地基计算

地基计算
地基计算

换填垫层法计算书

依据《建筑地基处理技术规范》(JGJ79-2002)4 换填垫层法。

一. 参数信息

上部结构传至基础顶面的竖荷载 F=140kN/m;

基底以上填土的平均重度=17kN/m3;

基础类型: 矩形基础, 基础截面长度 l=5m,宽度 b=5m;基础埋深 H d=2.5m;

换垫层材料重度:17kN/m3;压缩模量:25MPa;承载力特征值:150kPa,垫层厚度:0.5m。

垫层底面处地基承载力特征值 f ak=50kPa;

基础宽度对地基承载力的修正系数ηb=0.15;埋深对地基承载力的修正系数ηd=1.4。

土层参数:

──────────────────────────────────

序号土层厚度h i(m) 重度i(kN/m3) 压缩模量E i(MPa)

──────────────────────────────────

1 3 17 15

──────────────────────────────────

2 1.5 10 13

──────────────────────────────────

3 4 10 20

──────────────────────────────────

4 3 10 23

──────────────────────────────────

二. 垫层厚度验算

1.厚度验算原理:

换填垫层的厚度不宜小于0.5m,也不宜大于3m,且满足下式要求:

式中 p z──相应于荷载效应标准组合时,垫层底面处的附加压力值(kPa),按下式计算: 矩形基础:

p cz──垫层底面处土的自重压力值(kPa);

f az──垫层底面处经深度修正后的地基承载力特征值(kPa):

式中 b──矩形基础或条形基础底面的宽度(m);

l──矩形基础底面的长度,取 l=5m;

p k──相应于荷载效应标准组合时,基础底面处的平均压值(kPa);

p c──基础底面处土的自重压力值(kPa);

z──基础底面下垫层的厚度(m);

──垫层的压力扩散角(度),由表查出。

2.荷载计算

基础底面压力 p k=(F+G)/b=(140+5.00×2.50×20.00)/5.00=78.00kN/m2

基础底面处土自重的压力 p c=d=17×2.5=42.5kN/m2。

3.厚度验算:

当垫层厚度 z=0.5m:查表得压力扩散角θ=20度。

经过计算得 p z=5×5×(78.00-42.50)/[(5+2×0.5×tg0.35)×(5+2×0.5×

tg0.35)]=30.85kPa。

p cz=17×2.5+0.5,2.5,1.5,4,3+0.5×17=51.00kPa。

m=p cz/(h d+z)=51.00/(2.5+0.5)=17kN/m3。

0 =17kN/m3。

faz=50.00+0.15×17.00×(5-3)+1.4×17.00×(2.5+0.5-0.5)=114.60kPa。

结论:由于 p z+p cz=81.85<114.60,所以垫层厚度满足要求!

4.垫层的宽度计算

垫层底面宽度按下式计算:

解得最小底面宽度 b=5.00+2×0.5×tg0.35=5.36m

垫层顶面每边超出基础底边不宜小于300mm。所以最小顶面宽度取 b=5.60m。

三沉降计算

依据《建筑地基基础设计规范》(GB5007-2002)5.3地基变形计算。

换层后的土层参数:

──────────────────────────────────

序号土层厚度h i(m) 重度i(kN/m3) 压缩模量E i(MPa)

──────────────────────────────────

1 0.5 17 25

──────────────────────────────────

2 2.5 17 15

──────────────────────────────────

3 1.5 10 13

──────────────────────────────────

4 4 10 20

──────────────────────────────────

5 3 10 23

──────────────────────────────────

1.基底平均附加压力P0计算:

基础与填土的总重量 G=20×5×5×2.5=1250.00kN;

基底的平均压力 P=(140+1250)/(5×5)=55.60kN/m2;

基底处的土中自重压力 P1=17×2.5=42.50kN/m2;

基底平均附加压力 P0=55.60-42.50=13.10kN/m2。

2.分层地基变形量计算:

────────────────────────────────────

z(m) 基础计算中点a i Z1(m) Z2(m) E si(mPa) S i(mm) ∑S i(mm) ────────────────────────────────────

0.50 4×0.2498 0.4996 0.4996 25.00 0.26 0.26

────────────────────────────────────

3.00 4×0.2423 2.9076 2.4080 15.00 2.10 2.36

────────────────────────────────────

4.50 4×0.2299 4.1382 1.2306 13.00 1.24 3.60

────────────────────────────────────

8.50 4×0.1890 6.4243 2.2861 20.00 1.50 5.10

────────────────────────────────────

11.50 4×0.1619 7.4451 1.0208 23.00 0.58 5.68

查表取△z=0.80m;则当前深度向上取厚度为△z的土层深度: Hd=11.50-0.80=10.70m;

该深度下土的变形值:

△s'n=13.10×[11.50×0.6474-(11.50-0.80)×0.6740]/23.00=0.133mm

△s'n/∑S5=0.133/5.68=0.0233≤0.025,所以本层土已满足要求!

