图2,若正方形的边长为2,点P 为正方形内任意一点,求PA+PB+PC 的最小值.解:(1)略;(2)将尸绕点B 逆时针旋转60°得到AEBiV ,过E 作EG 丄CB 交CB 的延长线于G ,连EC ,易知PA 二EN ,PN =PB ,ik .PA +PB +PC =EN +PN +PC^EC ,:?当E 、N 、P 、C 共线时,PA +PB+PC 的值最小,最小值为EC ,即2+V 3.。

初中几何之旋转最值

初中几何之旋转最值

旋转最值题型一、等量旋转例1、阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是____________例2、△ABC 中,AB=4,AC=2,以BC 为边在△ABC 外作正方形BCDE,BD、CE 交于点O,则线段AO 的最大值为___________例3、已知线段AB,点C是平面内一动点,且AB=AC,连接BC,将线段BC绕点B顺时针旋转90°得到线段BD,连接CD,AD,AD交BC于点E。

若AB=2,当AD最长时,则DE的长为____________题型二、放缩旋转例4、如图,在△ABC中,∠ABC=90°,AB=2BC,AD=2,BD=4,连接CD,则CD长的最大值是_____________例5、如图,矩形ABCD,E为线段AD上一点,以CE为边,在其右侧作矩形CEFG,且ABBC=CE CG =12,AB=5,连接BE,BF,则BE+√55BF的最小值为_____________例6、已知正方形ABCD,E为边AB上一点,AE=1,AB=4,P是平面上一点,PE=1,将线段PB绕P点逆时针旋转90°得线段PQ,则CQ的最小值为_______________课后作业1、直线l上有两个动点A. B,直线l外有一点O,连接OA,OB, OA,OB长分别为2√2、4,以线段AB为边在l的另一侧作正方形ABCD,连接OD.随着动点A. B的移动,线段OD的长也会发生变化,在变化过程中,线段OD长的最大值是___________.2、如图,已知圆O的半径为10,OA=25,P为圆上的动点,∠P=30°,∠B=90°,在P的运动过程中,则OB的最小值___________3、如图,在△ABC中,AB=AC,∠BAC=120°,点D为△ABC外一点,连接BD、AD、CD,∠ADC=60°,BD=5,DC=4,则AD=________.。

八年级数学北师版-图形的旋转在解题中的八种应用

八年级数学北师版-图形的旋转在解题中的八种应用
返回
应用 5 旋转在求图形面积中的应用
5.如图,将边长为的正方形ABCD绕点A逆时针旋转30° 后得到正方形AB′C′D′,
求图中阴影部分的面积.
解:设 CD 与 C′B′交于点 E,连接 AE.
在 Rt△ADE 和 Rt△AB′E 中,AAED==AAEB,′, ∴Rt△ADE≌Rt△AB′E(HL) ∴∠DAE=∠B′AE. ∵∠BAB′=30°,
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2, 请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状. 解:(1)如图,△A1B1C1 即为所求. (2)如图,△A2B2C2 即为所求. (3)如图,连接 OB,OA1,A1B.
∵OB=OA1= 16+1= 17,A1B= 25+9= 34, 即 OB2+OA12=A1B2, ∴△OBA1 的形状为等腰直角三角形.
∴∠B′AE=12∠B′AD=21×(90°-30°)=30°. ∴AE=2B′E. ∵AE2=AB′2+B′E2,AB′= 3,∴B′E=1.
∴S 四边形 AB′ED=2S△AB′E=2× 3×1×12= 3.
∴S 阴影=S 正方形 ABCD-S 四边形 AB′ED=3- 3.
返回
应用 6 旋转在证明平方关系中的应用
1
2
3
4
5
6
7
8
应用 1 旋转在求角度中的应用
1.(中考·烟台)【问题解决】一节数学课上,老师提出了 这样一个问题:如图①,点P是正方形ABCD内一点, PA=1,PB=2,PC=3.你能求出∠APB的度数吗?
小明通过观察、分析、思考, 形成了如下思路:
思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A, 连接PP′,求出∠APB的度数;

