塑性成形过程中的有限元法

塑性成形过程中的有限元法
塑性成形过程中的有限元法

塑性成形过程中的有限元法

金属塑性成形技术是现代化制造业中金属加工的重要方法之一。它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。

随着现代制造业的高速发展,对塑性成形工艺分析和模具设计方面提出了更高的要求。若工艺分析不完善、模具设计不合理或材料选择不当,则会造成产品达不到质量要求,造成大量的次品和废品,增加了模具的设计制造时间和费用。为了防止缺陷的产生,以提高产品质量,降低产品成本,国内外许多大公司企业及大专院校和研究机构对塑性成形件的性能、成形过程中的应力应变分布及变化规律进行了大量的理论分析、实验研究与数值计算,力图发现各种制件、产品成形工艺所遵循的共同规律以及力学失效所反映的共同特征。由于塑性成形工艺影响因素甚多,有些因素如摩擦与润滑、变形过程中材料的本构关系等机理尚未被人们完全认识和掌握,因而到目前为止还未能对各种材料各种形状的制件成形过程作出准确的定量判定。正因为大变形机理非常复杂,使得塑性成形研究领域一直成为一个充满挑战和机遇的领域。

一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。因此,现代金属成形工艺分析过程中,建立适当的“过程模拟”非常重要。随着计算机技术的发展,人们已经认识到数值模拟在金属成形工程中的重要价值,这一领域已成为现代国内外学者的研究热点。

应用塑性成形的数值模拟方法主要有上限法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于分析较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算。对于大变形的体积成形和板料成形,变形过程常呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程,根据离散技术建立计算模型,从而实现对复杂成形问题进行数值模拟。分析成形过程中的应力应变分布及其变化规律,由此提供较为可靠的主要成形工艺参数。因此基于有限元法的塑性成形数值模拟技术是当前国际上极具发展潜力的成形技术前沿研究课题之一。

正确设计和控制金属塑性成形过程的前提条件是充分掌握金属流动、应力应变状态、热传导、润滑、加热与冷却及模具结构设计等方面的知识。任何分析方法都是为工程技术人员服务的,其目的是帮助工程技术人员掌握金属流动过程中应力应变状态等方面知识,一个好的分析方法至少应包括以下几个功能:

(1)在未变形体(毛坯)与变形体(产品)之间建立运动学关系,预测金属塑性成形过程中的金属流动规律,其中包括应力应变场量变化、温度变化及热传导等。

(2)计算金属塑性成形极限,即保证金属材料在塑性变形过程中不产生任何表面及内部缺陷的最大变形量可能性。

(3)预测金属塑性成形过程得以顺利进行所需的成形力及能量,为正确选择加工设备和进行模具设计提供依据。

当前,有限元法已成为分析和研究金属塑性成形问题的最重要的数值分析方法之一,它具有以下优点:(1)由于单元形状具有多样性,有限元法使用与任何材料模型,任意的边界条件,任意的结构形状,在原则上一般不会发生处理上的困难。金属材料的塑性加工过程,均可以利用有限元法进行分析,而其它的数值

方法往往会受到一些限制。

(2)能够提供金属塑性成形过程中变形力学的详细信息(应力应变场、速度场、温度场、网格畸变等),为优化成形工艺参数及模具结构设计提供详细而可靠的依据。

(3)虽然有限元法的计算精度与所选择的单元种类,单元的大小等有关,但随着计算机技术的发展,有限元法将提供高精度的技术结果。

(4)用有限元法编制的计算机程序通用性强,可以用于求解大量复杂的问题,只需修改少量的输入数据即可。

(5)由于计算过程完全计算机化,既可以减少一定的试验工作,又可直接与CAD/CAM实现集成,使模具设计过程自动化。

就金属塑性成形领域而言,有限元法大致可分为两类,一种是固体形塑性有限元法(Solid Formulation)—弹塑性有限元法,这类有限元同时考虑弹性变形和塑性变形,弹性区采用虎克定律,塑性区采用Prandte-Reuss方程和Mises屈服准则,对于小塑性变形所求的未知量是单元节点位移,适用于分析结构的失稳,屈服等工程问题。对于大塑性变形,采用增量法分析。这类有限元法的特点是考虑弹性区与塑性区的相互关系,既可以分析加载过程,又可以分析卸载过程,包括计算残余应力应变及回弹、以及模具和工件之间的相互作用,可以处理几何非线性和非稳态问题,其缺点是所取是的步长不能太大,计算工作量繁重,对于非线性硬化材料计算复杂。过去弹塑性有限元法主要适用于分析板料成形、弯曲等工序。但近年来随着计算机硬件技术的发展,这种方法正在朝着更广的应用范围扩展。

对于大多数体积成形问题,弹性变形量较小,可以忽略,即可将材料视为刚塑性体,同时为了克服上述弹塑性有限元方法的不足,C.H.Lee和S.Kobayashi于1973年首次提出了基于变分原理的流动型有限元法—刚塑性有限元法,用Lagrange乘子技术施加体积不变条件,由于这种方法不象弹塑性有限元法那样用应力应变增量进行求解,因此,计算时增量步进可取得较大一些,但对于每次增量变形来说,材料仍处于小变形状态,下一步计算是在材料以前的累加变形几何形状和硬化特性基础之上进行的,因此,可以用小变形的计算方法来处理大变形问题,并且计算模型较简单,这一方法已广泛的应用于二维轴对称问题的各种塑性工步分析。1979年,O.C.Zienkiewicz 等又给出了采用罚函数法的体积不可压缩的刚塑性有限元法。