按分层总和法计算出的地基变形量为: S'=5.68mm。

────────────────────────────────────

注:表中Z1=z i×a i,Z2=z i×a i-z i-1×a i-1。

3.地基最终变形量计算:

最终沉降计算公式如下:

其中 S'──按分层总和法计算出的地基变形量;

──变形计算深度范围内压缩模量的当量值:

式中──第i层地附加应力系数沿土层厚度的积分值;

=21.415/1.177=18.19Mpa;

s──沉降计算经验系数,根据查规范表5.3.5,得s=0.27;

经计算最终沉降量: S=0.27×5.68=1.55mm。

关于Cmk和Cpk等名词解释和详细数学计算模型公式建立WORD版

1. Cmk和Cpk等名词解释 Cmk是德国汽车行业常采用的参数,是“Machine Capability Index” 的缩写,称为临界机器能力指数,它仅考虑设备本身的影响,同时考虑分布的平均值与规范中心值的偏移;由于仅考虑设备本身的影响,因此在采样时对其他因素要严加控制,尽量避免其他因素的干扰,计算公式与Ppk相同,只是取样不同。 CP(或Cpk)工序能力指数,是指工序在一定时间里,处于控制状态(稳定状态)下的实际加工能力。它是工序固有的能力,或者说它是工序保证质量的能力。 这里所指的工序,是指操作者、机器、原材料、工艺方法和生产环境等五个基本质量因素综合作用的过程,也就是产品质量的生产过程。产品质量就是工序中的各个质量因素所起作用的综合表现CPK:强调的是过程固有变差和实际固有的能力; CMK:考虑短期离散,强调设备本身因素对质量的影响; CPK:分析前提是数据服从正态分布,且过程受控;(基于该前提,CPK一定>0) CMK:用于新机验收时、新产品试制时、设备大修后等情况; CPK:至少1.33 CMK:至少1.67 CMK一般在机器生产稳定后约一小时内抽样10组50样本 CPK在过程稳定受控情况下适当频率抽25组至少100个样本

2.对Cmk和Cmk指标参数的分析 对Cmk,我们关心的是机器设备本身的能力,在取样过程中要尽量消除其他因素的影响,因此,在尽量短的时间内(减少环境影响),相同的操作者(减少人的因素影响),采用标准的作业方法(法),针对相同的加工材料(同一批原材料),只考核机器设备本身的变差。 在计算方法上,取样数目可以按照实际情况(客户要求,公司规定,采样成本等综合考虑),但原则上应该大于30个,这是因为取样的子样空间实际上不是正态分布而是t分布,当样本数大于30时,才接 近正态分布。而我们所采用的公式是以正态分布为基础的。 设备能力指数Cmk表示仅由设备普通原因变差决定的能力,与Cpk Ppk不同在于取样方法不同,是在机器稳定工作时至少连续50件的数据,Cmk=T/6sigma,sigma即可用至少连续50件的数据s估计,又可用至少连续50件的数据分组后的Rbar/d2来估计,由于根据美国工业界的经验,过程变差的75%来自设备变差,如果用至少连续50件的数 据s估计的sigma或用至少连续50件的数据分组后的Rbar/d2估计 的sigma来计祘Cpk的话,人机料法环总普通原因变差为8sigma, Cpk=T/8sigma,(为方便,上面公式都是分布中心和公差中重合时) 机器能力:“机器能力”由公差与生产设备的加工离散之比得出。通常采用数理统计的方法进行测量和证明,此时只考虑短期的离散,尽可能地排除对过程有影响而非机器的因素。(比较VDA第4卷的第 1部分)