旋转中的最值问题方法

旋转中的最值问题方法

旋转中的最值问题方法一、三角形旋转中的最值问题。

题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。

求A'B的最小值。

解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。

2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。

3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。

4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。

5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。

题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。

求线段DE的最大值。

解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。

2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。

3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。

题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。

求BC'的最大值。

解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。

推荐人教版九年级数学上册:期中难点突破 突破八 旋转中的最值问题

推荐人教版九年级数学上册:期中难点突破 突破八 旋转中的最值问题

【解析】(1)证△ACDSASCR4 ^ I * * * «(2)如图1,当点D 在上时,BD 取最小值,如图2,当点£>在BA 的延长线上时,BD取得最大值.4.如图1,四边形ABCD 是正方形,AABE 是等边三角形,M 为对角线上任意一点,将BM 绕点B 逆时针旋转60°得到BIV ,连AM 、CM 、EN.(1) 求证:/\AMB 给AENB; .突破八旋转中的最值问题【方法归纳】:在旋转过程中注意旋转特殊度数时,图形产生的特殊的位置关系,如多点共钱等.% •1. 如图,线段AB=5, BC-2,将线段BC 绕点B 逆时针进行旋转,求在旋转 过程中,线段的最大值与最小值•解:当点C 旋转至线段AS 的延长线上时,AC 最大,最大值为AB +BC =7;,• % .当点(:旋转至线段上时,AC 最小,最大值为AB —SC =3.2. 如图,在△ABE 中,BE = V 2 , AE =2,以为边向形外作正方形ABCD , 连接DE ,求的最大值.解:将AASE 绕 A 逆时针旋转90°得AADF ,遂 EF ,DF=BE= V2 , EF = 4lAE = 2^2 ,9VDE<DF+EF, :.D 、E 、F 三点共线时Df :最大,最大值为3#3. 如图,等腰直角AABC 中,AC=-BC=V5 ,等腰直角ACDP 中,CD-CP,且P J B=V^,将ACDP 绕点C •旋转.•> (1) 求证:AD=PB ;(2) gZPBC= 45°时,BD 有最小值;当ZPBC= 135°时,BD 有最大值.画图并说明理由.(2) 如图2,若正方形的边长为2,点P 为正方形内任意一点,求PA+PB+PC 的最小值.解:(1)略;(2)将尸绕点B 逆时针旋转60°得到AEBiV ,过E 作EG 丄CB 交CB 的延长线于G ,连EC ,易知PA 二EN , PN =PB ,ik . PA +PB +PC =EN +PN +PC ^EC , :•当 E 、N 、P 、C 共线时,PA +PB+PC 的值最小,最小值为EC ,即2+V 3.。

旋转中的全等和最值(4利用旋转性质解决最值问题(下))-江苏省滨海县第一初级中学苏科版八年级数学下册讲义

旋转中的全等和最值(4利用旋转性质解决最值问题(下))-江苏省滨海县第一初级中学苏科版八年级数学下册讲义

4.利用旋转性质解决最值问题(解题课,难度★★★)知识梳理解决最值问题,可以考虑使用三角形三边关系和垂线段最短这类熟悉的结论⒈从旋转出发,找基本图形和基本结论⒉将不确定的元素尽可能的转化为确定的元素⒊利用熟悉的几何最值解决问题典例剖析例.如图,在锐角△ABC中,AB=4, BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A₁BC₁,点E为线段AB的中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转中,点P的对应点是点P₁,求线段EP₁长度的最大值和最小值.分析:①②基础练1.如图,在△ABC中,∠ACB= 90º,∠A=30º,AC = 43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度(0º〜180 º)得到△FEC, EF的中点为G,连接DG,求在旋转过程中DG的最大值.⑴如图,连接CG,旋转过程中,关于DG与CG、CD的大小关系正确的是()A. DG≤CG- CDB. DG≤CG+CD⑵由DG≤CG + CD可知,旋转过程中,当______时,DG取最大值,此时________.( )A.DG = CG+CD;点G在线段DC的延长线上B.DG = CG- CD;点G在线段CD的延长线上⑶在旋转过程中DG的最大值是________.提高练1.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的r轴负半轴、y 轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是_________.第1题第2题1.如图,点P是平行四边形ABCD对角线上的动点,点M为AD的中点,已知AD = 8, AB = 10, ∠ABD = 45° ,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为___________.3.如图,在△ABC中,∠ACB= 90º,∠A=30º,BC=6,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度(0º〜180 º)得到△FEC, EF的中点为G,连接DG,求在旋转过程中DG的最大值.4.⑴发现:如图1,点A为线段BC外一动点,且BC=a, AB=b.当点A位于___时,线段AC 的长取得最大值,且最大值为___________(用含a, b的式子表示).(2)应用:点A为线段BC外一动点,且BC = 3, AB = 1,如图2所示,分别以AB,AC 为边作等边三角形ABD和等边三角形ACE,连接CD, BE.①图中与BE相等的线段,是线段______.②线段BE长的最大值=_______________.⑶拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM = 90°,则线段AM长的最大值=______,此时点P的坐标为__________.4.利用旋转性质解决最值问题答案基础练:①.B ②.A ③.2+32提高练:1.2.3.①②4.。

