振动和波
第三章-振动和波

第三章振动和波当飞机以超过音速的速度飞行,飞机所发出的音波无法跑在飞机前方,全部叠在机身后方,形成了音爆(sonic boom),这种波传到时,我们会听到一声轰然巨响。
在飞机正好要加速穿过音障(sound barrier)时,在飞机的周围有时会有一团云雾形成。
这是一架F/A-18大黄蜂战机穿过音障的瞬间。
振动是物体一种普遍的运动形式。
物体在平衡位置附近的往复运动叫做机械振动,将机械振动范围这一概念加以推广,对描述物体运动状态的物理量在某一数值附近来回往复的变化时,均可称该物理量在振动。
如电路中电压、电流、电路中的电场强度和磁场强度等也都可能随时间作周期性的变化,这种变化也称为振动—电磁振动。
各种振动本质不同,基本规律相同。
振动可分为自由振动和受迫振动。
自由振动又包括阻尼自由振动和无阻尼自由振动(简谐运动)。
波动是振动状态在空间的传播,它是物质的一种特殊的运动形式。
常见的波有两大类:机械波和电磁波。
近代物理研究发现,微观粒子具有二相性-波动性和粒子性,因此研究微观粒子的运动规律时,波动概念也是很重要的基础。
各种波的本质不同,传播机理不同,但其基本传播规律相同。
本章主要讨论机械振动和机械波的概念和规律,其规律可推广到一般振动和波动。
简谐运动是一种最简单、最基本的振动,复杂振动可以看成是由若干简谐运动组成的。
描述简谐运动的三个特征量是振幅、周期和相位。
简谐运动物体的速度、加速度也是随时间变化的周期性函数,除解析方法外,简谐运动也可以用曲线法和旋转矢量法表示。
简谐运动过程中存在着势能与运动动能的相互转化,总机械能守恒。
简谐运动是一种最简单、最基本的振动,复杂振动可以看成是由若干简谐运动组成的。
当描述物体的变量如位移x(t)满足运动方程时,其解可以表示为x = A cos (w t+j),这种用时间t的正弦或余弦函数来描述的运动,叫做简谐振动或简谐运动(simple harmonic motion),上述两式分别叫做简谐运动的微分方程和积分方程。
第五章 振动与波 基本知识点

o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。
受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。
这种现象称为共振。
共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小; 如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1 A2 Ay1 A cos(1t ),y2 A0 cos(2t )2、 合振动y y1 y2 1 2 1 2 y 2 A cos t t cos 2 2 合振动不是简谐振动12当1 、2很大且接近时, 2 1 2 1 令:y A(t )cos t2 1 )t 式中 A(t ) 2 A0 cos( 2 2 1 cos t cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和 2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。
13ψ1 t ψ2 t ψ t拍 拍: 合振动忽强忽弱的现象。
拍频 :单位时间内强弱变化的次数。
1 拍 2 2 2 1 2 2 1 2 1 2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。
产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。
高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高三物理振动和波公式梳理

高三物理振动和波公式梳理
21世纪是物理学全面介入生命科学的世纪。
查字典物理网为大家推荐了高三物理振动和波公式,请大家仔细阅读,希望你喜欢。
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:
332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,
减小〔见第二册P21〕}
小编为大家提供的高三物理振动和波公式,大家仔细阅读了吗?最后祝同学们学习进步。
振动和波详述

第二节 波动学基础
惠更斯原理:在波的传播过程中,波阵面上的每一 点都可以看作发射次级子波的波源,在其后的任一 时刻,这些子波的包迹就成为新的波阵面.
ut
平 面 波
球 面 波
R1
O
R2
第二节 波动学基础
二、 波动方程(平面简谐波的波函数)
介质中任一质点(坐标为 x)相对其平衡位置的
位移(坐标为 y)随时间的变化关系,即 y(x,t) 称
G 切变模量
E 弹性模量
K体积模量
横波 纵波
343 m s 空气,常温
如声音的传播速度
4000 m s 左右,混凝土
第二节 波动学基础
例1 在室温下,已知空气中的声速 u1为340 m/s, 水中的声速 u2 为1450 m/s ,求频率为200 Hz和2000 Hz
的声波在空气中和水中的波长各为多少?
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m) cos[(πs-1)t - π]
y
y/m
3
1.0
3*
Tλ
y(x,t) Acos(t - kx )
➢ 质点的振动速度,加速度
角波数 k 2π
v y -Asin[(t - x) ]
t
u
a
2 y t 2
-
2
A cos[ (t
-
x) u
]
第二节 波动学基础
例1 已知波动方程如下,求波长、周期和波速.
第六章 振动和波