地基与基础作业答案

《地基与基础》作业 1、基础的类型有哪些?各自的适应条件? 答:浅基础的类型特点:1)独立基础:也叫“单独基础”,最常用的是柱下基础。2)条形基础:条形基础是墙下最常用的一种基础形式,当柱下独立基础不能满足要求时,也可以使用条形基础。故按上部结构的的形式,可以将条形基础分为:a、“墙下条形基础”;b、“柱下条形基础”;c、“十字交差钢筋混凝土条形基础”。若是相邻两柱相连,又称“联合基础”或“双柱联合基础”。3)筏板基础:按其构造形式可以分为“梁板式”和“平板式”。4)箱型基础:由钢筋混凝土底板、顶板和纵横交错的内外隔墙组成。具有很大的空间刚度和抵抗不均匀沉降的能力,抗震性能好,且顶板与底板之间的空间可以做地下室。5)壳体基础:其现阶段主要用于筒形构筑物的基础。 2、常用的地基计算模型有哪几种,说明他们各自的原理。 答:常用的地基计算模型三大地基模型:1)文克尔地基模型(线弹性地基模型),文克尔地基模型是把地基视为再刚性基座上由一系列侧面无摩擦的土柱组成,并可以用一系列独立的弹簧模拟;2)弹簧半无限空间地基模型,假定地基是一个均匀连续各向同性的半无限空间弹簧体;3)有限压缩层模型,把地基当成侧限条件下有限深度土层,以分层总和法为基础建立地基压缩层变形与地基作用荷载关系。 3、针对不良的地基,处理的方法有哪些? 答:常见的不良地基及其特点:1)软弱土地基;2)杂填土地基;3)冲填土地基;4)饱和松散砂土地基;5)湿陷性黄土地基;6)膨胀土地基;7)含有有机质和泥炭土地基;8)山区地基土;9)岩溶(喀斯特)地基。 常用的地基加固处理方法与适用范围: 随着建设事业的发展和对不良地基的充分利用,旧的地基处理方法在日益完善,新的地基处理方法不断涌现。从机械压实到化学加固,从浅层处理到深层处理,从一般松散土处理到饱和粘性土处理,方法颇多。常用的加固处理方法有:置换法、碾压夯实法、深层挤密法、排水固结法、化学固化法、加筋法等。1)置换法:换土垫层法、2 1 2 EPS轻填法;2)碾压夯实法;3)深层挤密法:强夯法、挤密法、振冲法。4)排水固结法:加载预压法、超载预压法。5)化学固化法:深层搅拌法、灌浆或注浆法、单液硅化法和碱液法。6)加筋法:加筋土法、锚固法、竖向加固体复合地基法。

海洋平台结构设计与模型制作计算书

海洋平台结构设计与模型制作 理论方案 浙江大学结构设计竞赛组委会 二○一二年

第一部分:方案设计摘要 根据学长“简单、粗犷”的原理,在实践中抛 弃了很多复杂、沉重的构件,最终展现在我们面前 的是一个四棱台与四棱柱结合的简单作品。 自下而上的构件分别为: 底部为深入沙中的底柱,长为10cm。通过一次 实验,为利于柱子插入细沙中而将柱子削尖。 联结底柱的是四棱台,高42cm、底边长45cm、 顶边长28cm。为抵抗风荷载的力矩而增大重力的力 臂,在保证质量较轻的条件下增大底部长度。初时 对竖向荷载过分估计以致四周承重柱以及斜撑杆过 重,但稳重的底部在加载过程汇中也有可取之处。 之所以将高度定为28cm,是因为伊始准备在四棱台 中间安置塑料片筒体。但在实际操作中我们放弃了 这个设想。 联结四棱台的是被斜杆分成三部分的四棱柱。 借鉴了别人的轻质理念,一改底座的笨重,上部桁 架的布置简明,但纤细的杆件也使整体遭受了风荷 载的极大挑战。在实验加载中发现荷载箱稍小,因 此改进顶部边长、露出四个小柱。本欲在与水面相 切处设置420*420的塑料片则可以利用水的吸附 力,可惜塑料片质量稍重、效果也不太明显。改进 后,四棱台留在空中的部分受风荷载较大,布置了 较密的桁架。 在构件联结处,我们尽力增大构件的接触面积,同时也做了些小木段与木片作为加固。 总结来看,在最初的设计思考中我们还是有一些新的想法,比如筒体,比如利用水的吸附力,但在实践制作过程中我们缺乏对可操作性的理性认识;同时我们过分估计竖向荷载以致质量过重,轻视水平风荷载而在试验中多次面临剧烈的扭转。最终我们的结构形式归于简单,但过程并不平淡。在否定与自我否定中,我们已有收获。