初中旋转变换中的最值问题

初中旋转变换中的最值问题

初中旋转变换中的最值问题
初中数学中的旋转变换是一个相对较难的概念,但它有助于增强学生对三维空间的理解。

在最值问题的讨论中,常常涉及到的知识点有平面几何、二次函数和三角函数等。

一个典型的例子是,给定一个三角形,通过旋转三角形的一个边,使其成为一个圆周。

然后,需要求出这个圆周上离旋转轴最远和最近的点。

这个问题需要学生利用旋转变换的知识,结合三角函数和二次函数的最值求法,来找到距离旋转轴最远和最近的点。

另一个问题是,给定一个平面上的点集,将其绕一个固定点旋转一定的角度。

然后,需要求出旋转后,点集到固定点的距离的最大值和最小值。

这个问题需要学生利用旋转变换的知识,结合二次函数的最值求法,来找到距离最大和最小的点。

解决这类问题的关键是理解旋转变换的概念,以及如何将其转化为数学模型。

同时,也需要熟悉二次函数和三角函数的最值求法。

在解题过程中,要注意灵活运用各种数学工具和方法,以找到最值问题的解决方案。

专题08 旋转中的最值问题(解析版)

专题08 旋转中的最值问题(解析版)

专题08 旋转中的最值问题考点一 费马点问题求最值【方法点拨】费马点证明都是依据旋转思想,构造三角形全等,然后将三条线段之和转化到是否在一条直线上来决定最小值。

这个思路一定要掌握,因为它会应用在实际的考试题目中。

【典例剖析】1.(经典例题)已知:P 是边长为1的正方形ABCD 内的一点,求P A +PB +PC 的最小值.【点拨】顺时针旋转△BPC 60度,可得△PBE 为等边三角形,若P A +PB +PC =AP +PE +EF 要使最小只要AP ,PE ,EF 在一条直线上,求出AF 的值即可.【解析】解:顺时针旋转△BPC 60度,可得△PBE 为等边三角形.即得P A +PB +PC =AP +PE +EF 要使最小只要AP ,PE ,EF 在一条直线上,即如下图:可得最小P A +PB +PC =AF .此时∠EBC +∠CBP =∠FBE +∠EBC =60°=∠FBC ,所以∠ABF =90°+60°=150°,∠MBF =30°,BM =BF •cos30°=BC •cos30°=√32,MF =12,则AM =1+√32=2+√32, 在△AMF 中,勾股定理得:AM 2+MF 2=AF 2AF =√2+√3=(√22)2+2×√22×√62+(√62)2=(√2+√62)2=√2+√62.2.(朝阳区二模)阅读下列材料:小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接P A、PB、PC,求P A+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,P A+PB+PC的最小值为√61;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60°,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于P A+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当P A+PB+PC值最小时PB的长.【点拨】(1)先由旋转的性质得出△APC≌△EDC,则∠ACP=∠ECD,AC=EC=5,∠PCD=60°,再证明∠BCE=90°,然后在Rt△BCE中,由勾股定理求出BE的长度,即为P A+PB+PC的最小值;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD即为P A+PB+PC最小值的线段;②当B、P、E、D四点共线时,P A+PB+PC值最小,最小值为BD.先由旋转的性质得出△APC≌△DEC,则CP=CE,再证明△PCE是等边三角形,得到PE=CE=CP,然后根据菱形、三角形外角的性质,等腰三角形的判定得出BP=CP,同理,得出DE=CE,则BP=PE=ED=13BD.【解析】解:(1)如图2.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC,∴∠ACP=∠ECD,AC=EC=5,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°.在Rt△BCE中,∵∠BCE=90°,BC=6,CE=5,∴BE=√BC2+CE2=√62+52=√61,即P A+PB+PC的最小值为√61;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD等于P A+PB+PC最小值的线段;②如图,当B、P、E、D四点共线时,P A+PB+PC值最小,最小值为BD.∵将△APC绕点C顺时针旋转60°,得到△DEC,∴△APC≌△DEC,∴CP=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE=CP,∠EPC=∠CEP=60°.∵菱形ABCD中,∠ABP=∠CBP=12∠ABC=30°,∴∠PCB=∠EPC﹣∠CBP=60°﹣∠30°=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DE=CE,∴BP=PE=ED.连接AC,交BD于点O,则AC⊥BD.在Rt △BOC 中,∵∠BOC =90°,∠OBC =30°,BC =4,∴BO =BC •cos ∠OBC =4×√32=2√3,∴BD =2BO =4√3,∴BP =13BD =4√33.即当P A +PB +PC 值最小时PB 的长为4√33. 故答案为:4√33.3.(延庆县一模)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB =2,AC =4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ′BC ,连接A ′A ,当点A 落在A ′C 上时,此题可解(如图2).