刚塑性有限元法通常只是用于一些金属的冷加工问题。对于热加工(再结晶温度以上)应变硬化效应不显著,材料对变形速度具有较大的敏感性,因此,在研究热加工问题时要采用粘塑性本构关系,相应地发展了另一种流动型有限元法—刚粘塑性有限元法。O.C.Zienkiewicz 等把热加工时金属视为非牛顿不可压缩流体,建立了相应的有限元列式,并进行了稳态流动的热力耦合计算,分析了拉拔、挤压、轧制等工艺过程。Reblo等人进行了非稳态过程的热力耦合计算分析。Mori和Osakada提出了刚塑性有限元中的可压缩方法,对多种轧制和挤压工艺以及粉末成形工艺进行了模拟。Park、Oh、Rebelo、Kudo等用刚粘塑性有限元法对速率敏感材料成形过程进行了热力耦合计算。Hartley和Stugess对塑性成形摩擦进行了研究,并用此分析了挤压轧制等成形问题。另外,S.Kobayashi等人还提出刚塑性有限元反向模拟技术,并用此对一些简单的成形问题进行预成形设计,目前刚(粘)塑性有限元法是国内外公认的分析金属成形问题最先进的方法之一。

尽管塑性加工中的有限元理论及技术都有很大的发展,国内外的学者在一些方面已取得丰硕的成果,但由于塑性成形自身的特点,使得有限元在这个领域中的应用还存在许多具体的难题,如:如何建立一个能真实反映材料在成形过程中变形规律的本构关系、摩擦接触问题的处理、如何在分析过程中自动生成高质量的三维有限元网格及网格重划问题,宏观模拟和微观组织预测等,这些问题都急待解决,都是值得进一步开发研究的重要课题

ANSYS塑性成形计算机仿真

《塑性成形计算机仿真》 三级项目 1、1750四辊轧机工作辊扭转强度分析 2、1750四辊轧机轧制过程有限元分析 班级: 组员: 指导教师: 日期:2014年6月2日

摘要: (1) 前言: (1) 一、项目目的和内容 (1) 二、工作分配 (2) 正文: (2) 一、工作辊扭转强度有限元分析 (3) 二、轧制过程有限元分析 (12) 三、心得体会 (30) 四、参考文献 (30)

摘要: 通过对四辊实验轧机的机械组成及轧制过程的基本原理研究,选取本组项目课题主要为:1、1750四辊轧机工作辊扭转强度分析;2、1750四辊轧机轧制过程有限元分析。利用ANSYS软件对1750四辊实验轧机轧辊进行有限元建模,完成各种需要的强度分析,从而使我们具备运用有限元法进行一般工程问题分析的能力。 关键字:ANSYS分析软件工作辊扭转强度轧制过程有限元分析前言: 一、项目目的和内容 三级项目以有限元法在轧制工程中的应用为核心,通过该项目的实施使我们加深对有限元法的理解,并初步具备运用有限元法进行一般工程问题分析的能力,包括三维建模能力、理论模型建立能力、分析求解和验证能力等,掌握使用先进有限元软件进行现代化工程优化设计与分析的技能,以增强我们积极思考、主动学习,锻炼和提高学生的交流、沟通和表达能力以及团队合作能力,培养我们自身的责任感和职业道德。 利用ANSYS软件分别完成轧制过程、四辊轧机轧辊、机架、压下装置、平衡装置及矫直机下工作辊的有限元建模与强度分析。通过项目实施,掌握有限元软件ANSYS的基本操作及利用有限元软件进行工

程优化设计与分析的基本技能,为二级项目和毕业设计奠定基础。本组选择课题为: 1、1750四辊轧机工作辊扭转强度分析; 2、1750四辊轧机轧制过程有限元分析; 二、工作分配 本组由组长进行分配工作,张亚雄、张孟策、王超共同进行查阅相关研究资料,对研究成果信息进行整合;张亚雄进行1750四辊轧机工作辊和1750四辊轧机轧制过程的三维建模及有限元分析,王超完成了项目说明书的制作,张孟策完成最后的项目成果整合以及相关汇报PPT的制作。具体包括下述内容: (1)相关资料的查阅; (2)零件图三维建模; (3)单元类型选择与网格划分; (4)边界条件施加及求解; (5)结果后处理,位移、变形、应力等结果提取; (6)设计是否合理判定及改进措施; (7)项目研究报告及答辩用PPT。 正文: 利用三维设计软件和ANSYS结合起来完成对所需求解工程问题的分析,其中项目的技术参数如下: 最大轧制力:2000吨;

金属塑性成形原理课标Word版

金属塑性成形原理课程标准 (78学时) 一.课程性质和任务 本课程是高等职业技术学校材料成形专业的一门专业基础课程。通过本课程的学习,使学生了解有关塑性成形原理的专业知识;掌握塑性成形方法及简单工艺流程,应力.应变和塑性变形的相关知识;变形力计算方法;塑性成形件质量的一般分析方法;掌握压力加工模拟及其成立条件。 二.课程教学目标 本课程的教学目标是:使学生掌握塑性.塑性加工方法.塑性加工变形力计算等相关概念,包括晶体缺陷.晶格类型.塑性成形件质量分析.各种计算变形力的方法等。并且使学生掌握塑性相关概念,质量分析方法及变形力的理论计算;培养学生动手分析计算解决实际问题的能力。 (一) 知识教学目标 1.掌握塑性.塑性加工的相关基础知识。 2.掌握热加工.冷加工的区别及各自的优缺点。 3. 掌握金属变形区域的应力.应变分析方法。 4.熟悉塑性成形件的质量分析方法。 5.掌握变形力计算相关理论推导公式。 6.掌握主应力法.上限法的计算方法。 7.掌握塑性成形中的摩擦及其影响因素。 8.了解刚塑性有限元法的基本原理。 9. 了解压力加工模拟的条件及意义. (二) 能力培养目标 1.对本专业的发展历史.发展趋势有所了解。 2.能对塑性成形中质量影响因素进行分析。 3.具有对实际成形计算其变形力的能力。 (三) 思想教育目标 1.具有热爱科学.实事求是的学风和勇于实践.勇于创新的意识和精神。 2.具有良好的职业道德。

