玻璃纤维增强环氧树脂基复合材料.

合集下载

(完整word版)玻璃纤维增强环氧树脂基复合材料的制备

(完整word版)玻璃纤维增强环氧树脂基复合材料的制备

综合实验研究玻璃纤维增强环氧树脂基复合材料的制备院系:航空航天工程学部专业:高分子材料与工程专业指导教师:于祺学生姓名:王娜目录第1章概述1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法第2章手糊法制备玻纤/环氧树脂复合材料2.1实验原料2.1.1环氧树脂2.1.2玻璃纤维2.1.3咪唑固化剂2.1.4活性稀释剂2.2手糊成型简介2.4实验部分2.4.1实验仪器2.4.2实验步骤第3章力学性能测试3.1剪切强度3.2弯曲强度3.3实验数据的分析3.3.1 浸胶的用量及均匀度3.3.2 固化时间与温度的影响3.3.3 活性稀释剂的用量第4章结论与展望4.1结论与展望参考文献第1章概述1.1 玻璃纤维增强环氧树脂复材的研究现状EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。

EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。

且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。

目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。

毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。

目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。

1.2 本次试验的目的及方法实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。

目的在于1,了解材料科学实验所涉及到的设备的基本使用。

2,掌握环氧树脂固化体系的配置及设计。

3,对手糊成型操作了解,及查找文献完成论文的能力。

复合材料作业玻璃纤维增强环氧树脂

复合材料作业玻璃纤维增强环氧树脂

复合材料作业玻璃纤维增强环氧树脂引言:玻璃纤维增强环氧树脂是一种常见的复合材料,由玻璃纤维和环氧树脂组成。

它在航空航天、汽车工程、建筑等领域具有广泛的应用。

本文将介绍玻璃纤维增强环氧树脂的制备方法、性能特点以及应用领域。

一、制备方法:玻璃纤维增强环氧树脂的制备主要包括以下几个步骤:1.玻璃纤维预处理:将原始玻璃纤维进行处理,去除杂质和表面粘结剂,使其表面更容易与环氧树脂结合。

2.玻璃纤维浸渍:将经过预处理的玻璃纤维浸入环氧树脂中,使其充分浸渍,以增强纤维与环氧树脂的结合强度。

3.复合材料成型:将浸渍了环氧树脂的玻璃纤维进行成型,可以采用压模、注塑、纺丝等方法。

4.固化处理:通过加热或添加固化剂等方式使环氧树脂发生固化反应,从而形成坚固的复合材料。

二、性能特点:玻璃纤维增强环氧树脂具有以下几个性能特点:1.高强度:玻璃纤维的强度高,能够有效增强复合材料的强度,增加材料的承载能力。

2.轻质:相比于金属材料,玻璃纤维增强环氧树脂具有较低的密度,使得制品更加轻巧,有助于提高机械设备的工作效率。

3.耐腐蚀性:玻璃纤维增强环氧树脂具有良好的耐腐蚀性能,可以在潮湿、酸碱等恶劣环境中长期使用。

4.耐热性:环氧树脂的耐热性较好,可以在一定范围内承受高温环境。

5.绝缘性:由于环氧树脂具有良好的绝缘性能,玻璃纤维增强环氧树脂常被用作绝缘材料。

三、应用领域:玻璃纤维增强环氧树脂具有广泛的应用领域,主要包括以下几个方面:1.航空航天领域:玻璃纤维增强环氧树脂可以用于制造航空器的机身、翼面、尾翼等部件,其轻质高强的特点可以提高航空器的飞行性能。

2.汽车工程:玻璃纤维增强环氧树脂可以用于汽车车身、座椅等部件的制造,其高强度和轻质特点可以提高汽车的安全性和节能性。

3.建筑领域:玻璃纤维增强环氧树脂可以用于建筑结构的加固和修复,如桥梁、楼梯等,其耐腐蚀性和耐久性可以延长结构的使用寿命。

4.电子工程:玻璃纤维增强环氧树脂可以用于制造电子产品的外壳、底座等部件,其绝缘性能可以保护电子元器件的安全运行。

玻璃纤维增强环氧树脂复合材料的力学性能研究

玻璃纤维增强环氧树脂复合材料的力学性能研究

玻璃纤维增强环氧树脂复合材料的力学性能研究玻璃纤维增强环氧树脂复合材料(GF/EP)是一种具有较高强度和刚度的复合材料,具有广泛的应用领域,如航空航天、汽车、建筑等。

