生物信息学
生物信息学概念与主要内容

生物信息学概念与主要内容生物信息学是一门交叉学科,它综合运用了生物学、计算机科学、数学和统计学等多个学科的理论和方法,来研究和分析生物分子(如 DNA、RNA 和蛋白质)的结构、功能、演化以及它们之间的相互关系。
生物信息学的主要内容包括以下几个方面:1. 基因组学:基因组学是生物信息学的核心领域之一。
它涉及基因组的测序、组装、注释和比较分析。
通过基因组学的研究,可以了解生物体的基因组结构、基因功能、基因表达调控等信息。
2. 转录组学:转录组学关注的是转录水平上基因表达的研究。
它包括对 RNA 转录本的测序、表达量分析、差异表达基因的鉴定等。
转录组学有助于理解基因在不同条件下的表达模式和调控机制。
3. 蛋白质组学:蛋白质组学研究蛋白质的表达、结构、功能和相互作用。
它包括蛋白质的鉴定、定量分析、蛋白质-蛋白质相互作用网络的构建等。
蛋白质组学对于揭示蛋白质的功能和生物学过程具有重要意义。
4. 生物信息学算法和工具:生物信息学涉及到大量的数据处理和分析,因此需要开发各种算法和工具来处理和解读生物数据。
这些工具包括序列比对算法、基因注释工具、蛋白质结构预测算法等。
5. 数据库和知识库:生物信息学依赖于各种生物数据库和知识库,这些数据库存储了大量的生物分子数据、文献信息和实验结果。
例如,基因组数据库(如 GenBank)、蛋白质数据库(如 PDB)等。
6. 系统生物学:系统生物学是将生物信息学与系统科学相结合的学科领域。
它旨在研究生物系统中各个组成部分之间的相互作用和调控机制,从而构建生物系统的模型和网络。
总的来说,生物信息学为生物研究提供了强大的计算和数据分析工具,帮助科学家更好地理解生物分子的结构、功能和相互关系,进而推动生命科学的发展。
生物信息学概述(共59张PPT)精选全文完整版

蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划
生物信息学专业学什么

生物信息学专业学什么生物信息学是一门交叉学科,结合了生物学、计算机科学和统计学的知识,旨在开发和应用计算工具和方法来解决生物学研究中的问题。
这个领域涉及到大规模的生物数据分析、基因组学、蛋白质组学以及生物信息学算法的开发和应用。
在这个数字时代,生物信息学在生物学研究和医学领域起着至关重要的作用。
学科概述生物信息学专业需要掌握生物学、计算机科学和统计学的基本理论和知识,并将其应用到生物信息学的研究和应用中。
主要的学科内容包括:1.蛋白质、基因和DNA序列的分析。
2.基因组学和转录组学的研究。
3.生物数据库的搭建和管理。
4.生物信息学算法和工具的开发。
5.生物信息学在基因工程和药物研发中的应用。
同时,学生还需要学习计算机程序设计、数据库管理、算法分析等相关的计算机科学和统计学知识,以及生物学实验的基本操作技能。
学习目标学习生物信息学专业的目标主要有以下几个方面:1.掌握基本的生物学理论和知识,理解生物学研究中的基本问题和挑战。
2.熟悉常用的生物数据库和工具,能够使用它们进行基因和蛋白质序列的分析。
3.熟练掌握计算机科学和统计学的基本理论和技术,能够开发和应用生物信息学算法和工具。
4.理解生物信息学在基因工程、药物研发和医学中的应用,并具备解决相关问题的能力。
5.具备科学研究的基本素养,能够进行生物信息学实验并分析实验结果。
就业方向生物信息学专业毕业生可以在多个领域找到就业机会,包括学术界、医药公司、生物科技公司、生物医药研究机构、政府部门等。
具体的就业方向包括:1.生物信息学研究员:在学术界从事生物信息学研究,开展研究项目并发表学术论文。
2.生物数据库管理员:负责搭建和管理生物数据库,维护数据的完整性和安全性。
3.生物信息分析师:使用生物信息学工具和算法对生物数据进行分析,提取有用的信息。
4.生物信息技术支持工程师:提供生物信息学工具和系统的技术支持和维护。
5.生物信息学项目经理:负责领导和管理生物信息学项目,确保项目按时完成,并满足客户需求。
生物信息学介绍

生物信息学介绍生物信息学是一门综合性的学科,结合了生物学、计算机科学和统计学的知识与技术,旨在解决生物学领域中的复杂问题。
它的出现使得研究者能够更加高效地进行基因组学、蛋白质组学以及生物信息的分析和解读。
生物信息学的研究对象主要是生物信息,即通过DNA、RNA和蛋白质等生物分子的序列、结构和功能等信息。
通过对这些信息的分析与挖掘,可以深入了解生物体的基因组组成、基因调控、蛋白质相互作用等生物学过程。
同时,生物信息学也为研究生物的进化、疾病机制以及药物研发等提供了重要的工具和方法。