三.教学内容和要求 基础模块 (一)绪论 1.金属塑性成形特点及分类 掌握塑性成形的优点及局限性。 2.金属塑性成形原理课程的目的和任务 了解本课程的学习目的和任务,掌握学习方法。 3.金属塑性成形理论的发展概况 了解塑性理论的发展历史及今后发展趋势。 (二) 金属塑料变形的物理基础 1.金属冷态下的塑性变形 掌握冷加工的优缺点; 了解冷加工的适用范围。 2.金属热态下的塑性变形 掌握热加工的优缺点; 了解热加工的适用范围。 3. 金属的超塑性变形 了解超塑性的概念; 掌握超塑性原; 了解超塑性的应用前景。 4. 金属在塑性加工过程中的塑性行为 了解常见的金属塑性行为及其影响因素 (三) 金属塑性变形的力学基础 1.应力分析 理解内力.外力.面力.体积力的概念; 掌握塑性变形中应力分析的方法。 2.应变分析 理解应变的相关概念; 掌握塑性变形中应变分析的方法。 3.平面问题和轴对称问题 了解平面问题和轴对称问题的基本概念; 掌握平面问题和轴对称问题的常见处理方法。 4.屈服准则 理解材料的屈服现象; 掌握屈雷斯加屈服准则及米塞斯准则的使用原则和范围;了解影响材料屈服强度的相关因素。 5.塑性变形时的应力应变关系 掌握本构关系满足的条件; 掌握应力应变关系的应用条件和场合。 6.真实应力—应变曲线

有限元与数值方法-讲稿19 弹塑性增量有限元分析课件

材料非线性问题有限元方法 教学要求和内容 1.掌握弹塑性本构关系和塑性力学的基本法则; 2.掌握弹塑性增量分析的有限元格式; 3.学习常用非线性方程组的求解方法: (1)直接迭代法; (2) Newton-Raphson 方法,修正的N-R 方法; (3)增量法等。 请大家预习,争取对相关内容有大概的了解和把握。

弹塑性增量有限元分析 一.材料弹塑性行为的描述 弹塑性材料进入塑性的特点:存在 不可恢复的塑性变形; 卸载时:非线性弹性材料按原路径 卸载; 弹塑性材料按不同的路径卸载,并 且有残余应变,称为塑性应变。

1.单向加载 1) 弹性阶段: 卸载时不留下残余变形; 2) 初始屈服:s σσ= 3) 强化阶段:超过初始屈服之后,按弹性规律卸载,再加载弹性范 围扩大:ss σσ'>,s σ'为相继屈服应力。

4) 鲍氏现象(Bauschinger ): 二.塑性力学的基本法则 1.初始屈服准则: 00(,)0ij F k σ= 已经建立了多种屈服准则: (1) V . Mises 准则:000(,)()0ij ij F k f k σσ=-= 2 2 001 1 ()(),()2 3ij ij ij s f s s J k σσ===第二应力不变量1122221 ,() 3 ij ij ij m m s σδσσσσσ=-=++偏应力张量:平均应力: (2) Tresca 准则(最大剪应力准则): 0max ()0ij s F S ττ=-=

2.流动法则 V . Mises 流动法则: 0(,)()ij ij p ij ij ij F k f d d d σσελ λ σσ??==??, 0d λ> 待定有限量 塑性应变增量 p ij d ε 沿屈服面当前应力点的法线方向增加。 因此,称为法向流动法则。 3.硬化法则: (1)各向同性硬化:(,)()0ij ij F k f k σσ=-=

有限元分析材料塑性

有限元分析材料塑性 篇一:塑性成形有限元分析 贵州师范大学 《塑性成形有限元分析》 课程期末考查 学年第学期 学院:机电学院专业:材料成型及控制工程姓名:谭世波学号:111404010056科目:dEFoRm-3d塑性成形caE应用教程日期:20XX 年1月3日 塑性成形有限元分析 20XX级材料成型与控制工程 (谭世波111404010056) 摘要:本文主要是在dEFoRm-3d软件上模拟圆柱形毛坯的墩粗成型,对零件 进行有限元模拟分析。 引言:何为有限元模拟分析?如何完成一个墩粗的模拟 分析,运用dEFoRm-3d对毛坯进行分析的目的。 模拟直径为50mm,高度60mm的钢棒的镦粗成形工艺,工艺工序参数如下: (1)几何体与工具采用整体分析;(2)单位:公制

(3)材料:aiSi-1045(4)温度:20℃ (5)上模移动速度:2mm/s(6)模具行程:10mm; 模拟过程:先用UG画出钢棒的三维模型,导出为STL格 式。 1.在dEFoRm-3d软件中进行模拟分析,打开软件创建 一个新的问题。 2.设置模拟控制 3.设置材料基本属性 篇二:塑性成形有限元分析考查题目 《塑性成形有限元分析》课程期末考查试题 (20XX级材料成型与控制工程) 下面试题二选一,上交时间:20XX年1月5日上午9:00。 1、请模拟直径为50mm,高度60mm的钢棒的镦粗成形工序,工艺参数如下: (1)几何体与工具采用整体分析; (2)单位:公制 (3)材料:aiSi-1045 (4)温度:20℃ (5)上模移动速度:2mm/s (6)模具行程:10mm; 按照论文的格式撰写研究报告(打印),描述模拟过程,并详细解读分析模拟结果(注:交报告时带上演示模拟结果)。

弹塑性及有限元题目整理

一、应力 1. 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2. 应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3. 为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 4.Pie平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 5.固体力学解答必须满足的三个条件是什么?可否用其他条件代替? 可以。能量原理处于整个系统。 6. 解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 二、应变 1.从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现"裂缝"或者相互"嵌入",即产生不连续。 2.两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3.应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 4.给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。

刚塑性有限元数值模拟中产生误差的原因及改进方法(精)