x2 A12
y2 A22
2 xy A1 A2
cos
sin2
上式是个椭圆方程,具体形状由 相位差决定。
(20 10 )
质点的运动方向与 有关。当 0 时,
质点沿顺时针方向运动;当 2 时,
质点沿逆时针方向运动。
当 A1 A2 时,正椭圆退化为圆。
21
4.4 垂直方向、不同频率简谐振动的合成
Acos[ (t
x u
)
0
]
y( x, t)
A cos [(t
0 )
2
x ]
2 /T u /T
也即p点的相位落后于O点相位:2x
O
y
u
x
p
这就是右行波的波方程。
x
定义 k 为角波数
k 2 T
u T
2
2 2 ; T u u 因此下述几式等价
T
27
左行波的波函数:
0 20超前10
20 10 0 20落后10
=(2n1) 反相 =2n 同相
4
1-3 简谐振动的动力学方程
• 简谐振动的动力学方程 弹性力
mx kx
U ( x) 1 kx2 2
令k
m
2 0
x
2 0
x
0
其解:x(t)
结论
A
cos( 0 t
0
)
质点所受的外力与对平衡位置的位移成正比
且反向,或质点的势能与位移(角位移)的
以横波为例说明平面简谐波的波函数。
已知O点振动表达式: y Acos(t 0 )
y表示各质点在y方向上的
位移,A是振幅,是角频
率或叫圆频率, 0为O点在
医用物理学振动和波

称为阻力系数
d x dx m 2 kx dt dt 2 d x dx k x0 2 dt m dt m 令: 2 k 0 m 2m
2
o
fmF
X
d x dx 2 2 0 x 0 2 dt dt
……(1)
(阻尼振动的 微分方程)
2
称为阻尼因子
v人
v人 F F强 强 v v
共振---最强烈的强迫振动现象 1)位移共振--共振时振幅最大。
A
F0
2
m ( ) 4
2 0 2
2
d 2 2 2 2 2 A要最大: [( 0 ) 4 ] 0 dt
解得:
2
2
1
A1
x
2)矢量法
x1 A1 cos(t 1 ) x2 A2 cos(t 2 ) x A cos(t ) 2 证明: 所代表的谐 A
振动就是合振动
Y
A2
A1
A
x . x A 矢量代表的谐振动的圆频率与振动 1 2 相同; A1 A2 1 2 不变。
习题:6,8,9,10,11,13,14,15,16,18
§3--1简谐振动(Simple harmonic motion)
一)简谐振动方程
二)谐振动的振幅、周期、(频率)和周相 (位相或相位)
三)谐振动的表示(谐振动的矢量图表示)
§3--2阻尼振动(Damped Oscillation) 强迫振荡(Forced Oscillation)共振
呀!受不 了啦!
§3--3振动的合成与分解 (Superposition of Harmonic Oscillation) 引:
第9章-振动和波