数据模型公式

第三章: 总体方差:; 样本方差: = 样本协方差S xy 总体协方差 皮尔逊积矩相关系数:r xy= 第五章:离散型概率分布 数学期望, 方差 f(x)为概率 二项概率函数: f(x)= 5、5 泊松概率分布 f(x)=,在一个时间区间内事件发生x次得概率,μ为数学期望(与方差相差) 第六章:连续型概率分布 6、1均匀概率密度函数 a≤x≤b f(x)= 0其她 E(x)=,Var(x)= 连续型概率分布 6、3二项概率得正态近似 均值μ=np,标准差,当取概率p<p(x)时,x+0、5;当取概率p>p(x)时,x-0、5。 6、4指数概率分布 f(x)=,表示两起事件之间得时间间隔 累积概率:不超过X0分钟 P(x≤x0) =1- 第八章:总体均值区间估计 8、1总体标准差σ已知,求总体均值μ得置信区间估计 95%置信水平(confidence level),0、95置信系数(confidence coefficient),置信区间(confidenceinterval) =,边际误差==,α=1-0、95=0、05,α/2=0、025(上侧面积) 总体均值得区间估计=μ=+ 8.2总体标准差σ未知,求总体均值μ得置信区间估计(t分布) 用样本标准差s代替总体标准差σ,t代替z μ=+,自由度df=n-1 8.3样本容量得确定 n=,E为所希望得总体均值μ得边际误差 8.4总体比率:只有z,没有t =,边际误差===E 总体均值得区间估计=+

n= ()2p*(1-p*)/E2第九章:假设检验(一个μ) 总体均值μ假设检验H 0:μ=μ 0 ;H a :μ≠μ0 ,μ0为假定值 p-value≤α,即z≥(上侧)或z≤-(下侧),则拒绝 p(z≥1、96)=0、025 9、3总体标准差σ已知,求z z=, 为样本均值 置信区间法:+,瞧μ0就就是否落在该区间内 9、4总体标准差σ未知,求t ,df=n-1 9、5总体比率假设检验,求z H0:p=p0; H a:p≠p0,p0为假定值 z= 9、7计算第二类错误得概率 (1)在显著性水平α下,根据临界值法确定临界值并建立拒绝法则(如,如果z≤,则拒绝); (2)根据,解出样本均值取值范围(根据z=≤或≥); (3)建立接受域,如>a; (4)根据接受域(不变)与满足备择假设得新μ,计算概率(z=)。 第二类错误概率β,做出拒绝H0得正确结论得概率称为功效,值为1-β 越接近原假设均值μ,发生第二类错误得风险越大。 9、8 确定总体均值μ假设检验得样本容量 n= α为第一类错误概率,β为第二类错误概率,μ0为原假设总体均值,μa为第二类错误所用总体均值。 双侧检验中,以Zα/2代替Zα 第十章:两总体均值与比例得推断(两个μ) 10、1两总体均值之差(μ1-μ2)得推断,总体方差σ1与σ2已知 标准差=,Margin of error= μ1-μ2得区间估计: μ1-μ2得假设检验: H0:μ1-μ2=D0;Ha:μ1-μ2≠D0,双侧,求z: 10、2两总体均值之差(μ1-μ2)得推断,总体方差σ1与σ2未知 μ1-μ2得置信区间估计:, df=,自由度取小得整数 μ1-μ2得假设检验,求t: t= 10、3匹配样本 H0:μd=0, Ha:μd≠0,双侧 t= ,df=n-1,为两组数值之差得平均值,μd为总体数值之差得平均值(一般为0),S d为两组样本数值之差得标准差 置信区间= 10、4 两总体比例之差得推断 H 0:p1-p2=0; H a :p1-p2≠D0 , 两总体比例之差得置信区间= 第十一章:关于总体方差σ2得统计推断

广厦通用计算GSSAP新规范计算模型的合理选取

广厦通用计算GSSAP 新规范计算模型的合理选取一个结构CAD包括3部分:前后处理、计算和基础CAD。如下介绍前处理中的结构模型和一天学会广厦结构CAD。 1前处理中的结构模型 如下高度概括我们天天面对的结构模型。 一个结构模型包括2部分:总的信息和构件信息,总的信息包括总体信息和各层信息,构件信息包括墙柱梁板的位置和属性,属性包括设计属性、截面材料属性和荷载属性。 1.1GSSAP总体信息 1)地下室有3个参数控制 地下室层数控制地下室无风,嵌固层最大结构层号控制地下室嵌固,有侧约束地下室层数控制地下室弹性约束。 1下上层刚度比≥2,可设为嵌固层,否则设为有侧约束层; 2其它计算如SATWE少了一个参数:有侧约束层,所以首层柱根判定有错; 如下结构1为地梁和防水板,考虑土的摩擦作用1层有侧约束,错误判定结构1层为首层。