刚塑性有限元数值模拟中产生误差的原因及改进方法 1 引言 塑性加工过程的有限元数值模拟,可以获得金属变形的详细规律,如网格变形、速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。在制造技术飞速发展、市场竞争日益加剧的今天,塑性加工过程的计算机模拟可在模具虚拟设计、制造阶段就能充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。由此可见,金属成型过程的有限元模拟已是模具计算机集成制造系统中必不可少的模具设计检验环节。 金属成形工艺分体积成形和板料成形两大类,相应地,用于分析其流动规律的有限元法也分为两类,即:刚塑性、刚粘塑性有限元和弹塑性有限元。体积成形中的挤压成形和锻造成形在实际生产中应用很广,中外学者在这方面进行了很多研究,其中二维模拟技术已相当成熟,三维模拟是目前的世界研究热点。刚塑性、刚粘塑性有限元模拟能否对模具设计的合理性做出可靠校验,取决于模拟的精度和效率。作者结合从事二维塑性有限元模拟的经验和当前的三维塑性有限元模拟系统开发的实践,对刚塑性、刚粘塑性有限元模拟过程中产生误差的原因进行了全面的详细分析,并提出相应的解决方法,同时以具体实例说明。 2 刚塑性、刚粘塑性有限元模拟中产生误差的原因及改进方法 2.1 刚塑性有限元法求解的数学基础 刚塑性有限元法是假设材料具有刚塑性的特点,把实际的加工过程定义为边值问题,从刚塑性材料的变分原理或上界定理出发,接有限元模式把能耗率表示为节点速度的非线性函数,利用数学上的最优化原理,在给定变形体某些表面的力边界条件和速度边界条件的情况下,求满足平衡方程、本构方程和体积不变条件的速度场和应力场。速度场的真实解使以动可容速度场建立的能量泛函取极小值。但所得到的塑性力学的微分方程组一般不能用解析法求解,常采用数值解近似,而采用数值解,则会出现各种误差。误差取决于所用的数值方法。下述处理方式易引起系统误差。 2.1.1时间和空间的离散化

塑性成形过程的数值模拟汇总

实验报告 塑性成型过程的数值模拟 班级:机自07 姓名:欧阳罗辉 学号:10011170 2012年12月

一、实验目的: 通过本实验的教学,使学生基本掌握有限元技术在板料塑性成形领域的应用情况,拓宽学生的知识面,开阔视野,使学生对塑性成形过程的数值模拟技术有深刻的理解,预测板料弯曲成形的性能。 二、教学基本要求: 学会使用Dynaform数值模拟软件进行板料弯曲成形过程的仿真模拟,对模拟结果具有一 定的分析和处理能力。 三、实验内容提要: 掌握前处理的关键参数设置,如零件定义、网格划分、模型检查、工具定义、坯料定义、 工具定位和移动、工具动画、运行分析。了解后处理模块对模拟结果的分析,如读入d3plot 文件、动画显示变形和生成动画文件、成形极限图分析、坯料厚度变化分析等。 四、软件操作过程: 1. 导入压边圈、板料、下模板、上模板图形文件 点击File —Import,出现Import File 对话框,找到“ L型弯曲零件图” 选中binder.igs,点击Import,如此,依次导入四个模型文件,最后点击“确定”确认

四个模型导入后,结果如图 2. 重命名文件 点击PartLEdit ,出现Edit Part 对话框,这里便要依次更改文件名 首先选用红色文件名“ cOOIvOOO 1 ”,在上面的Name 对话框中输入binder ,然后点击 Modify ,以此类推输入 banker 、die 、punch 。 Edit Part 3. 对各图形文件划分有限元网格 1. Binder 零件网格划分

n 点击口图标,出现Part Turn。。。对话框,依次单击banker 2, die 3, punch 4,它们都会被取消选中,只留下binder 1被显示,点击0K确定。然后点击右下角的Current Part,弹出Current Part对话框,选择binder 1,点击OK确定。 点击Preproces L Element,弹出Element对话框,选择Part Turn On/Off Select by Cursor 第四个图标(自动模式),将Max Size改为10,点击Select Surfaces点击Displayed Surf,点击OK,点击Apply,点击Yes,点击Exit,点击OK,于是第一个零件网格划分完 成。 2. Banker零件网格划分 n 点击i□图标,取消Binder 1零件的显示,添加Banker 2 Select Dy Name All On |AllOfi OK Undo F Only SeledOn 零件的显示,点击OK确定。然后点击右下角的Current Part图标,将当前零件选成Banker 2, 点击OK确定。 点击Preproces A Element,弹出Element对话框,选择第三个图标,弹出Control Keysto ne对话框,点击POINTS/NODES,弹出In put Coo。。。对话框,选中Poi nt,然后在绘图区沿顺时针或者逆时针方向依次选中Ba nker零件的四个顶点,如下图所示

塑性成形试题

塑性成形模拟技术试题 1、简述刚塑性材料的不完全广义变分原理 答:对于刚塑性边值问题,在满足变形几何方程、体积不可压缩条件和边界位移速度条件式的一切运动容许速度场中,使泛函 dS u p dV i S i V p * .*.??-=∏--εσ 取驻值(一阶变分)的* ?u 为本问题的精确解。它的物理意义是刚塑性变形体的总能耗率,泛函的第一项表示变形工件内部的塑性变形功率,第二项则代表工件表面的外力功率。对一般的刚塑性材料,运动容许速度场须满足速度边界条件、几何方程和体积不变条件,把这些限制条件作为约束条件引入总能耗率泛函,则可使上述约束条件在对泛函求变分的过程中得到满足。引入约束条件后,变分原理的表述要有相应的变化,统称为广义变分原理,其中引入部分约束条件的广义变分原理即为不完全广义变分原理。如拉格朗日乘子法,罚函数法。 2、试分析拉格朗日乘子法、体积可压缩法和罚函数法的特点。 答:(1)Lagrange 乘子法引入附加未知数(λ),使有限元刚度方程数(未知量)及刚度矩阵的半带宽增大。(若有m 个单元,则增m 个未知的λ和相应的方程数)。所以,同样问题会大大增加计算时间。 (2)三种方法有限元刚度矩阵都是对称的、稀疏的,但Lagrange 法的刚阵非零元素分布形态不呈带状,罚函数法为明显带状分布。故Lagrange 法会增加计算机贮存空间,降低计算效率。 (3)Lagrange 法中的λ具有明确的物理意义,即 m σλ=。对于罚函数法,只有当罚因子取无穷大时才能满足体积不可压缩条件,得出正确的静水压力值,而实际计算时,只能取有限值。因此,Lagrange 乘子法计算精度高些。 (4)罚函数法和可压缩特性法对初始速度场都比较严格 。 (5)罚函数法就是根据泛函是否满足体积不变条件来决定是否给予惩罚,以改变泛函值而使其满足体积不变条件。