本文旨在研究GF/EP复合材料的力学性能,包括拉伸性能、弯曲性能和冲击性能。

首先,我们需要介绍GF/EP复合材料的制备方法。

一般来说,GF与EP树脂通过浸渍,层叠和固化的过程制备成复合材料。

在浸渍过程中,将玻璃纤维预先浸泡在环氧树脂中,使其充分浸润纤维,然后将多层的浸渍玻璃纤维叠加在一起,形成预定形状的复合材料。

最后,通过热固化或辐射固化使复合材料固化。

接下来,我们将研究GF/EP复合材料的拉伸性能。

拉伸性能主要包括拉伸强度和拉伸模量。

拉伸强度是指材料在拉伸过程中的最大承载能力,而拉伸模量是指材料在拉伸过程中的刚度。

通过拉伸试验可以获得拉伸曲线,通过分析拉伸曲线可以计算出拉伸强度和拉伸模量。

然后,我们将研究GF/EP复合材料的弯曲性能。

弯曲性能主要包括弯曲强度和弯曲模量。

弯曲强度是指材料在弯曲过程中的最大承载能力,而弯曲模量是指材料在弯曲过程中的刚度。

通过弯曲试验可以获得弯曲曲线,通过分析弯曲曲线可以计算出弯曲强度和弯曲模量。

最后,我们将研究GF/EP复合材料的冲击性能。

冲击性能主要包括冲击强度和冲击韧性。

冲击强度是指材料在冲击过程中吸收的最大能量,而冲击韧性是指材料在冲击过程中的延展性能。

通过冲击试验可以获得冲击曲线,通过分析冲击曲线可以计算出冲击强度和冲击韧性。

通过以上研究,可以得出GF/EP复合材料的力学性能。

这些性能可以与其他材料进行比较,评估复合材料的优势。

此外,还可以通过改变制备工艺或改变纤维含量等方式来改善复合材料的力学性能。

综上所述,本文研究了GF/EP复合材料的力学性能,包括拉伸性能、弯曲性能和冲击性能。

通过对这些性能的研究,可以评估复合材料的性能,并为进一步提高复合材料的性能提供参考。

玻璃纤维增强环氧树脂基复合材料

玻璃纤维增强环氧树脂基复合材料

玻璃纤维增强环氧树脂基复合材料
1.引言
2.制备方法
(1)玻璃纤维的表面处理:通常采用短时间的表面处理方法,如硅溶胶等,以增加表面粗糙度,提高纤维与树脂基体的黏结性。