3嵌固层的梁不应自动放大1.3倍,下柱不应小于地上1.1倍,加上梁的贡献,一般情况下已经满足下柱加梁的承载力大于上柱1.3倍的要求; 4如下嵌固在0层(基础层),结构1和2层有侧土约束,结构3层为首层。 5如下结构1为地梁和防水板,考虑土的摩擦作用1层有侧约束,结构2层为首层。 2)裙房层数 1要准确输入裙房层数,包括地下室部分的层数; 2影响裙房上塔楼层风荷载的自动计算; 3影响裙房上塔楼结果的输出,如刚重比、周期比等。 3)薄弱的结构层号 1除层间抗侧力结构的承载力比值外,其它自动判定的薄弱层都自动处理相应的放大系数,不需在这人工指定; 2多层自动放大1.15,高层自动放大1.25。 4)加强层所在的结构层号 1加强层是刚度和承载力加强的层,与墙的加强部位层是两个不同概念的层; 2加强层及相邻层核心筒可在墙设计属性中人工设置约束边缘构件。

2地基处理与基坑支护定额说明及工程量计算规则

第二章地基处理与基坑支护工程 说明 一、本章节定额包括地基处理和基坑与边坡支护两节。 二、地基处理 1、换填垫层 (1)换填垫层项目适用于软弱地基挖土后的换填材料加固工程。 (2)换填垫层夯填灰土就地取土时,应扣除灰土配比中的黏土。 2、强夯地基 (1)强夯定额综合了各夯的布点、程序和间隔距离。 (2)强夯定额已综合强夯机具的规格和数量、强夯的锤、钩架等材料摊销费。 (3)设计要求在夯坑内填充级配碎石,不论就地取材或由场外运碎石填坑,其填运材料费用另行计算。 (4)设计要求设置防震沟时,按设计要求另行计算。 (5)若遇地下水位高,夯坑内需用水泵抽水的,抽水费用另行计算。 (6)强夯定额不包括强夯前的试夯工作和夯后检验强夯效果的测试工作,如有发生另行计算。 (7)强夯置换:套用强夯定额,材料含量按实调整,人工、机械乘以1.3系数。 3、碎石桩和砂石桩的充盈系数为1.3,损耗率为2%。实测砂石配合比及充盈系数不同时可以调整。其中,沉管灌砂石桩除了上述充盈系数和损耗率外,还包括级配密实系数1.334。 4、水泥搅拌桩 (1)深层水泥搅拌桩: ①深层水泥搅拌桩项目已综合了正常施工工艺需要的重复喷浆(粉)和搅拌。空搅部分按相应项目的人工及搅拌桩机台班乘以系数0.5计算。 ②水泥搅拌桩的水泥掺入量按加固土重(1800kg/m3)的13%考虑,如设计不同时,按每增减1%项目计算。 ③深层水泥搅拌桩项目按1喷2搅施工编制,实际施工为2喷4搅时,项目的人工、机械乘以系数1.43;实际施工为2喷2搅,4喷4搅时分别按1喷2搅、2喷4搅计算。 (2)双轴水泥搅拌桩、三轴水泥搅拌桩: ①双轴水泥搅拌桩、三轴水泥搅拌桩定额中未包含导向沟的土方及置换出的淤泥外运费用,实际发生时另行计算。 ②双轴水泥搅拌桩、三轴水泥搅拌桩项目水泥掺入量按加固土重 (1800kg/m3)的18%考虑,如设计不同时,按深层水泥搅拌桩每增减1%项目计算;按2喷2搅施工工艺考虑,设计不同时,每增(减)1喷1搅按相应项目人工和机械费增(减)40%计算。空搅部分按相应项目的人工及搅拌桩机台班乘以系数0.5计算。

midas_civil简支梁模型计算

第一讲 简支梁模型的计算 工程概况 20 米跨径的简支梁,横截面如图 1-1 所示。 迈达斯建模计算的一般步骤 1- 理处 前 第五步:定义荷载工况 第六步:输入荷载第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点

具体建模步骤 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。 第 02 步:启动 Midas ,程序界面如图 1-2 所示。 图 1-2 程序界面 第 03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图 1-3 所示。

图 1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,输入工程名“简支梁.mcb”。如图 1-4 所示。 图 1-4 保存工程

第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,新建一个 excel 文件,命名为“结点坐标”。在 excel 里面输入结点的 x,y,z 坐标值。如图 1-5 所示。 图 1-5 结点数据 第 06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图 1-6 所示。