弹塑性力学有限单元法

中南大学2014年博士研究生入学考试 《弹塑性力学有限单元法》考试大纲 本考试大纲由交通运输工程学院教授委员会于2013年7月通过。 I.考试性质 弹塑性力学有限单元法是我校“载运工具运用工程”专业博士生入学考试的专业基础课,它是为我校招收本专业博士生而实施的具有选拔功能的水平考试;其目的是科学、公平、有效地测试考生掌握弹性力学、塑性力学及有限单元数值方法课程的基本知识、基本理论,以及相关理论和方法分析解决实际问题的能力;评价的标准是高等学校优秀硕士毕业生能达到的及格或及格以上水平,以保证被录取者能较好的掌握了本专业必备的基础知识。 II.考查目标 弹塑性力学有限单元法课程考试弹性力学、塑性力学及有限单元数值方法等内容,重点在检查力学基本概念与基本方法的掌握和应用,难度适中,覆盖主要章节,能区分学生优劣层次。要求考生:(1)掌握弹塑性力学的基本知识、结构有限元分析的基本方法和过程,要求学生具备使用有限元方法进行车辆结构强度分析的能力。 Ⅲ.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为100 分,考试时间为180 分钟 2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 弹性力学约30 % 30 有限单元法约50 % 50

塑性力学基本理论约20 % 20 Ⅳ.考查内容 1. 弹性力学 (1)掌握弹性力学问题基本方程及边界条件。 (2)掌握应力理论及变形理论、二阶张量的坐标转换; (3)掌握使用位移法和应力法求解弹性力学问题; (4)掌握使用半逆解法求解简单平面问题; 2. 有限单元法 (1)掌握有限元方法的基本概念; (2)掌握平面、空间及等参单元分析的过程 (3)掌握有限单元位移模式的选取、刚度矩阵数值积分方法;(4)掌握结构刚度矩阵性质、边界条件处理; (5)掌握薄板弯曲问题有限元分析方法; (6)掌握车辆典型结构有限元分析的步骤和处理技巧; 3. 塑性力学 (1)掌握塑性力学的基本概念; (2)掌握Tresca和Mises屈服条件; (3)掌握几种常用的弹塑性力学模型; (4)掌握应力空间和屈服曲面的概念、加载曲面和塑性流动法则;

弹塑性有限元方法

第三章 弹塑性有限元方法的实施 §3.1 增量平衡方程和切线刚度矩阵 1、 分段线性化的求解思想 塑性变形的特点决定了塑性本构关系的非线性和多值性,上面由塑性增量理论给 出了塑性应力—应变关系{}{}ep d D d σε=???? 其中 [][] {}{}[]{}[]{} T ep T F F D D D D F F A D σσ σ σ ????=- ??+ ?????? 说明当前应力状态不仅与当前应变有关,而且和达到这一变形状态的路径(加载历史)有关。这里包含了屈服准则、强化条件和加卸载准则。 由此,对物理非线性问题,通常采用分段线性化的纯增量法和逐次迭代的方法求解。即将加载过程分成若干个增量步,选择其中任意一个增量步建立它的增量平衡方程并求解,对整个过程的求解有普遍意义。 2、 增量平衡方程和切线刚度矩阵 设t 时刻(加载至i -1步终),结构(单元)在当前载荷(广义体力{}v f 和表面力{}s f ) 的作用下处于平衡状态,此时物体内一点的应力、应变状态为{}{}σε、。在此基础上,施加一个载荷增量{}{}v s f f ??和,即从t t t →+?时刻,则在体内必然引起一个位移增量{}u ?和相应的{}σ?、{}ε?,只要{}{}v s f f ??和足够小,就有{}{}ep D σε?=?????。 倘若初始状态{}σ已知,加载过程已知,则ep D ????可以确定(即p ij d ε?可以确定,然后 可在硬化曲线上得到1p ε所对应的硬化系数)于是上面的方程成为线性的。在t t t →+?这一增量过程中,应用于虚功原理可得到如下虚功方程: ()()()0e e T T T V V s s V S f f u dV f f u dS σσδεδδ??+?-+??-+??=?? ?? (1) 根据小变形几何关系u N q B q ε?=??=?和,再由虚位移()q δ?的任意性,并设 ()()e e T T v v s s V S P P N f f dV N f f dS +?= +?+ +?? ? ,展开后,其中单元在t 时刻载荷等效节点 力:e e T T v s V S P N f dV N f dS = + ? ? ;t ?内增量载荷的等效力e e T T v s V S P N f dV N f dS ?= ?+ ?? ? 。