(2)树脂基体的制备:将环氧树脂与固化剂按一定比例混合,并加热固化,形成坚固的树脂基体。

(3)玻璃纤维与树脂基体的复合:将表面处理过的玻璃纤维与树脂基体进行复合,通常采用层叠堆叠法或注塑法等,以保证纤维的均匀分布。

3.性能特点
(1)高强度:玻璃纤维的强度高于一般金属材料,使得复合材料具有很高的强度。

(2)轻质:相较于金属材料,玻璃纤维增强环氧树脂基复合材料具有更轻的重量。

(3)耐腐蚀性好:树脂基体具有良好的耐酸碱、耐油脂等性能,使得复合材料在恶劣环境下也有很好的稳定性。

(4)绝缘性好:玻璃纤维增强环氧树脂基复合材料具有良好的绝缘性能,适用于电气领域的应用。

4.应用领域
(1)航空航天领域:由于复合材料具有轻质、高强度的特点,被广泛应用于飞机、导弹、航天器等的结构部件。

(2)汽车制造领域:复合材料可以减轻汽车的重量,提高燃油效率,同时具有良好的耐腐蚀性能,适用于汽车外壳、底盘等部件的制造。

(3)建筑领域:复合材料的轻质、高强度特点使其成为建筑结构材料的理想选择,如用于制造建筑外墙板、屋顶等。

(4)电子领域:由于玻璃纤维增强环氧树脂基复合材料具有良好的绝缘性能,被广泛应用于电子器件的外壳、电路板等制造。

5.总结
玻璃纤维增强环氧树脂基复合材料具有突出的性能特点和广泛的应用领域,是一种重要的结构材料。

在未来的发展中,我们可以进一步研究和改进制备方法,提高复合材料的性能,拓宽应用领域,以满足不同领域对材料的需求。

玻璃纤维增强环氧树脂基复合材料

玻璃纤维增强环氧树脂基复合材料

玻璃纤维增强环氧树脂基复合材料
GFRC具有优良的力学性能,具有很高的抗压强度、抗拉强度和耐冲击性能,是一种轻质高强度材料。

此外,GFRC在结构中可以抵抗振动荷载,并具有良好的耐火性能。

GFRC具有良好的耐腐蚀性,不受空气、水、污染物的侵蚀,也不受温度或湿度变化的影响。

由于GFRC的耐腐蚀性,它可以用于酸、碱及其它腐蚀性介质的环境中。

GFRC与传统的钢材料相比,具有优越的抗腐蚀性能,更能耐受恶劣环境,使结构物的使用寿命得到大大提高。

GFRC具有较小的体积重量比,比混凝土强度提高了5-7倍左右,可以有效减轻结构自重,减小结构承载力,节约施工成本。

GFRC具有良好的施工性能,以水泥砂浆或玻璃纤维混合物为基础,结合多种分散剂,搅拌成含有浆状的液体,然后均匀地填充在预制的模具中,施工方便、速度快。

GFRC还具有一定的隔热性能,在外表面结合了保温材料,可以有效帮助降低结构物的温度变化,延长结构物使用寿命。

玻璃纤维增强环氧树脂基复合材料的压缩性能研究

玻璃纤维增强环氧树脂基复合材料的压缩性能研究

玻璃纤维增强环氧树脂基复合材料的压缩性能研究摘要:玻璃纤维增强环氧树脂基复合材料在结构工程领域具有广泛的应用。

本研究旨在探究该复合材料的压缩性能,并通过实验方法和数值模拟分析其压缩行为。

结果表明,玻璃纤维增强环氧树脂基复合材料的抗压强度和变形特性受纤维含量和纤维取向的影响。

此外,研究还发现,基体树脂的性能以及纤维与基体之间的界面粘结强度也对复合材料的压缩性能具有显著影响。

本研究结果对于优化玻璃纤维增强环氧树脂基复合材料的设计和应用具有重要意义。

关键词:玻璃纤维增强环氧树脂、复合材料、压缩性能、实验方法、数值模拟、纤维含量、纤维取向、界面粘结强度1. 引言玻璃纤维增强环氧树脂基复合材料以其良好的力学性能、优异的耐腐蚀性和低密度等特点,在飞机、汽车、船舶等结构工程领域得到广泛应用。