(1)请你回答:AP 的最大值是 6 .(2)参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB =4,P 为△ABC 内部一点,请写出求AP +BP +CP 的最小值长的解题思路.提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.①请画出旋转后的图形②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).【点拨】(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;(2)由旋转得到结论P A+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.【解析】解:(1)∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)①旋转后的图形如图1;②如图2,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A1P1B.则A1B=AB=BC=4,P A=P1A1,PB=P1B,∴P A+PB+PC=P1A1+P1B+PC.∵当A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,∴A1C=P A+PB+PC,∴A1C长度即为所求.过A1作A1D⊥CB延长线于D.∵∠A1BA=60°(由旋转可知),∴∠A1BD=30°.∵A1B=4,∴A1D=2,BD=2√3∴CD=4+2√3;在Rt△A1DC中,A1C=√A1D2+DC2=√22+(4+2√3)2=2√2+2√6.4.(2019春•灞桥区校级期末)问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,△ABC是边长为1的等边三角形,P为△ABC内部一点,连接P A、PB、PC,求P A+PB+PC 的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将△BP A绕点B逆时针旋转60°至△BP'A',连接PP'、A'C,记A′C与AB交于点D,易知BA'=BA=BC=1,∠A'BC=∠A'BA+∠ABC=120°.由BP'=BP,∠P'BP=60°,可知△P'BP 为正三角形,有PB=P'P.故PA+PB+PC=P′A+P′P+PC≥A′C=√3.因此,当A'、P'、P、C共线时,P A+PB+PC有最小值是√3.学以致用:(1)如图3,在△ABC中,∠BAC=30°,AB=4,CA=3,P为△ABC内部一点,连接P A、PB、PC,则的最小值是5.(2)如图4,在△ABC中,∠BAC=45°,AB=2√2,CA=3,P为△ABC内部一点,连接P A、PB、PC,求√2PA+PB+PC的最小值.(3)如图5,P是边长为2的正方形ABCD内一点,Q为边BC上一点,连接P A、PD、PQ,求P A+PD+PQ 的最小值.【点拨】(1)将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).(2)将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,转化为两定点之间的折线(化星为折),再利用“垂线段最短”求最小值.【解析】解:(1)如图3中,将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,在Rt△EAB中,BE=√AE2+AB2=5,∵P A+PB+PC=EF+FP+PB≥BE,∴P A+PB+PC≥5,∴P A+PB+PC的最小值为5.故答案为5.(2)如图4中,将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.在Rt△EAH中,∵∠H=90°,∠EAH=45°,AE=AB=2√2∴EH=AH=2,在Rt△EHC中,EC=√22+52=√29∵√2P A+PB+PC=FP+EF+PC≥CE,∴P A+PB+PC≥√29,∴P A+PB+PC的最小值为√29.(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,作EH ⊥BC 于H ,交AD 于G .∵P A +PD +PQ =EF +FP +PQ ≤EH ,易知EG =AE •sin60°=√3,GH =AB =2,∴EH =2+√3,∴P A +PD +PQ ≤√3+2,∴P A +PD +PQ 的最小值为√3+2.考点二 其它旋转中的最值问题【方法点拨】正确的作出辅助线构造全等三角形是解决此类题的关键,学会用转化的思想思考问题,掌握旋转法添加辅助线.【典例剖析】1.(无锡一模)如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可以与B 点或C 重合),分别过B ,C ,D 作射线AP 的垂线,垂足分别是B ',C ',D ',则BB '+CC '+DD '的最大值与最小值的和为 2+√2 .【点拨】连接AC ,DP ,根据正方形的性质可得出AB =CD ,S正方形ABCD =1,由三角形的面积公式即可得出12AP •(BB ′+CC ′+DD ′)=1,结合AP 的取值范围即可得出BB ′+CC ′+DD ′的范围,将其最大值与最小值相加即可得出结论.【解析】解:连接AC ,DP ,如图所示.∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB =CD ,S 正方形ABCD =1,∵S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12,∴S △ADP +S △ABP +S △ACP =1,∴12AP •BB ′+12AP •CC ′+12AP •DD ′=12AP •(BB ′+CC ′+DD ′)=1, 则BB ′+CC ′+DD ′=2AP, ∵1≤AP ≤√2, ∴当P 与B 重合时,有最大值2;当P 与C 重合时,有最小值 √2.∴√2≤BB ′+CC ′+DD ′≤2,∴BB '+CC '+DD '的最大值与最小值的和为2+√2.故答案为:2+√2.2.(2019•金台区二模)如图,正方形ABCD 的边长为2√3,点E 为正方形外一个动点,∠AED =45°,P 为AB 中点,线段PE 的最大值是 √15+√6 .【点拨】当点E 在正方形右侧时,连接AC ,BD 交于点O ,连接PO ,EO ,根据A ,C ,E ,D 四点共圆,可得OE =OD =12BD =√6,再根据PE ≤OP +OE =√6+√3,可得当点O 在线段PE 上时,PE =OP +OE =√6+√3,则线段PE 的最大值为√6+√3;当点E 在正方形上方时,作斜边为AD 的等腰直角△AOD ,则点E 在以O 为圆心,OA 为半径的圆上,当点P ,点O ,点E 共线时,PE 的值最大,求得此时PE 最大值为√15+√6;比较两个最大值,可得最终结果.【解析】解:如图,若点E在正方形右侧,连接AC,BD交于点O,连接PO,EO,∵∠AED=45°,∠ACD=45°,∴A,C,E,D四点共圆,∵正方形ABCD的边长为2√3,∴OE=OD=12BD=√6,∵P为AB的中点,O是BD的中点,∴OP=12AD=√3,∵PE≤OP+OE=√6+√3,∴当点O在线段PE上时,PE=OP+OE=√6+√3,即线段PE的最大值为√6+√3,如图,点E在正方形ABCD上方,作斜边为AD的等腰直角△AOD,∠AOD=90°,则点E在以O为圆心,OA为半径的圆上,∴当点P,点O,点E共线时,PE的值最大,过点O作ON⊥AB,交BA延长线于点N,∵AD=2√3,AO=DO,∠AOD=90°∴AO=√6,∠OAD=45°,∵ON⊥AB,AD⊥AB∴∠NAO=∠NOA=45°∴AN=NO=√3∴PO=√PN2+ON2=√12+3=√15∴PE最大值为√15+√6>√6+√3,故答案为:√15+√63.(2018•无锡一模)【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC (A,B,C为顺时针顺序),求OC的最大值【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB 的左侧作等边三角形BOE,连接AE.(1)请你找出图中与OC相等的线段,并说明理由;(2)线段OC的最大值为3.【灵活运用】(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB 外一动点,且P A=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.【迁移拓展】(4)如图③,BC=4√2,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.【点拨】(1)结论:OC=AE.只要证明△CBO≌△ABE即可;(2)利用三角形的三边关系即可解决问题;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=P A=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2√2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论;(4)如图4中,以BC为边作等边三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4√2=定值,∠BDC=90°,推出点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大;【解析】解:(1)如图①中,结论:OC=AE,理由:∵△ABC,△BOE都是等边三角形,∴BC=BA,BO=BE,∠CBA=∠OBE=60°,∴∠CBO=∠ABE,∴△CBO≌△ABE,∴OC=AE.(2)在△AOE中,AE≤OE+OA,∴当E、O、A共线,∴AE的最大值为3,∴OC的最大值为3.故答案为3.(3)如图1,连接BM,菁优网∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)最大值=AB+AN,∵AN=√2AP=2√2,∴最大值为2√2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO﹣AB﹣AE=5﹣3−√2=2−√2,∴P(2−√2,√2).(4)如图4中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4√2=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2√2+2 √2,∴AC的最大值为2√2+2√6.当点A在线段BD的右侧时,同法可得AC的最小值为2√6−2√2.4.如图1正方形ABCD,边CD在等腰三角形DEF的边DE上,AB=3,DE=5,连接AE、CF,点M、N 分别是AE、CF的中点,连DM、DN、MN.(1)直接写出AE与CF的关系和△DMN的形状.(2)如图2,将等腰直角三角形DEF绕点D顺时针旋转α°(0°≤α≤45°),连接AE、CF,点M、N分别是AE、CF的中点,连DM、DF、MN.此时(1)中的两个结论是否成立?若成立,给出证明;若不成立,说明理由.(3)在(2)的条件下,△ECF的面积在旋转过程中变化吗?