生物信息学的研究内容包括基因组学、转录组学、蛋白质组学、代谢组学和系统生物学等。
基因组学是研究生物个体基因组的全套基因信息,可以通过测序和比对等技术来研究基因的序列、结构和功能。
转录组学则研究基因组内的转录过程,即基因的表达情况和调控机制,可以通过RNA测序等技术来研究基因的表达水平和剪接变异等。
蛋白质组学研究蛋白质的表达、结构和功能,可以通过质谱和蛋白质互作等技术来研究蛋白质的组成和相互作用关系。
代谢组学则研究生物体内代谢物的组成和变化,可以通过质谱和核磁共振等技术来研究代谢物的水平和调控机制。
系统生物学则研究生物体内的生物网络和调控机制,可以通过网络分析和模拟等技术来研究生物体的整体特性和相互作用关系。
生物信息学的研究方法主要包括数据库和软件的开发与应用、序列比对与比较、结构预测与模拟、数据挖掘与分析以及网络建模与模拟等。
数据库和软件的开发与应用是生物信息学研究的基础,通过建立和维护丰富的生物信息数据库,并开发相应的软件工具,可以方便研究者进行数据的存储、查询和分析。
序列比对与比较是生物信息学中常用的方法,通过比对不同物种或个体的基因组或蛋白质序列,可以寻找相似性和差异性,进而研究序列的保守性和功能。
结构预测与模拟则是研究蛋白质结构和功能的重要手段,通过计算方法和实验验证,可以预测蛋白质的三维结构和相互作用模式。
数据挖掘与分析是生物信息学中的核心技术之一,通过统计学和机器学习的方法,可以从大量的生物数据中挖掘出有意义的信息和模式。
生物信息学

生物信息学生物信息学是植物学、生物学、化学、数学、计算机科学等多学科交叉的一个新兴学科,其主要研究内容是如何获得、存储、传输、分析和应用生物信息数据。
生物信息学涉及到生物信息的采集、整合、处理、分析和应用等多个方面,包括大量生物数据的处理、生成和管理,数据的挖掘、重建和应用,基于计算机辅助的生物数据分析和建模等。
一、生物信息学的基本概念1. 生物信息学:是指将计算机科学、生物学、统计学、数学和物理学等多学科交叉的技术,用于对生物学数据进行收集,整合,存储,分析和模拟等。
2. 生物数据:是指在基因组、转录组、蛋白质组、代谢组、细胞组等层次,通过实验技术获得的关于生物的各种信息,包括基因序列、蛋白质序列、代谢产物组成、RNA表达水平等的各种数据。
3. 生物数据库:是指在系统地整合和存储生物数据的基础上为生物信息学研究提供的数据资源。
生物数据库一般包含了基因、蛋白质、代谢产物、表观遗传学等方面的数据,主要用于生物信息学的数据挖掘和分析。
4. 生物信息学技术:是指将生物数据通过计算机技术进行处理、分析和建模的技术手段。
包括基于算法的生物序列分析技术、分子建模和仿真技术,基于数据挖掘的分析技术、图像分析等。
二、生物信息学的发展历程生物信息学的发展历程可以从20世纪50年代开始,当时人们通过研究DNA、RNA和蛋白质的结构,探索生物学以及分子生物学的基本问题。
19世纪70年代到80年代,开始有科学家通过计算机分析生物序列数据,这是生物信息学的萌芽阶段;90年代,信息技术大爆发,计算机性能的不断提升奠定了生物信息学发展的基础,同时,国际人类基因组计划的启动和完成,也推动了生物信息学领域的迅速发展。
近年来,生物数据的爆炸式增长和高通量测序技术迅速发展,使得生物信息学成为一个新兴的领域,其研究范围涵盖了全球相关领域的学者。
三、生物信息学在生物学领域的应用1. 生物序列分析:通过处理生物序列数据,研究生物学中基因结构、调控、蛋白质结构和功能等基础方面,以及富含信息内容的非编码RNA和代谢物等,目前已成为一个成熟的技术。
什么是生物信息学

什么是生物信息学生物信息学是一门综合性的学科,是应用计算机、数学、物理、化学、生物学等学科知识,研究生命系统中信息的采集、存储、管理、处理、分析、应用和传播的一门学科。
它是以高通量技术、计算机辅助技术和统计学方法为基础,研究生物学信息的获取、处理和应用,为生命科学的研究和应用提供支持和服务。
生物信息学涉及的范围非常广,包括基因组学、蛋白质组学、代谢组学、表观基因组学、转录组学、系统生物学等多个方面。
生物信息学的发展始于20世纪70年代,并在21世纪经历了爆发式的发展,随着人类基因组计划等生物学研究的迅速发展,生物信息学逐渐成为生命科学领域中的重要分支和研究热点。
生物信息学通过从大量的生物学数据中提取信息,探索诸如基因功能、蛋白质相互作用、新药开发、疾病诊断和治疗、生命演化等诸多方面的问题。
生物信息学的主要研究内容包括:1.基因组学:对生物体基因组的序列和结构进行分析和解读,探究基因与性状、疾病的关系。