塑性成形中的CAE应用

塑性成形中的CAE应用 ——CAE 在汽车冲压件生产工艺中的优化应用 摘要:汽车冲压件在设计过程中采用快速冲压可行性分析,结合有限元软件和CAD 软件的造型功能,通过合理地分析、排样, 达到节省材料、降低生产成本的目的, 采用一步成形法有限元技术与增量有限元技术相结合的方法,分析设计出合理的工艺方案,并在生产实际中得到有效应用。 关键词:排样;冲压可行性;生成成本;CAE 技术 汽车是国民经济和现代生活中不可缺少的一种交通工具,汽车工业是一个国家工业化水平的代表性产业,它的兴衰成败又决定和影响着一大批工业产业的发展。以CAD和CAE为代表的计算机技术的出现使汽车的设计过程和设计理念也有了革命性的变化。钣金冲压件在卡车中总重量超过1/ 2 ,在轿车中达到3/ 4。随着经济全球化和一体化的不断发展, 汽车制造企业之间的竞争日趋激烈, 汽车冲压件更新换代的步伐不断加快。汽车冲压件设计制造中焦点问题是如何在保证质量的前提下达到成本最低; 同时进一步缩短冲压件的开发周期,也是汽车冲压件成为竞争取胜的决定因素。 随着计算机技术的不断发展, CAE(计算机辅助工程) 技术目前已经在各大汽车模具厂广泛用于产品模拟分析、冲压件成形过程分析。通过提前对产品可能出现的成形缺陷进行研究, 预示汽车冲压件成形的可行性。通过计算机数值模拟技术, 达到在设计阶段对冲压件质量进行预测, 控制成本, 提高产品工艺设计的合理性, 减少因为

设计的错误而造成返修。应用于汽车冲压件分析的主流软件是增量求解软件, 由于增量求解软件在前处理阶段花费大量的时间,计算速度相对较长,它非常适合冲压工艺最后验证阶段使用。一步成形技术可以在冲压件设计和早期工艺设计阶段发挥设置简单、求解速度快的优势,如果把一步成形法和增量求解法相结合,就能达到兼顾精度、提高效率的目的,目前这类方法在汽车工业界被广泛地采用。 2 降低成本措施及可行性分析 2. 1 降低成本 降低汽车冲压件生产制造成本包括降低材料成本、生产成本、人力成本等, 其中降低生产成本和降低人力成本的空间已经很小, 现在对于材料成本的控制显得更为迫切。冲压件在最初设计阶段采用CAD 和CAE 相结合技术, 根据CAE 的成本计算结果,调整几何形状,使冲压件展开后的外轮廓面积最小, 结合FormingSuite 软件的Costoptimizer 优化软件包,对汽车冲压件的仿真工艺设计过程进行分析,通过降低材料等级、厚度和增大冲压件设计的圆角半径及修剪冲压件的边缘各项措施, 达到降低材料成本的目的。 2. 2 冲压可行性分析 在钣金冲压件和工艺设计阶段, 对于已有的冲压件, 并不能预先知道坯料的几何形状。不同的冲压件形状和工艺条件会生成不同的坯料形状和尺寸。采用不成熟的技术时, 会造成冲压件不合格甚至报废。为了缩短设计过程和降低整个成本, 快速分析技术显得非常重要。有限元方法提供一个工具, 能够把试验和不成熟的方法从昂贵的

塑性成形过程中的有限元法

塑性成形过程中的有限元法 金属塑性成形技术是现代化制造业中金属加工的重要方法之一。它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。 随着现代制造业的高速发展,对塑性成形工艺分析和模具设计方面提出了更高的要求。若工艺分析不完善、模具设计不合理或材料选择不当,则会造成产品达不到质量要求,造成大量的次品和废品,增加了模具的设计制造时间和费用。为了防止缺陷的产生,以提高产品质量,降低产品成本,国内外许多大公司企业及大专院校和研究机构对塑性成形件的性能、成形过程中的应力应变分布及变化规律进行了大量的理论分析、实验研究与数值计算,力图发现各种制件、产品成形工艺所遵循的共同规律以及力学失效所反映的共同特征。由于塑性成形工艺影响因素甚多,有些因素如摩擦与润滑、变形过程中材料的本构关系等机理尚未被人们完全认识和掌握,因而到目前为止还未能对各种材料各种形状的制件成形过程作出准确的定量判定。正因为大变形机理非常复杂,使得塑性成形研究领域一直成为一个充满挑战和机遇的领域。 一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。因此,现代金属成形工艺分析过程中,建立适当的“过程模拟”非常重要。随着计算机技术的发展,人们已经认识到数值模拟在金属成形工程中的重要价值,这一领域已成为现代国内外学者的研究热点。 应用塑性成形的数值模拟方法主要有上限法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于分析较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算。对于大变形的体积成形和板料成形,变形过程常呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程,根据离散技术建立计算模型,从而实现对复杂成形问题进行数值模拟。分析成形过程中的应力应变分布及其变化规律,由此提供较为可靠的主要成形工艺参数。因此基于有限元法的塑性成形数值模拟技术是当前国际上极具发展潜力的成形技术前沿研究课题之一。 正确设计和控制金属塑性成形过程的前提条件是充分掌握金属流动、应力应变状态、热传导、润滑、加热与冷却及模具结构设计等方面的知识。任何分析方法都是为工程技术人员服务的,其目的是帮助工程技术人员掌握金属流动过程中应力应变状态等方面知识,一个好的分析方法至少应包括以下几个功能: (1)在未变形体(毛坯)与变形体(产品)之间建立运动学关系,预测金属塑性成形过程中的金属流动规律,其中包括应力应变场量变化、温度变化及热传导等。 (2)计算金属塑性成形极限,即保证金属材料在塑性变形过程中不产生任何表面及内部缺陷的最大变形量可能性。 (3)预测金属塑性成形过程得以顺利进行所需的成形力及能量,为正确选择加工设备和进行模具设计提供依据。 当前,有限元法已成为分析和研究金属塑性成形问题的最重要的数值分析方法之一,它具有以下优点:(1)由于单元形状具有多样性,有限元法使用与任何材料模型,任意的边界条件,任意的结构形状,在原则上一般不会发生处理上的困难。金属材料的塑性加工过程,均可以利用有限元法进行分析,而其它的数值