若没有变化,请直接写出面积;若有变化,请直接写出它的最大值和最小值.【点拨】(1)如图1中,结论:AE=CF,AE⊥CF,△DMN是等腰直角三角形.证明△ADE≌△CDF(SAS)即可解决问题.(2)如图2中,结论成立.证明△ADE≌△CDF(SAS),再证明△ADM≌△CDN(SSS)即可解决问题.(3)△DMN的面积是变化的.求出△DMN面积的最小值或最大值即可解决问题.【解析】解:(1)如图1中,结论:AE=CF,AE⊥CF,△DMN是等腰直角三角形.理由:延长FC交AE于H.∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∵△DEF是等腰直角三角形,∴DE=DF,∠DEF=90°,∵AD=DC,∠ADE=∠CDE,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DCF=∠EAD,∵∠EAD+∠AED=90°,∠HCE=∠DCF,∴∠HCE+∠AED=90°,∴∠CHE=90°,∴AE⊥CF,∵AM=EM,CN=NF,∴DM=12AE=AM=ME,DN=12CF=CN=NF,∴DM=DN,∠ADM=∠MAD,∠DCN=∠NDC,∴∠ADM=∠CDN,∴∠NDM=∠ADC=90°,∴△MDN是等腰直角三角形.(2)如图2中,结论成立.理由:延长FC交AE于H.∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵AD=DC,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DCF=∠EAD,∵∠DCF+∠DCH=180°,∴∠DAH+∠DCH=180°,∴∠ADC+∠AHC=180°,∵∠ADC=90°,∴∠AHC=90°,∴AE⊥CF,∵△ADE≌△CDF,DM,DN是三角形的中线,∴DM=DN,AM=CN,∵AD=DC,∴△ADM≌△CDN(SSS),∴∠ADM=∠CDN,∴∠NDM=∠ADC=90°,∴△MDN是等腰直角三角形.(3)如图3中,△ECF的面积在旋转过程中有变化.①当DE与DC重合时,DM的长最小,此时△DMN的值最小,DM最小值=12•√AD2+DE2=12•√32+52=√342,此时△DMN的面积=12×√342×√342=174.②当旋转角为45°时,DM 的值最大,此时△DMN 的面积最大.如图3中,DA =3,DE =5,∠ADM =45°,作 EH ⊥DA 交DA 的延长线于H ,MK ⊥AH 于K . 则HE =DH =5√22,∵MK ∥EH ,AM =ME ,∴AK =KH =12(DH ﹣AD )=12(5√22−3),MK =12EH =5√24, ∴DM 2=MK 2+DK 2=(5√24)2+[3+12(5√22−3)]2=172+15√24, ∴△DMN 的面积的最大值=12DM 2=174+15√28.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用旋转法解几何最值问题应用举例解析一、利用旋转转化为点到直线的距离垂线段最短求最值例1、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC 的最小值为.MN解析:如图,将△ABO绕点A逆时针旋转60°得△AACM,并延长MC交x轴于点N.则点C在直线MN 上运动,当OC⊥MN时,OC最小,∴OC=AM=2,则OC的最小值为2.例2、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM=2,MH=EM=2,∴线段GD长度的最小值为2,例3、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故答案为.二、利用旋转转化为三点共线求最值例4、如图,PA=2,PB=4,将线段PA绕P点旋转一周,以AB为边作正方形ABCD,则PD的最大值为.解析:将△PAD绕点A顺时针旋转90°得到△P'AB,PD的最大值即为P'B的最大值,∴PA=PA',∠PAP'=90°∴PP'=PA=2∵△P'PB中,P'B<PP'+PB,PP′=PA=2,PB=4,且P、D两点落在直线AB的两侧,∴当P'、P、B三点共线时,P'B取得最大值,此时P'B=PP'+PB=2+4,即P'B的最大值为2+4.例5、如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为.解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.A B M NP例6、如图,菱形ABCD 的边长为4,∠A =60°,E 是边AD 的中点,F 是边AB 上的一个动点将线段EF绕着点E 逆时针旋转60°得到EG ,连接BG 、CG ,则BG +CG 的最小值为( )A .3B .2C .4D .2+2解析:如图,取AB 的中点N .连接EN ,EC ,GN ,作EH ⊥CD 交CD 的延长线于H .∵四边形ABCD 是菱形,∴AD =BD ,∵AE =ED ,AN =NB ,∴AE =AN ,∵∠A =60°,∴△AEN 是等边三角形,∴∠AEN =∠FEG =60°,∴∠AEF =∠NEG ,∵EA =EN ,EF =EG ,∴△AEF ≌△NEG (SAS ),∴∠ENG =∠A =60°,∵∠ANE =60°,∴∠GNB =180°﹣60°﹣60°=60°,∴点G 的运动轨迹是射线NG ,易知B ,E 关于射线NG 对称, ∴GB =GE ,∴GB +GC =GE +GC ≥EC ,在Rt △DEH 中,∵∠H =90°,DE =2,∠EDH =60°,∴DH =DE =1,EH =,在Rt △ECH 中,EC ==2,∴GB +GC ≥2,∴GB +GC 的最小值为2.