恢复力与弹性力
图中的“弹簧振子”有一个平衡位置 O,在那个位 置,弹簧既没有伸长也没有缩短,对物体不施加作用力, 物体得以平衡。试把物体从平衡位置移开,例如移到P点, 然后放手,拉长的弹簧有收缩的趋势,它施加于物体的 作用力驱使物体向平衡位置移动。这种驱使物体向平衡 位置移动的力叫作恢复力。
恢复力和惯性这一对矛盾 不断斗争,它们的作用交替消 长,力学系统就在平衡位置左 右一定范围内来回振动。
(2) 2 1 (2k 1) , k 0, 1, 2,
则 A | A1 A2 |
(3) 2 1 为一般值
则 | A1 A2 | A A1 A2
2. 方向相同,频率不同的两个简 谐振动的合成
设
x1 x2
A1 cos(1 t 1) A2 cos(2 t 2
)
为简单起见,设
A1 A2 A
2. 因为 F 的数值大小正比于位移 x 的大小,所以物体 偏离平衡位置越远,则它受到的拉回平衡点的力也 越大。
恢复力与弹性力
重力也可以成为恢复力。如 图所示的单摆,如将小球从 平衡位置拉到P点再松手,小 球将在平衡位置O点附近往 复摆动。它的结构虽与上述 弹簧振子完全不同,但它们 的运动性质是十分相似的。
的质量为 m,弹簧的倔强系
数为 k,选取 x 轴,以平衡
位置 O 为原点,则振子的运
动方程为:
mx kx
令:
2 k
m
解为: x A cos( t 0 )
其中 A, 0 为待定常数,由初始条件确定。称这种运
动为简谐振动。
简谐振动的描述
2. 简谐振动的特征参量
x A cos( t 0 )
描绘一个简谐振动的特征参量有三个:振幅、角频 率和相位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T —周期
—波长
—频率
机械波在介质中的传播速度由介质的性质所决定,与 波源无关,在不同的介质中波速不同。一般说,在弹性大、 密度大的介质中,波速大;在弹性小、密度小的介质中波 速小。
5 波的图像
在xOy坐标平面上,画出某一时刻各个质点的平衡位 置x与该质点偏离平衡位置的位移y,并把这些点连成曲线, 就得到该时刻波的图像(波形曲线). 横坐标x: 表示介质中各质点振动的平衡位置, 纵坐标y : 表示某一时刻各质点偏离平衡位置的位移。
y
x v
Δx vΔt
例5-2 图为简谐波在某时刻的波形图,O点是波源,波速为 320 m/s。传播方向沿X轴正向(向右),此时P点的位移为 4 cm ,求:(1) 波的振幅A、波长λ、周期T和频率ν; , ( 2)P、B点的加速度和速度方向;(3)再经过(1/800) s时, P点的位移,以及这段时间内P点通过的路程。 解 (1)由图可知,A = 5 cm ,λ = 0.8 m
介质中有机械波传播时,介质中的物质并不随波一起 传播,传播的只是振动这种运动形式。
波在传播振动这种运动形式的同时,也将波源的能量传 递出去。波是传递能量的一种方式。
4 波长、周期、频率和波速
波长(λ)
在波的传播方向上,对平衡位置的位移总是相等的两个相 邻质点间的距离,叫做波长。
A O A
1
4
13
16
在横波中,凸起的最高处叫做波峰,凹下的最低处 叫做波谷。
波形特征:
存在波峰和波谷。
纵波:质点的振动方向与波动的传播方向平行
波形特征:存在相间的稀疏和稠密区域。
传播方向
4-30
密部 疏部
声波是一种纵波
振动方向
3 机械波
机械振动在介质中的传播,形成机械波。 产生机械波的条件为:(1)要有做机械振动的物体— 波源;(2)要有能够传播这种机械振动的弹性介质— 介质。
周期 T 。
-A
T
质点的位移x: 上半轴为正,下半轴为负; 加速度a : 上半轴为负,下半轴为正;
x (cm)
速度v方向: A 下时刻的位移在下方, v O 2 速度向下,为负; 下时刻的位移在上方, -A 速度向上,为正;
x0
v
a
4
6 8 10 12
t (s)
T
v a
x0
振动曲线可以用描点法画出 。也可以用在振动物 体上固定一个记录装置的办法画出如图所示。
7
1
10 13 16
1 4
为什么会在绳上形成波呢?
因为绳的各部分存在相互作用,在绳的一端发生振动时, 会引起相邻部分发生振动,并依次引起更远的部分发生振动。 于是振动逐渐传播出去,从总体上看形成凸凹相间的波。
2 横波和纵波 横波:质点的振动方向和波的传播方向垂直的波。
振动方向
7
1
传播方向
10
y (cm)
T
v
0.8 1 2.5 10 3 s 320 400
v P
5 4 O
B
0.4 0.8 1.2
x(m)
1 1 ν 400Hz 3 T 2.5 10
-5
(2)位移方向 y (cm) P点:位移在y轴正方向.加 u av 速度方向与位移方向相反,所 5 P 4 以P点的加速度方向沿y轴负方 x(m) , B a=0 向; O 0.4 0.8 1.2 B点:位移为零,所以加速 u 度也为零。 -5 速度方向 由于波是由左向右传播,即振动位移和振动速度都由左 向右传播。各质点左侧质点的位移就是该质点下一时刻的位 移,由此判断质点的振动速度方向。 P点:相邻的左边质点的位移比P点的位移大,下一时刻 P点的位移应增大,因此P点向上(沿y轴正向)运动,即P点 的速度方向沿y轴正方向; B点:相邻的左边质点的位移在y轴负方向上,B点应向下 运动,即B点的速度方向沿y轴负方向。