地基处理选择题大全·

1、夯实法可适用于以下哪几种地基土?ABF (A)松砂地基 (B)杂填土 (C)淤泥 (D)淤泥质土 (E)饱和粘性土 (F)湿陷性黄土 2、排水堆载预压法适合于:CE (A)淤泥 (B)淤泥质土 (C)饱和粘性土 (D)湿陷黄土 (E)冲填土 3、对于饱和软粘土适用的处理方法有:DEF (A)表层压实法 (B)强夯 (C)降水预压 (D)堆载预压 (E)搅拌桩 (F)振冲碎石桩 4、对于松砂地基适用的处理方法有 :ACDH (A)强夯 (B)预压 (C)挤密碎石桩 (D)碾压 (E)粉喷桩 (F)深搅桩 (G)真空预压 (H)振冲法 5、对于液化地基适用的处理方法有:ACH (A)强夯 (B)预压 (C)挤密碎石桩 (D)表层压实法 (E)粉喷桩 (F)深搅桩 (G)真空预压 (H)振冲法 6、对于湿陷性黄土地基适用的处理方法有:ADEFI (A)强夯法 (B)预压法 (C)砂石桩法 (D)换填垫层法 (E)水泥土搅拌法 (F)石灰桩法 (G)真空预压 (H)振冲法 (I)土(或灰土)桩法 7、土工合成材料的主要功能有:ABCD (A)排水作用 (B)隔离作用 (C)反滤作用 (D)加筋作用 (E)置换作用 10、可有效地消除或部分消除黄土的湿陷性的方法有:BDE (A)砂垫层 (B )灰土垫层 (C)碎石桩 (D)强夯 (E)灰土桩 14、某复合地基,桩截面积为p A ,以边长为L 的等边三角形布置,则置换率为:B (A)p A /2L (B)1.15p A /2L (C)1.5p A /2L 15、某复合地基,桩径为d ,以边长为L 的正方形布置,则置换率为:A (A) 0.782d /2L (B)2d /2L (C)1.152d /2L 16、某复合地基,桩径为d ,以纵向间距1s 和横向间距2s 的矩形布置,则置换率为:A (A) 0.782d /21s s (B)2d / 21s s (C)1.152d /21s s 17、一小型工程采用振冲置换法碎石桩处理,碎石桩桩径为0.6m ,等边三角形布桩,桩距

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

烧结配料模型公式

2.配料 2.1概述 烧结配料是按烧结矿的质量指标要求和原料成分,将各种原料(含铁料、溶剂、燃料等)按一定的比例配合在一起的工艺过程,适宜的原料配比可以生产出数量足够的性能良好的液相,适宜的燃料用量可以获得强度高还原性好的烧结矿。 对配料的基本要求是准确。即按照计算所确定的配比,连续稳定配料,把实际下料量的波动值控制在允许的范围内,不发生大的偏差。实践表明,当配料发生偏差,会影响烧结过程的进行和烧结矿的质量。 生产中,当烧结机所需的上料量发生变化时,须按配比准确计算各种料在每米皮带或单位时间内的下料量;当料种或原料成分发生变化时,则应按规定要求,重新计算配比,并准确预计烧结矿的化学成分。 2.2配料方法——质量配料法 此法是按原料的质量进行配料的一种方法。其主要装置是皮带电子称——自动控制调节系统——调速圆盘给料机,配料时,每个料仓配料圆盘下的皮带电子称发出瞬时送料量信号,此信号输入调速圆盘自动调节系统,调节部分即根据给定值信号与电子皮带秤测量值信号的偏差,自动调节圆盘转速,达到所要求的给料量,质量配料系统如图1所示 质量配料法可实现配料的自动化,便于电子计算机集中控制与管理,配料的动态精度可高达0.5%-1%,为稳定烧结作业和产品成分创造了良好条件,也是劳动条件得到改善。 2.3配料室(本厂) 配料室采用单列布置,15个矿槽,混匀矿槽上采用移动B=1000卸料车向各配料槽给料;无烟煤、焦粉、冷返矿矿槽上采用B=650固定可逆胶带机向各配料槽给料。生石灰用外设压缩空气将汽车罐车送来的生石灰送至配料槽。混匀矿采用¢2500圆盘给料机排料,配料电子称称重;燃料和溶剂及冷返矿直接用配料电子称拖出;生石灰的排料、称量及消化通过叶轮给料机、电子称及消化器完成。以上几种原料按设定比例经称量后给到混合料的B=800胶带机上。料槽侧壁安装振动电机,防止料槽闭塞。 调速圆盘自 动调节系统 给定值 控制量 偏差 调节部分 调节量 操作部分 (圆盘) 操作量 控制部分 (圆盘给料机) 检出部分 (电子皮带秤) 图1 质量配料系统