故选:B . 例7、如图,AB =6,点M 为线段AB 外一个动点,且AM =2,MB =MN ,∠BMN =90°,则线段AN 的最大值为 .解析:如图,连接BN ,∵将△AMN 绕着点M 顺时针旋转90°得到△PBM ,连接AP ,则△APM 是等腰直角三角形,∴MA =MP =2,BP =AN ,∴PA =2,∵AB =6,∴线段AN 长的最大值=线段BP 长的最大值,∴当P 在线段BA 的延长线时,线段BP 取得最大值最大值=AB +AP =6+2. 三、利用旋转转化为四点共线求最值例8、如图,△ABC 中,∠ABC =30°,AB =4,BC =5,P 是△ABC内部的任意一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值为 .解析:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP+∠PBC,∴∠DBE+∠PBC=30°,∴∠DBC=90°,∴CD==,例9、如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC 的最小值是()A.4+3B.2C.2+6D.4解:由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.四、利用旋转转化为圆外一定点与圆上的动点的关系求最值例10、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.BCDAEF解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.练习1、已知x轴上一点A(1,0),B为y轴上的一动点,连接AB,以AB为边作等边△ABC如图所示,已知点C随着点B的运动形成的图形是一条直线,连接OC,则AC+OC的最小值是.解析:将△ABO绕点A逆时针旋转60°得△ACD,并作直线CD,延长AD交y轴于点A'.∵等边△ABC、等边△AOD,∴AB=AC,AO=AD,∠BAC=∠OAD=60°∴∠BAC﹣∠OAC=∠OAD﹣∠OAC,∴∠BAO=∠CAD在△BAO 和△CAD 中,∴△BAO ≌△CAD (SAS ),∴∠AOB =∠ADC ∵∠AOB =90° ∴∠ADC =90°,∴CD ⊥AD ,∴点C 随着点B 的运动形成的图形是直线CD∵∠AOA '=90°,∠OAD =60°∴∠AA 'O =30°∴OA =AA ' ∴AD =OA =AA '∴点D 是AA '的中点,∵CD ⊥AD ,∴CD 是AA '的中垂线 ∴AC =A 'C ,∴AC +OC =A 'C +OC又∵点C 在直线CD 上运动,所以点O 、C 、A '三点共线时,A 'C +OC 的值最小,最小值为OA '的长. 在R △AOA '中,∠AOA '=90°,∠OAD =60°,OA =1,O A '=OA =,∴AC +OC 的最小值为.2、已知:AD =2,BD =4,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧.当∠ADB 变化时,则CD的最大值 .解析:把△ADC 绕点A 顺时针旋转60°得到△AEB ,则AE =AD ,BE =DC ,∠EAD =60°,∴△ADE 为等边三角形,∴DE =DA =2,∠ADE =60°,当E 点在直线BD 上时,BE 最大,最大值为2+4=6,∴CD 的最大值为6.3、如图,在等腰直角△ABC 中,∠BAC =90°,点D 是△ABC 所在平面上一点,且满足DB =6,DA =10,则CD 的最小值为E解析:将△ADC 绕点A 顺时针旋转90°,得到△ABE .则CD =BE ,△ADE 是等腰直角三角形,ED =10.∵AE 、AD 、BD 都是定值,∴当E 、B 、D 三点共线时,BE 最小,即CD 最小.此时BE 最小值为DE ﹣BD =10﹣5.故选:A . 4、如图,平行四边形ABCD 中,∠B =60°,BC =6,AB =5,点E 在AD 上,且AE =2,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .解析:将线段AE 绕点E 逆时针旋转120°得到EH ,连接HG ,过点H 作HM ⊥AD ,∵四边形ABCD 是平行四边形,∴∠A +∠B =180°,∴∠A =120°,∵将线段AE 绕点E 逆时针旋转120°得到EH ,将线段EF 绕点E 逆时针旋转120°得到EG ,∴EF =EG ,AE =EH ,∠AEH =∠FEG =120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS )∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线,∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =2,HM ⊥AD ,∴EM =1,MH =,∴线段GD 长度的最小值为,5、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE =2,F 为 AB 边上的一个动点,连接 EF ,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG ,则 CG 的最小值为 .C G HFM N解析:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动,将△EFB 绕点E 旋转45°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等腰直角三角形,点G 在垂直于HE 的直线HG 上,作CM ⊥HG ,则CM 即为CG 的最小值,作EN ⊥CM ,可知四边形HENM 