复合材料的力学性能研究一直是该领域的热点之一。

压缩性能作为复合材料力学性能的重要指标之一,对于材料的设计和应用具有重要意义。

2. 实验方法本研究采用了实验方法和数值模拟相结合的方法,对玻璃纤维增强环氧树脂基复合材料的压缩性能进行了研究。

首先,选择具有不同纤维含量和纤维取向的复合材料样品,通过标准压缩试验机进行压缩实验,记录样品的应力-应变曲线。

然后,利用有限元分析软件建立复合材料的数值模型,并对其进行压缩模拟,得到应力-应变曲线。

最后,通过对实验结果和模拟结果的比较,验证数值模拟的准确性。

3. 结果与讨论通过实验和数值模拟,研究结果显示,不同纤维含量和纤维取向的玻璃纤维增强环氧树脂基复合材料的抗压强度和变形特性存在较大差异。

更高的纤维含量通常会提高复合材料的抗压强度,但在一定范围内纤维含量的增加对力学性能的提升有限。

纤维取向对于复合材料的力学性能同样具有显著影响,纤维偏离纵向的角度越大,复合材料的抗压强度越低。

此外,界面粘结强度也是影响压缩性能的重要因素之一。

当纤维与基体之间的粘结强度较弱时,界面的剪切应力会导致复合材料的断裂破坏。

玻璃纤维增强环氧树脂基复合材料各项性能的研究

玻璃纤维增强环氧树脂基复合材料各项性能的研究

玻璃纤维增强环氧树脂基复合材料各项性能的研究齐齐哈尔大学摘要:玻璃纤维是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差,并不适于作为结构用材,但若抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予其形状以后可以成为优良之结构用材。

本文将对玻璃纤维增强环氧树脂基复合材料的的研究现状及研究方向进行分析,为新的研究方向探索道路。

关键词:玻璃纤维环氧树脂复合材料研究现状研究方向1、前言玻璃纤维增强树脂基复合材料具有轻质高强,疲劳性能、耐久性能和电绝缘性能好等特点,在各个领域都有着广泛的应用,用玻璃纤维和环氧树脂可以制造层合制品,是一类性能优良的绝缘材料,广泛用于电力、电器、电子等领域,玻璃纤维增强树脂基复合材料由于具有高比强度、比模量,而且耐疲劳、耐腐蚀。

最早用于飞机、火箭等,近年来在民用方面发展也很迅猛,在舰船、建筑和体育器械等领域得到应用,并且用量不断增加。

其中,环氧树脂是先进复合材料中应用最广泛的树脂体系,它适用于多种成型工艺,可配制成不同配方,调节粘度范围大,以便适应不同的生产工艺。

它的贮存寿命长,固化时不释放挥发物,同化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,环氧树脂“统治”着高性能复合材料的市场目前,复合材料输电杆塔已在欧美和日本得到应用,其中以美国的研究开发和应用最为成熟。

我国在20世纪50年代对复合材料电杆进行过研究,鉴于当时材料性能和制造工艺的限制,复合材料电杆未能得到推广使用。

近年来,随着复合材料技术的飞速发展和传统输电杆塔的缺陷逐步显露,电力行业开始重视复合材料杆塔的应用研究。

随着电网建设的快速发展,出现了全国联网、西电东送、南北互供的建设格局,输电线路工程口益增多,对钢材的需求越来越大,消耗了大量的矿产资源和能源,在一定程度上加剧了生态环境破坏。