弹塑性有限元法与刚塑性有限元法

弹塑性有限元法与刚塑性有限元法 板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性三非线性问题的计算,难度很大。随着非线性连续介质力学理论、有限元方法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际应用。 本文评述了板料成形数值模拟的发展历史和最新进展,并指出了该领域的发展趋势。 1、板料成形的典型成形过程、物理过程与力学模型 典型成形过程 板料成形的具体过程多种多样,在模拟分析时,可归纳成如图1所示的典型成形过程。成形时,冲头在压力机的作用下向下运动,给板料一个作用压力,板料因此产生运动与变形。同时,冲头、压力圈和凹模按一定方式共同约束板料的运动与变形,从而获得所要求的形状与尺寸。 物理过程 板料成形的物理过程包括模具与板料间的接触与摩擦;由于金属的塑性变形而导致的加工硬化和各向异性化;加工中可能产生的皱曲、微裂纹与破裂及由于卸载而在零件中产生回弹。 力学模型 板料成形过程可归纳成如下的力学问题:

给定冲头位移、凹模位移及压边圈历程函数,求出板料的位移历程函数,使其满足运动方程、初始条件、边界条件、本构关系及接触摩擦条件。 2板料成形数值模拟的发展历史 塑性有限元方法的发展 根据材料的本构关系,用于板料成形分析的非线性有限元法大体上分为刚-(粘)塑性与弹-(粘)塑性两类。 粘塑性有限元法很早就在板料成形分析中应用过,只是未能推广。事实上,粘塑性有限元法适用于热加工。在热加工时,应变硬化效应不显著,材料形变对变形速率有较大敏感性。

基于D_P准则的三维弹塑性有限元增量计算的有效算法

基于D-P准则的三维弹塑性有限元 增量计算的有效算法 A practical3D ela sto2pla stic incremental method in FEM ba sed on D-P yield criteria 杨 强,陈 新,周维垣 (清华大学水利系,北京 100084) 摘 要:针对岩土材料常用的D-P准则,提出了一种新的增量分析方法,不用形成弹塑性增量矩阵,直接导出了符合正交流动法则的转移应力的解析解。该方法无论是对小步长还是大步长加载均有良好的收敛性。当采用精细的步长划分时,它就是严格意义上的理想弹塑性增量计算。在大步长情况下,在收敛域内最大载荷低于结构真实的极限承载力;对应的应力场是一个静力容许应力场;同时由于正交流动法则在平均意义下得到满足,收敛域内最大载荷接近结构真实的极限承载力。按此法所得结果接近真解且偏于安全。将整个计算模型装入三维非线性有限元程序TFI NE中,对某拱坝进行了超载分析。 关键词:转移应力;极限载荷;点安全度 中图分类号:T U452 文献标识码:A 文章编号:1000-4548(2002)01-0016-05 作者简介:杨 强(1964-),男,云南人。1988年在清华大学获硕士学位,1996年在奥地利Innsbruck大学获博士学位,现为清华大学水利系教授。主要从事水工结构及岩石力学方面的研究工作。 Y ANG Qiang,CHE N X in,ZH OU Wei2yuan (Department of Hydraulic Engineering,Tsinghua University,Beijing100084,China) Abstract:In this paper,focused on popularly used D-P yield criteria in geomaterials,a new incremental method in which the stresses to be trans2 ferred according to normal flow rule are directly derived without forming elasto2plastic increment matrix,was proposed.This method converges for either small load steps or large load steps.When very small load steps are used,the method is equivalent to standard elasto2plastic incremental method.When large load steps are used,the maximum load applied is lower than limit load in structure,the calculated stress field is an static ad2 missible one.As normal flow rule is satisfied in average,the maximum load is close to limit load.The soltion calculated by the method is on the safe side and close to real solution.The method was embedded into a3D nonlinear FEM software named TFINE,and overloading analysis was performed on an arch dam. K ey words:the stresses to be transferred;normal flow rule;limit load 1 引 言Ξ 岩土材料具有很复杂的本构特性,如各向异性、硬化、软化等,目前描述岩土材料的本构模型非常多。但在实际工程三维有限元计算分析中,尤其是在岩体工程里,大量使用的仍是最简单D-P准则及理想弹塑性分析。其主要原因是参数选取不易。如在二滩高拱坝建设中,做了大量坝肩岩体现场大型抗剪试验,但具体到某一岩级,试验点数仍然很有限,且离散性很大。很难完全依赖试验确定参数,一般都要进行工程类比,对中、小工程工程类比更是参数确定的主要手段。最终一般只能给出岩体的抗剪参数f,c值。在这种情况下,从工程实用角度来说,追求本构关系的精致、完备并无太多实用意义。 相对而言,在岩土工程三维非线性有限元分析里,计算收敛性是一个较大的问题。弹塑性增量计算要采用精细的步长划分,才能确保计算收敛到正确解。在岩土工程,尤其是岩体工程里,荷载量级都很大,如高拱坝对水荷载的极限承载力可达上亿吨,而这对两岸高陡边坡所承受的的自重荷载来说,还只是一个小数,又如高地应力区大型地下洞室、高边坡(如三峡船闸高边坡)开挖过程中的释放荷载量级也十分巨大。若采用精细的步长划分,计算量将很大。岩体地质构造复杂,三维网格划分时经常会有畸形单元。由于地址缺陷或加固措施导致相邻单元材料性质差异过大,再加上高水平的荷载,各种因素交互影响,使得在计算过程中,经常出现局部发散现象,使得增量计算难以进行下去,最终结果可信度低,也难以从计算结果判断何时结构丧失稳定性。而对岩土工程来说,往往更关注结构的稳定性和极限承载力,而非应力和位移分布。 Ξ基金项目:国家自然科学基金资助项目(59879005);清华大学基础研究基金资助项目 收稿日期:2001-04-12  第24卷 第1期岩 土 工 程 学 报V ol.24 N o.1 2002年 1月Chinese Journal of G eotechnical Engineering Jan., 2002