受迫振动 共振
v'
v
返 回
电天 磁线 波发 射 出 声波
水波
地震波造成的损害
1 波的形成和传播 如图所示,取一根较长的软绳,用手握住绳的一端,拉 平后向上抖动一次,可以看到在绳上形成一个凸起状态,并 向另一端传去。向下抖动一次,可以看到在绳上形成一个凹 下状态,并向另一端传去。持续地上下抖动,可以看到有一 列凸凹相间的状态向另一端传去,在绳上形成一列波。
y
v
x
横波的两个相邻的波峰(或波谷)、纵波的两个相邻的密 部(或疏部)之间的距离,都等于一个波长。
周期: 振动在介质中传播一个波长的距离所需要的 时间. 频率:周期的倒数。即单位时间内波动所传播的完 整波的数目.
频率和周期只决定于波源,和介质种类无关。
波速(v) 波在单位时间内传播的距离叫做波速。 波速、周期和波长之间存在如下关系:
5 无阻尼自由振动 无阻尼自由振动
阻尼振动
受迫振动
共振
在简谐振动中,没有考虑摩擦阻力等因素,在振 动过程中系统的机械能守恒,振幅始终保持不变。这 种振幅保持不变的振动叫做无阻尼自由振动。简谐振
动是一种理想化的振动。
阻尼振动
实际的振动系统不可避免地要受到 摩擦和其他阻力,在振动过程中系统的 机械能要损耗 ,振幅逐渐减小。这种 振幅逐渐减小的振动,叫做阻尼振动。
k
v
x0
xo
A
x
A
x
o
A
x
物体做简谐振动时, 受力的大小跟物体偏离 平衡位置的位移成正比, 方向跟物体偏离平衡位 置的位移方向相反(指 向平衡位置),它的作 用能使物体返回平衡位 置,所以叫做回复力。 一般可用下式表示
x0
k
A
F
o
x
A
x
x0
k
A
F
x
o
F kx
A
x
当物体受到回复力时, 物体就做简谐振动。
m
A
o
正 增大 负
x
A
由A' 到O 负 减小 正 减小 正 减小
由 O到 A
负
减小 负
增大
负 增大 正
减小 负 增大
增大 减小
负
减小 减小
正
增大 增大 减小
大小变化
大小变化
减小
减小
势 能
大小变化
增大
增大
4 简谐振动的图象
振动曲线:为了直观地表示做简谐振动的物体的运 动情况,常常在直角坐标系中用横坐标表示时间 t,纵 坐标表示振动物体相对于平衡位置的位移 x,画出物体 的位移随时间变化的图象,这种图象叫做简谐振动的图 象,也叫振动曲线。它是一条余弦曲线或正弦曲线,如图 所示: x (cm) A 相邻两个正的(或负 的)最大位移间的时 O 2 4 6 8 10 12 t (s) 间间隔为简谐振动的
1 1 2 2 动能和势能为 E = mv Ep = kx k 2 2 1 1 2 2 机械能为 E Ek E p = mv kx 2 2
机械能越大,振幅越大。
k
练习完成下表
振子的运动 位 移 回复力 F=-kx 加速度 F=ma 速 度 动 能 方 向 大小变化 方 向 大小变化 方 向 大小变化 方 向 由A到O 正 减小 由O到A' 负 增大 正 增大 正 增大
x
O
t
受迫振动
阻尼振动最终要停下来。最简单的办法是用周期 性的外力作用于振动系统,外力对系统做功,补偿系 统的能量损耗,使系统持续地振动下去。这种周期性 的外力叫做驱动力。物体在外界驱动力作用下的振动 叫做受迫振动。
A
共振
驱动力的频率接近 物体的固有频率时,受 迫振动的振幅增大,这 种现象叫做共振 。
x (cm)
v 2 O -2 a A B 0.4 v E D 0.8 F 1.2 t (s) a
C
稍大于0.1 s时,质点的位移在其上方,因此质点 向上运动,即速度方向沿x轴正方向; (3)当t = 0.7 s时,质点的位移在x轴负向,加速 度方向应沿x轴正方向。即负半轴的加速度方向都为 正方向。 稍大干0.7 s时,质点的位移在上方,因此质点 向上运动,即速度方向沿x轴正方向。
第六章 振动和波
任一物理量在某一定值附近往复变化均称为振动.
机械振动: 物体围绕一固定位置往复运动.
运动形式: 直线、平面和空间振动. 例如一切发声体、心脏、海浪起伏、地震以及晶体 中原子的振动等. 简谐运动: 最简单、最基本的振动. 合成 简谐运动 复杂振动 分解 简谐振子:作简谐运动的物体.
1
引起的振动位移的矢量和.(叠加性)
波的干涉
频率相同、振 动方向平行、相位
相同或相位差恒定 的两列波相遇时, 使某些地方振动始 终加强,而使另一 些地方振动始终减 弱的现象,称为波 的干涉现象.
干涉条件:两列波的频率必须相同、振动方向必须相同、相位 相同或相位差恒定 。
水波的干 涉图样
返 回
振幅为 A = 0.02 m 周期为 T = 0.8 s
x (cm)
2 O -2 A B 0.4 C D 0.8 E F 1.2 t (s)
频率为 ν = 1/T = 1/0.8 = 1.25 Hz
(2)当t = 0.1 s时,质点的位 移在x轴正方向(x>0),因为加速 度方向与位移方向相反,所以加 速度方向是沿x轴负方向。即正 半轴的加速度方向都为负方向。
1 T v
或
1 v T
注意 弹簧振子周期
周期和频率仅与振动系统本 身的物理性质有关
l0 k
x0 F 0
T 2π
单摆周期
m k
m
A
o
A
x
l T 2π g