地基处理习题解答

1.某工程采用换填垫层法处理地基,基底宽度为10m ,基底下铺厚度 2.0m 的灰土垫 层,为了满足基础底面应力扩散要求,试求垫层底面宽度。(12m) (解) z /6=2/10=0.2,灰土0 28=θ 垫层底面宽度 m z b 1228tan 221028tan 2b 00=??+≥+=' 2.某工程采用振冲法地基处理,填料为砂土,桩径0.6m ,等边三角形布桩,桩间距 1.5m ,处理后桩间土地基承载力特征值kpa 120f ak =,试求复合地基承载力特征值。 (桩土应力比n =3)。(kpa 8.154f spk =) 3.一辆重车的总重力为300kN ,按横向分布两辆车,单辆车荷载分布长度5.6m ,荷 载分布宽度5.5m ,如果将相应的车辆荷载换算成为底面积相同,重度为18.2kN /m 3 土柱的当量高度,试计算当量高度。(h=1.07m) (解) 一辆车的平均压力 kpa 74.95 .56.5300p =?= 二辆车平均压力kpa 48.19274.9p =?= 当量高度m h rh 07.1,48.19== 4.某饱和黏土,厚H=6m ,压缩模量MPa E s 5.1,地下水位和地面相齐,上面铺 设80cm 砂垫层(r =18kN /m 3)和设置塑料排水板,然后用80kPa 大面积真空预 压3个月,固结度达85%,试求残余沉降(沉降修正系数取1.0,附加应力不随深 度变化)。(57mm) m H rh H P s 378.01500 80E S =+==∞ m s s t 32.085.0=?=∞ 残余沉降 mm s s t 57=-∞ 5.某场地天然地基承载力特征值kpa 120f ak =,设计要求砂石桩法地基处理后复合地 基承载力特征值达160kPa ,桩径0.9m ,桩间距1.5m ,试求砂石桩桩体单桩承载 力特征值。(261.8kpa) 4.62 某松散砂土地基,处理前现场测得砂土孔隙比e =0.81,砂土最大、最小孔隙比分 别为0.9和0.6,采用砂石法处理地基,要求挤密后砂土地基相对密实度达到0.8, 若桩径0.7m ,等边三角形布桩,试求砂石桩的间距(1.1=ζ)。(s=2.54m) [解] 砂石桩间距

地基稳定性分析评价内容

地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对如下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。通常涉及到岩土工程方面主要的内容有: (1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况; (2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。 按照《岩土工程勘察规范》(GB50021-2001)(2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB50011-2010)规定,通常需要分析评价的内容总结如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满 足要求。应严格按照《建筑地基基础设计规范》(GB50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ72-2004)8.2.6~8等条款执行。 2、变形验算

建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB50007-2011)5.3、(JGJ72-2004)8.2.9~12和《建筑地基处理技术规范》(JGJ79-2012)有关条款计算。 3、基础埋置深度的确定 对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/15H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。 4、位于稳定土坡坡顶上的建筑 应根据建(构)筑物基础形式,按照(GB50007-2011)5. 4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB50330-2002) 5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。 5、受水平力作用的建(构)筑物 ①山区应防止平整场地时大挖大填引起滑坡; ②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。

阿尔法资产模型及计算方法

阿尔法资产模型及计算方法 阿尔法资产(Alpha investment)是一种风险调整过的积极投资回报。它是根据所承担的超额风险而得到的回报,因此经常用来衡量基金经理的管理和表现水平。通常会在计算时,将基准的回报减去,以便看出它的相对水平。 阿尔法资产是资本资产定价模型中的一个量效率市场假说阿尔法系数为零 计算公式: 其中的阿尔法系数(αi)是资本资产定价模型中的一个量,是证券特征线与纵坐标的截距。在效率市场假说中,阿尔法系数为零。 阿尔法系数(α系数,Alpha(α)Coefficient) α系数的定义:α系数是一投资或基金的绝对回报(Absolute Return) 和按照β系数计算的预期回报之间的差额。绝对回报(Absolute Return)或额外回报(Excess Return)是基金/投资的实际回报减去无风险投资收益(在中国为1年期银行定期存款回报)。绝对回报是用来测量一投资者或基金经理的投资技术。预期回报(Expected Return)贝塔系数β和市场回报的乘积,反映投资或基金由于市场整体变动而获得的回报。 一句话,平均实际回报和平均预期回报的差额即α系数。 α系数计算方法 α系数简单理解 α>0,表示一基金或股票的价格可能被低估,建议买入。亦即表示该基金或股票以投资技术获得平均比预期回报大的实际回报。 α<0,表示一基金或股票的价格可能被高估,建议卖空。亦即表示该基金或股票以投资技术获得平均比预期回报小的实际回报。 α=0,表示一基金或股票的价格准确反映其内在价值,未被高估也未被低估。亦即表示该基金或股票以投资技术获得平均与预期回报相等的实际回报。 例子分析