并且,线路杆塔采用全钢制结构,存在质量大、施工运输和运行维护困难等问题。

fr4是什么材料

fr4是什么材料

fr4是什么材料FR-4是一种常见的玻璃纤维增强环氧树脂复合材料,它具有优异的绝缘性能、机械强度和耐热性,被广泛应用于电子电气领域。

本文将从FR-4的材料特性、制备工艺、应用领域等方面进行介绍。

首先,FR-4材料的主要成分是玻璃纤维布和环氧树脂。

玻璃纤维布是由玻璃纤维经过编织而成,具有优异的机械强度和耐热性;而环氧树脂是一种常见的高分子材料,具有良好的粘接性和耐化学腐蚀性。

将玻璃纤维布浸渍在环氧树脂中,再经过高温高压固化而成的复合材料就是我们常见的FR-4材料。

其次,FR-4材料具有优异的绝缘性能和机械强度。

由于玻璃纤维布的加入,FR-4材料具有较高的绝缘性能,能够有效地阻隔电流的传导。

同时,环氧树脂的固化使得材料具有较高的机械强度,能够承受一定的拉伸、弯曲和压缩等力学载荷。

这使得FR-4材料在电子电气领域得到了广泛的应用。

再次,FR-4材料的制备工艺相对简单,成本较低。

制备FR-4材料的主要工艺包括玻璃纤维布的预处理、浸渍、固化等步骤。

相比于其他高性能复合材料,FR-4的制备工艺更加成熟,生产成本也相对较低,这使得FR-4材料在电子电气行业中具有一定的竞争优势。

最后,FR-4材料在电子电气领域有着广泛的应用。

它常被用作印制电路板(PCB)的基板材料,用于支撑和连接电子元器件。

此外,FR-4材料还被用于制作绝缘垫、绝缘套管、绝缘零件等,以满足电气设备对绝缘性能和机械强度的要求。

综上所述,FR-4是一种具有优异绝缘性能、机械强度和耐热性的复合材料,其制备工艺简单,成本较低,广泛应用于电子电气领域。

它在现代电子工业中扮演着重要的角色,为电子设备的性能提升和稳定运行提供了重要支撑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成型 设备费 模具费 成型周期/min 成型温度/℃ 成型压力/Mpa 成型作业
成型材料 材料 操作 填料 玻璃纤维/% 臭味 制品 大小/㎏ 壁厚/mm 壁厚控制 尺寸精度 复杂形状 加热尺寸变化 耐候性
SMC 非黏着半固体 高填充 20~40 弱
树脂、GF过氧化物、其他胶衣 液态树脂、玻璃纤维 无 25~35 强
表1 不同成型方法的玻璃钢(欧洲地区)产量
(一)、手糊成型(hand lay up)
1、概要
依次在模具表面上施加 脱模剂 、胶衣一层粘度 为0.3-0.4PaS的中等活性液体热固性树脂(须待胶衣凝 结后)一层纤维增强材料,纤维增强材料有表面毡、无 捻粗纱布(方格布)等几种。以手持辊子或刷子使树脂 浸渍纤维增强材料,并驱除气泡,压实基层。铺层操 作反复多次,直到达到制品的设计厚度。 树脂因聚合 反应,常温固化。可加热加速固化。 2、手糊成型工艺的优点: 1)、不受尺寸、形状的限制; 2)、设备简单、投资少; 3)、工艺简单; 4)、可在任意部位增补增强材料,易满足产品设计要求; 5)、产品树脂含量高,耐腐蚀性能好。
为什么采用环氧树脂做基体?
环氧树脂固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%8%;粘结力强;有B阶段,有利于生产工艺; 可低压固化,挥发份甚低; 固化后力学性能、耐化学性佳,电绝缘性能良好。
以FW(纤维缠绕)法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。
玻璃含量 GF/EPR(玻纤含量80wt%) AISI1008 冷轧钢
5、手糊成型易发生的缺陷及防止措施
1)、制品表面发粘
原因1:空气湿度太大,水对树脂起阻聚作用 解决办法: (1)在树脂中加入0.02%左右的液体石蜡; (2)在树脂中掺加5%的异腈酸酯 ; (3)制品表面覆盖薄膜隔绝空气;
原因2: 引发剂、促进剂的比例弄错或失效,更换引 发剂、促进剂。
2)、制品内气泡太多
相对密度
拉伸强度 拉伸模量 伸长率 弯曲强度
2.08
551.6Mpa 27.58GPa 1.6% 689.5MPa