为矩形,则CM =MN +CN =HE 2EC =3212 6、如图,菱形ABCD 的边长是6,∠A =60°,E 是AD 的中点,F 是AB 边上一个动点,EG =EF 且∠GEF =60°,则GB +GC 的最小值是A B GFA B G F H解析:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG,∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB+GC的最小值;在Rt△EBC中,EB=3,BC=6,∴EC=3,∴GB+GC的最小值3.7、如图,平行四边形ABCD中,∠B=60°,BC=6,AB=5,点E在AD上,且AE=2,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD 长度的最小值为.EADB CFGEADB CF GH NM解:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=2,HM⊥AD,∴EM=1,MH=,∴线段GD长度的最小值为,8、如图,AB=8,点M为线段AB外一个动点,且AM=4,MB=MN,∠BMN=90°,则线段AN的最大值为.解析:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=4,BP=AN,∴PA=4,∵AB=8,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=8+4.9、如图,在△ABC中,∠ABC=60°,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是 .解析:如图,将△PBF 绕点B 逆时针旋转60°得到△BFE ,作EH ⊥CB 交CB 的延长线于H .∵∠ABC =60°,∠PBF =60°,∵∠ABP =∠EBF ,∴∠EBF +∠BC =60°,∴∠EBC =120°,∵PB =BF ,∠PBF =60°,∴△PBF 是等边三角形,∴PB =PF ,∵PA =EF ,∴PA +PB +PC =CP +PF +EF ,根据两点之间线段最短可知,当E ,F ,P ,C 共线时,PA +PB +PC 的值最小,最小值=EC 的长, 在Rt △EBH 中,∵∠EBH =60°,EB =6,∴BH =BE •cos60°=3,EH =EB •sin60°=3,∴CH =BH +CB =3+8=11, ∴EC ===2.10、如图,菱形ABCD 的边长为4,∠ABC =60°,在菱形ABCD 内部有一点P ,当PA+PB+PC 值最小时PB 的长为 .B C A D P解析:将△APC 绕点C 顺时针旋转60°,得到△DEC ,连接PE 、DE ,则当B 、P 、E 、D 四点共线时,PA +PB +PC 值最小,最小值为BD .∵将△APC 绕点C 顺时针旋转60°,得到△DEC ,∴△APC ≌△DEC ,∴CP =CE ,∠PCE =60°, ∴△PCE 是等边三角形,∴PE =CE =CP ,∠EPC =∠CEP =60°.∵菱形ABCD 中,∠ABP =∠CBP =∠ABC =30°,∴∠PCB =∠EPC ﹣∠CBP =30°,∴∠PCB =∠CBP =30°,∴BP =CP ,同理,DE =CE ,∴BP =PE =ED .连接AC ,交BD 于点O ,则AC ⊥BD .在Rt △BOC 中,∵∠BOC =90°,∠OBC =30°,BC =4, ∴BO =BC •cos ∠OBC =4×=2,∴BD =2BO =4,∴BP =BD =. 即当PA +PB +PC 值最小时PB 的长为. 11、如图,四边形ABCD 中,AB =3,BC =2,AC =AD ,∠ACD =60°,则对角线BD 长的最大值为( )A .5B .2C .2D .1解析:如图,在AB的左侧作等边三角形△ABK,连接DK.则AK=AB=BK=3,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS),∴DK=BC=2,∵DK+KB≥BD,DK=2,KB=AB=3,∴当D、K、B共线时,BD的值最大,最大值为DK+KB=5.故选:A.12、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若对角线BD⊥CD于点D,则对角线AC的最大值为.解:如图,将△ABC绕点B顺时针旋转90°得△DBM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2,∴AC的最大值为2+2.13、如图在四边形ABCD中,BC=CD,∠BCD=90°.若AB=4cm,AD=3cm,则对角线AC的最大值为cm.解析:如图,在直线AB的右侧作等腰直角三角形△ABE,使得,EB=EA,∠AEB=90°.∵AB=4cm,∴AE=BE=2,∵∠ABE=∠DBC=45°,∴∠ABD=∠EBC ,∵==,∴△ABD∽△EBC ,∴=,∵AD=3cm,∴EC =cm,∵AC≤AE+EC,∴AC ≤.∴AC 的最大值为cm.14、如图,已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.若∠ABC=30°,∠ACD=45°,AC=2,则B、D之间距离的最大值为.解:如图,在△ACD的外部作等边三角形△ACO,以O为圆心OA为半径作⊙O.∵∠ABC=∠AOC=30°,∴点B在⊙O上运动,作OE⊥DA交DA的延长线于E.在Rt△AOE中,OA=AC=2,∠EAO =30°,∴OE=OA=1,AE=,在Rt△ODE中,DE =AE +AD =2+,∴DO===+,当B 、O、D共线时,BD的值最大,最大值为OB+OD=2++.第11页(共11页)。

相关文档
最新文档