有限元法的发展及在塑性加工研究中的应用

有限元法的发展及在塑性加工研究中的应用 金属成形过程的研究方法大致可分为三类[33]:第一类是基于经典塑性理论的解析方法,其中包括:①精确地联立求解塑性理论基本方程的数学解析法。②将平衡方程和塑性条件简化后联立求解塑性理论基本方程的主应力法。③针对平面问题提出的滑移线法。④基于能量守恒原理的能量法和上限法;第二类是以实验数据为分析基础的实验力学研究方法,如视塑性法、网格法、密栅云纹法等;第三类是随着塑性理论和计算机应用的发展,由传统的方法演化出来的数值方法,主要包括:①上限元法(UBET),②矩阵算子法,③有限差分法(FDM),④加权余数法(WRM),⑤边界元法(BEM),⑥有限元法(FEM)等。 近年来,随着计算机技术的发展和普遍应用,对塑性成形问题的求解起到了很大的促进作用。金属成形过程伴随着很大的塑性变形,既存在材料非线性(应力与应变之间的非线性),又有几何非线性(应变与位移之间的非线性),变形机制十分复杂。加上复杂的边界条件以及数学上的困难,使得成形过程的求解十分复杂。有限元法是20世纪60年代提出的一种分析方法,已能在考虑变形热效应以及工件与模具、周围介质热交换的情况下,确定变形体内的应力、应变和温度情况。成形过程的设计一般依赖于图表、经验公式等传统的经验设计,这对于工艺设计复杂而工艺参数控制要求严格的精确塑性成形而言,其浪费会更大,有限元数值模拟方法在计算机上再现了零件的制造过程,使人们能够直观、全面地了解成形过程。精确塑性成形需要高质量的控形和控性来保证,通过模拟可以在零件实际制造前,发现成形条件和工艺中可能存在的问题及缺陷,优化成形工艺,提高生产效率,降低生产成本,是一种非常有效的研究方法。有限元法所以能获得如此广泛应用,与计算机技术的发展、特别是模拟的实践指导与应用密切相关。有限元模拟有其独特的优越性,通过模拟计算可以作为试验设计依据,从而简化试验,降低试验成本、避免多次试验的尝试和反复修改。计算机数值模拟技术已成为研究和发展先进塑性成形理论和技术的强有力工具,为高质量、低成本、短周期地实现塑性成形产品的开发创造了有利条件。 有限元法是对塑性成型过程进行数值模拟的最有效方法。可以比较精确地求解变形过程中的各种场变量,如速度(位移)场、应变场和应力场等,从而为变形工艺分析提供科学依据和具体实践的指导。 Marcal和King[34]于1967年最早提出了弹塑性有限元,它同时考虑弹性变形和塑性变形,弹性区采用Hook定律,塑性区采用Prandtl-Reuss方程和Mises屈服准则。1973年S.Kobayashi和C.H.Lee[35]针对弹塑性有限元法存在的问题提出了所谓“矩阵法”的刚塑性有限元法,用来分析金属塑性成形问题。这类有限元法不计弹性变形,采用Levy-Mises 方程作为本构方程,满足体积不变条件,并采用率方程描述,变形后物体的形状通过在离散空间上对速度积分而获得,从而避开了有限变形中几何非线性问题。近年来,刚塑性有限元法己被广泛应用并解决了许多金属塑性成形问题。与此同时,针对刚塑性有限元法在求解过程中存在的一些问题,提出了各种相应的解决方法,如处理材料不可压缩条件的Lagrange乘子法[35]、罚函数法[36]和体积可压缩法[37]等。O.C.Zienkiewicz[38]等将刚塑性材料看作是非牛顿不可压缩粘性流体,导出了刚粘塑性有限元求解列式,并于1972年提出了刚粘塑性有限元法。 针对以上提出的模型,后人根据具体材料的不同情况进行了大量的模拟试验,使这些有限元方法得到了广泛的应用,同时结合实际对模型进行修正,促进有限元模拟在生产的指导作用[39~43]。N.L.Dung等[39]采用刚塑性有限元法,对涡轮叶片精锻过程进行了二维有限元模拟,在模拟过程中采用三角形和四边形的混合单元,并采用Lagrange乘子法处理体积不可压缩条件,对金属在对称和不对称的上下模的作用下的流动情况进行了对比分析。王梦寒等[42]用刚粘塑性有限元法对油泵定了温挤成形过程的模拟分析,优化了成形工艺及模型参数,通过与物理试验比较,验证了数值模拟分析的准确性。 对钛合金塑性成形过程进行数值模拟是实现计算机仿真的基础。由于有限元法可以全面地考虑变形过程中材料的动态特性、各种边界条件和初始条件的影响,即使对于复杂边界仍可达到满意的模拟精度。因此,目前对塑性成形过程进行数值模拟的方法主要是有限元法。 有限元法的一般解题步骤是: (1)连续体的离散化。把求解的连续体离散成有限数目的单元,单元的类型有多种,二维中有三边形、四边形,三维中有四面体、六面体等。模拟中根据实际模拟对象和模拟的需要,选择合理的单元类型、大小和数目。 (2)选择插值函数。选择满足某些需要(单元连续性、边界协调性等)的、联系单元节点和单元内部各点位移(速度)的插值函数,保证计算结果的精确性。插值函数通常为多项式,以便于微分和积分。 (3)建立单元的刚度矩阵或能量泛函。根据变分原理,对弹性和弹塑性有限元,推导单元的刚度矩阵[K]e,用此矩阵把单元节点位移{u}e和节点力{P}e联系起来,即e [K]{u}e={P}e(1-1)对刚塑性有限元,建立以节点位移为自变函数的单元能量泛函 (4)建立整体方程。对弹性和弹塑性有限元,这个过程包括由各单元的刚度矩阵集合成整个变形体的总刚度矩阵[K],以及由单元节点力列阵集合成的总载荷列阵{P},从而建立表示整个变形体的节点位移和总载荷关系的方程组,即[K]{u}={P}( 对于刚塑性有限元,则建立整个变形体的能量泛函变分方程组,

相关文档
最新文档