2.转录组学:对生物体转录产物实现高通量测序和分析,分析在不同生理和病理状态下基因的表达模式,在分子机制上研究调控基因表达的过程。
3.蛋白质组学:研究蛋白质组在不同生理和病理状态下的变化及其功能,寻找与疾病相关的蛋白质标志物,以及蛋白质相互作用、修饰和结构等方面的特征。
4.代谢组学:对生物体在代谢通路中产生的化合物进行鉴定和定量,研究代谢组在不同生理和病理状态下的变化及其与人类健康的关系。
5.系统生物学:通过对生物体多维度数据的集成分析,建立生物体系的数学计算模型,从宏观和微观两个层次深入研究生物体系的整体特征和生命规律。
生物信息学在基础研究和应用领域均有重要的意义和价值。
在基础研究方面,生物信息学可以加速基因定位、基因功能解析、进化研究等过程。
在应用方面,生物信息学可以为新药研发、疾病预测、定制医疗等提供技术支持。
生物信息学的应用还包括医学、农业、食品、环保等多个领域。
尽管生物信息学已经发展成为一门独立的学科,但与生命科学的其他领域仍存在密切的联系。
生物信息学

生物信息学
生物信息学是运用计算机科学和生物学结合的研究技术,用来解决生物数据的分析和探索问题。
它被用来处理大量的生物信息数据,包括基因表达、生物大分子结构和功能、活体生物研究和分子进化等。
生物信息学可以改善生物学研究的效率,成为重要研究方法和工具。
生物信息学有助于生物学家们深入理解基因工作方式、
基因工程以及其他生物学问题。
生物信息学在医学和生命科学研究中发挥了重要作用,因为它可以帮助医生临床以及治疗研究开发新药和新技术。
它也可以为农业提供帮助,设计出新的品种,这些品种能够抵御病虫害,从而增加农产品的产量。
生物信息学由许多不同的技术组成,包括遗传学分析、
生物统计学、计算机科学、图像处理和自然语言处理等。
这些技术被用来解决各种生物学问题,提供信息支持,以及支持生物数据挖掘,帮助研究人员发现新的知识。
生物信息学正在赋予我们崭新的看法和内在认知,通过
其丰富的实践和研究,将对于所有生物学领域产生重要的改变和应用。
生物信息学专业

生物信息学专业生物信息学是一门综合性的学科,旨在利用计算机技术和数学方法研究生物学中的各种问题。
其主要内容包括基因组学、转录组学、蛋白质组学和代谢组学等方面,概括地说就是将基因、蛋白质、代谢物等生物大分子的信息转化为计算机可处理的形式,通过大数据分析来探究生命科学中的各种现象。
生物信息学的发展生物信息学是由生物学和计算机科学相结合而产生的一门交叉学科。
其实际应用已经涉及到了生物医学、农业、动植物保护、环境等多个领域。
从1990年代开始,人类基因组测序的完成标志着生物信息学的兴起。
在此之后,随着基于高通量测序技术的次代测序技术和生物信号检测等技术的发展,生物信息学得以快速发展,成为支持计算机和生物学结合的一大研究领域。
生物信息学的研究领域一、基因组学基因组学是基因组的研究。
基因是生物遗传信息的核心,基因序列破译可以覆盖许多领域,相关于预测疾病和客观评估药物的目标生物。
基因组学的应用方法包括测序技术、基因芯片以及比较基因组学。
其中,比较基因组学在筛选同源基因、重建演化历史等方面有非常明显的优势。
二、转录组学转录组学是研究生物基因表达的一门学科。
其主要通过分析RNA提取物中的DNA序列来研究基因表达的调控。
转录组学方法包括一般的RNA测序、低复杂度DNAssl芯片以及不同形式的原位杂交。
转录组学在诊断疾病、药物治疗、疗效评估等方面的应用也非常广泛。
三、蛋白质组学蛋白质组学是研究蛋白质全息的学科。
蛋白质是生物表现型的主要组成部分,它的组合可以影响表现型,所以解析蛋白质组数据是显得非常重要。
蛋白质组研究方法包括质谱(Mass spectrometry)和两杂交筛选(two-hybrid screening),并在生物医药等领域有着极为重要的应用。
四、代谢组学代谢组学是研究代谢产物的学科。
代谢产物是反映生物代谢状态的直接指标,代谢组学通过分析生物体内代谢物的产量来寻找代谢途径中的关键物质和瓶颈,揭示代谢异常的发生机理并为之制定治疗方案提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。
本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。
生物信息学的发展在国内、外基本上都处在起步阶段。
因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。
关键字:生物信息学、产生背景、发展现状、前景随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”。