7.86
331.0MPa 206.7GPa 37.0%
弯曲模量 压缩强度
34.48GPa 310.3MPa 331.0MPa
纤维增强环氧树脂复合材料成型工艺简介
目前在生产上经常采用的成型方法有16种:
1、控制胶含量 原因1: 树脂用量过多 解决办法: 2、注意拌合方式
原因2: 树脂粘度过大 解决办法: 1、适当增加稀释剂 2、提高环境温度 原因3: 增强材料选择不当
3)、流胶
选用浸透性好的无捻玻璃布
ቤተ መጻሕፍቲ ባይዱ
树脂粘度太小,可加入2~3%的活性氧化硅。
配料不均匀, 充分搅拌 。 固化剂用量不足, 适当调整固化剂用量。
SMC成型与喷射成型、树脂注射成型的优缺点
成型方法 SMC 高 高 1~8 100~160 5~12 容易 喷射成型 便宜 便宜 60min~1日 15~40 常压 要熟练 树脂注射成型 中 中 30~200 20~60 <2 要熟练 树脂、GF过氧化物、其他 胶衣液态树脂、玻 璃纤维 低填充 25~30 强 <50 2~12 容易 中 困难 有 高
3、手糊成型工艺的缺点
1)、生产效率低,劳动强度大,卫生条件差; 2)、产品性能稳定性差;有些树脂有害健康 3)、产品力学性能较低。
4、手糊制品为什么要在表面覆盖聚酯薄膜?
自由基与苯乙烯的反应速度比自由基与O2的反应速度慢104倍, 一般聚酯树脂制品固化时,表面应覆盖聚酯薄膜。若不用薄膜覆盖, 也应使成型表面形成与空气隔离的物质如蜡类,否则自由基与周围 空气中的O2 、H2O反应,耗去大部分自由基,造成表面固化不完 全而发粘
6、典型产品
舰艇、风力发电机叶片、游乐设备、冷却塔壳体、建筑模型。
(二)、SMC成型
片状模塑料成型(Sheet Molding Compound) 简称SMC
在树脂中加入引发剂、填料、颜料、内脱 模剂、低收缩添加剂、增稠剂等,经搅匀成为 树脂糊。树脂糊落到SMC机组的下薄膜上(常用 聚乙烯薄膜或尼龙薄膜),与此同时在下薄膜上 沉降短切成25~55mm的玻璃纤维原丝,再往上 面覆盖一层薄膜,成为片状夹心卷。将卷材存 放数日使料稠化,以达到可模塑的黏度。SMC以 捆卷状态供应备用。将卷材展开、剪裁、称量, 放人加热的钢模铂,加压使之固化成型、脱模, 即为成品
10、压力袋成型 1、手糊成型——湿法铺层成型 11、树脂注射和树脂传递RTM模塑成 2、夹层结构成型(手糊法、机械法) 型 3、模压成型 12、卷制成型 4、层压成型 13、真空辅助注射成型 5、缠绕成型 14、离心浇铸成型 6、拉挤成型 15、片状smc(团状bmc)模塑成型 7、注射成型 16、连续板材成型 8、喷射成型 目前我国还是以手糊成型为主, 9、真空袋压力成型 在树脂基复合材料中约占80%。
关于玻璃纤维 增强环氧树脂基复合材料的综述
一、概述及复合材料结构 二、主要成型工艺 三、力学性能 四、应用
一、概述及复合材料结构
复合材料的水平已是衡量一个国家或地区科技、经济水 平的标志之一。美、日、西欧水平较高。北美、欧洲的产量 分别占全球产量的33%与32%,以中国(含台湾省)、日本为主 的亚洲占30%。中国大陆2003年玻璃纤维增强塑料(玻璃纤维 与树脂复合的复合材料、俗称“玻璃钢”)逾90万吨,已居 世界第二位(美国2003年为169万吨,日本不足70万吨)。作 为复合材料中的一枝的玻璃纤维增强环氧树脂(GFEP)具有 力学强度高、成形收缩小、尺寸稳定性好和良好的耐化学腐 蚀性能和电气绝缘性能等特点,作为典型的纤维增强塑料 (FRP)广泛应用于制造工业零部件和印刷电路板等产业 。 截止2010年1月底全国共有61家玻璃钢生产企业(其中包括 四川省江南玻璃钢有限公司,重庆市君豪玻璃钢有限责任公 司)
<50 1.2~20 容易 高 容易 无 中
不限 1.5~1.0 困难 中 困难 有 高
(三)、树脂传递成型RTM
RTM是一种闭模低压成型的方法。将纤维增强材料置于上下模之间;合 模并将模具夹紧;在压力下注射树脂;树脂固化后打开模具,取下产品。树 脂胶凝过程开始前,必须让树脂充满模腔,压力促使树脂快速传递到模具内, 浸渍纤维材料。
相关文档
最新文档