一、生物信息学产生的背景生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。
它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。
由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。
事实上,它是一门理论概念与实践应用并重的学科。
生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。
事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。
美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。
自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。
迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。
至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。
截止目前为止,仅登录在美国GenBank数据库中的DNA序列总量已超过70亿碱基对。
此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。
基于cDNA序列测序所建立起来的EST数据库其纪录已达数百万条。
在这些数据基础上派生、整理出来的数据库已达500余个。
这一切构成了一个生物学数据的海洋。
这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。
数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。
与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。
一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高生活质量。
这就构成了一个极大的矛盾。
这个矛盾就催生了一门新兴的交叉科学,这就是生物信息学。
二、生物信息学研究的发展现状资金和实力非常重要,生物信息的研究投入短期不算大,但是结合成果,其投入相当的大。
因为目前生物信息主要在于教学和和研究,商业领域的应用不算很广。
如一套LIMS加上软件就要花上数千万。
加上相关项目的研究开发,不是国内相关的机构所能承受的。
所以需要得到政府的支持和帮助。
以及有识之士的投入。
否则我们又将远远落后国外。
国内的制药行业将永不得翻身!基因的流失(国外一些国家打着给国内免费治疗,分析疾病的考旗帜,暗中收集了国内不同省份,地区的遗传类疾病和特性。
这些资源,我们国家忽略,应当说目前还没有这样的实力进行研究)。
落后就要挨打,21世纪是生物的世纪。
基因大战不可避免。
基因和疾病的研究很大程度就是数据的分析。
里面的领头羊就是生物信息。
国内应当在基础教学,基础研究并结合应用力度。
当然国内的人才济济,如有更多计算机领域和数学(统计方面的)人才参与到生物信息,将如虎添翼。
目前我国生物信息学发展面临着如下几方面的困境:⒈政府投资不足虽然国际上生物信息学研究在各发达国家中比较受重视,但仍有不少研究机构抱怨政府资金投入不够。
最近美国许多研究院纷纷申请要求政府加大生物信息学工具与数据库方面的投入,而且欧洲、日本、澳大利亚在这些领域也存在着资金困扰问题,欧洲生物信息学研究所(EBI)和欧洲基金会生命科学中心去年都遇到了麻烦。
目前虽然危机已经暂时渡过,但未来几年EBI数据库和其它基础结构仍将受到资金短缺的困扰,一致有人发出了"免费数据服务还能维持多久"的疑问。
2.来自商业机构的竞争基因组研究潜在的巨大商业利润使得国际上一批大型制药公司和化学公司向该领域大规模的进军。
世界最大制药集团之一的Giba Geigy和Sandoz合资建立的Novartis公司投资2.5亿美元建立基因组研究所;Glaxo-Wellcome在基因组研究领域投入4700万美元,将研究人员增加一倍;Smith Kline公司花125亿美元扩展人基因组的顺序,将生物信息学的研究人员从2人增加至70人,并将该公司药物开发项目中的25%建立在基因组学之上。
这一方面给生物信息学发展注入了生机,另一方面对那些政府支持的不以赢利为目的的研究机构造成了巨大的压力,学术部门的资金投入远远不及工业部门,其负面冲击力不可忽视。
毕竟经济利益的盲目追求会导致基因组研究的片面性,生物信息学长路漫漫,保护这些学术部门的良好发展非常有必要。
3.专业人才匮乏目前该领域缺乏懂得如何利用计算机技术处理大量生物数据的生物学家,不少生物学家只是将计算机用来打字或作为图纸的替代品。
甚至出现了这样有趣的现象:制药业、工业、农业、生物技术研究团体经常在学术机构大肆搜查那些"可疑人",更有甚者他们彼此间互挖"墙角"。
虽然对于人才的渴求与日俱增,但全世界也仅有20多个专业人才培训中心,而且这些中心本身也处在恶性循环中,那些经培训后的人才往往由于高薪诱惑而投身应用工业部门,导致培训教育人员越来越少,出现"断层"现象。
综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为各种学科的简单堆砌,相互之间的联系并不是特别的紧密。
在处理大规模数据方面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全明了,这使得生物信息学的研究短期内很难有突破性的结果。
那么,要得到真正的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从数学上的新思路来获得本质性的动力。
毫无疑问,正如Dulbecco1986年所说:"人类的DNA序列是人类的真谛,这个世界上发生的一切事情,都与这一序列息息相关"。
但要完全破译这一序列以及相关的内容,我们还有相当长的路要走。
三、生物信息学的发展前景《第三次技术革命》里有这样描述:“一场与工业革命和以计算机为基础的革命有相同影响力的变化正在开始。
下一个伟大时代将是基因组革命时代,它现在处于初期阶段。
”基因组学的发展已经进入后基因组研究阶段,致力于蛋白质功能研究的蛋白质组学和功能蛋白质组学正在蓬勃发展,在生物信息学发展的带动下,我们必定能够揭示各种生命现象的奥秘,并带动多个学科的跨越式发展。
生物信息学的发展将对分子生物学、药物设计、工作流管理和医疗成像等领域产生巨大的影响,极有可能引发新的产业革命。
此外,生物信息学所倡导的全球范围的资源共享也将对整个自然科学乃至人类社会的发展产生深远的影响。
有理由相信,今日生物学数据的巨大积累将导致重大生物学规律的发现,生物信息学的发展在国内、外基本上都处在起步阶段,因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。
生物学是生物信息学的核心和灵魂,数学与计算机技术则是它的基本工具。
这一点必须着重指出。
预测生物信息学的未来主要就是要预测他对生物学的发展将带来什么样的根本性的突破。
这种预测是十分困难的,甚至几乎不可能。
但机不可失,时不再来,鉴于生物信息学在我国生物信息学和经济发展中的重要意义和其发展的紧迫性,因此,由国家出面组织全国的力量,搞个类似"两弹一星"那样的,但是,规模要小的多,花钱也少的多的生物信息学发展计划,不是不可以考虑的。
要充分发挥中央与地方,生物学科研究人员等方方面面的积极性。
生物信息学研究投资少,见效快,可充分发挥我国智力资源丰富的长处,是特别适合我国国情的一项研究领域。
要在大学里建立生物信息学专业,设立硕士点和博士点,培养专门人才。
可以组织一大批数学、物理、化学和计算机科技工作者,在自愿的基础上,学习有关的生物学知识,开展多方面的生物信息学研究。
经过十几年或更长的时间的努力,逐渐使我国成为生物信息学研究强国,是完全有可能的。
信息学的商业价值十分显著。
国外很多大学,研究机构,软件公司甚至政府机构纷纷成立各种生物信息机构,建立自立的生物信息集成系统,研制这方面的软件,重金招聘人才,期望从中获取更多的生物信息和数据加以研究和利用,缩短药物开发周期,抢注基因专利,获取更大利润。
我国如不加大资金投入力度,将来可能会花更多的钱去购买别人的软件,使用专利基因或购买新的药物。
所幸,我国也开始重视这一学科:南、北方人类基因组中心的相继建成,北大生物城的破土动工等,标志着我国对生物信息学的重视。
我们有理由相信,我国的生物信息学在21世纪会有巨大的飞跃。
参考文献1. 陈润生.生物信息学.生物物理学报,1999,15(1):5-13.2. 北京生物技术和新医药产业促进中心.世纪之交的新科学:生物信息学.生物技术通报,1999,(8):49-54.3. 杨福愉.展望21世纪的分子生物学.生物物理学报,1999,15(1):1-5.4. 郑国清,张瑞玲,段韶芬,徐丽敏;生物信息学的形成与发展[J];河南农业科学;2002年11期5. 王玉梅,王艳;国外生物信息学发展动态分析[J];科技情报开发与经济;2002年06期。