弹性地基梁计算模型的选择

pkpm弹性地基梁5种模式的选择 pkpm弹性地基梁结构在进行计算时,程序给出了5种计算模式,现对这5种模式的计算和选择进行一些简单介绍。⑴按普通弹性地基梁计算:这种计算方法不考虑上部刚度的影响,绝大多数工程都可以采用此种方法,只有当该方法时基础设计不下来时才考虑其他方法。⑵按考虑等代上部结构刚度影响的弹性地基梁计算:该方法实际上是要求设计人员人为规定上部结构刚度是地基梁刚度的几倍。该值的大小直接关系到基础发生整体弯曲的程度。而上部结构刚度到底是地基梁刚度的几倍并不好确定。因此,只有当上部结构刚度较大、荷载分布不均匀,并且用模式1算不下来时方可采用,一般情况可不用选它。⑶按上部结构为刚性的弹性地基梁计算:模式3与模式2的计算原理实际上最一样的,只不过模式3自动取上部结构刚度为地基梁刚度的200倍。采用这种模式计算出来的基础几乎没有整体弯矩,只有局部弯矩。其计算结果类似传统的倒楼盖法。该模式主要用于上部结构刚度很大的结构,比如高层框支转换结构、纯剪力墙结构等。⑷按SATWE或TAT的上部刚度进行弹性地基架计算:从理论上讲,这种方法最理想,因为它考虑的上部结构的刚度最真实,但这也只对纯框架结构而言。对于带剪力墙的结构,由于剪力墙的刚度凝聚有时会明显地出现异常,尤其是采用薄壁柱理论的TAT软件,其刚度只能凝聚到离形心最近的节点上,因此传到基础的刚度就更有可能异常。所以此种计算模式不适用带剪力墙的结构。另外,设计人员在采用《JCCAD 用户手册及技术条件》附录C中推荐的基床反力系数K时,该值已经包含上部刚度了,所以没有必要再考虑一次。⑸按普通梁单元刚度的倒楼盖方式计算:模式5是传统的倒楼盖模型,地基梁的内力计算考虑了剪切变形。该计算结果明显不同与上述四种计算模式,因此一般没有特殊需要不推荐使用。

设计计算

设计 一.现有一教学管理系统,ER模型如下: 逻辑模型如下: 学生(学号,姓名,性别,民族) 教师(教师号,姓名,民族,职称) 课程(课号,课名,课程介绍,课程类型,先导课号) 教学班(课号,班级号,学年,学期,限制人数) 教师教学(教师号,课号,班级号,学年,学期,周学时,开始周,结束周) 选课(学号,课号,班级号,学年,学期,成绩) 说明: 1、“周学时”、“开始周”、“结束周”、“限制人数”字段的取值类型为整数型。“成绩”字段的取值类型为实数型。其它字段的取值类型为字符型。 2、“成绩”字段可以取NULL值。 请用SQL语句做如下操作: 1、查询学号为’200617001’的学生,选修课程类型为’专业课’且不及格的课程的课号、课名。 2、统计教师号为‘2002016’的教师,在2008年,上课名为“数据库原理”课的总学时。 3、查询选课门数超过5门的学生学号、选课门数、平均分。 4、请为自己选上‘2008’学年、第‘2’学期、课号为‘180012’、班级号为‘02’的课。 5、把‘2008’学年、第‘1’学期,选修课名为‘数据库原理’、成绩低于60分的“蒙古族”学生的成绩提高10分。 6、删除2004级,所选课的课程都及格的学生的选课信息。 参考答案: 1. Select 课号,课名 From 选课,课程 Where 选课.课号=课程.课号and 学号=’200617001’and 课程类型=’专业课’and 成绩<60 2、 Select 周学时×(开始周-结束周+1)as 总学时 From 教师教学,课程 Where 教师教学.课号=课程.课号and 教师号=’2002016’and学年=’2008’and 课名=’数据库原理’ 3、

WOFOST模型计算LAI的公式及率定的选择

WOFOST计算LAI的公式及率定的选择 1.什么是LAI,如何测量? WOFOST手册中给出的LAI翻译为: LAI-----leaf area index (leaf area)/(soil area) (ha ha-1) ,即单位土地面积上叶片的总面积。 《陆地生态系统生物观测规范》(中国生态系统研究网络科学委员会编2007)中可以查得以下关于叶面积指数定义及测定方法的信息: a.叶面积指数定义 叶面积指数是指一定地面积(投影面积)上所有植物叶面积之和与地面积的比值。是用来估测植物群体生产力的一个必不可少的参数。 b.叶面积指数的测定方法 测定叶面积的方法有直接测定法和间接测定法。 直接测定法可用叶面积仪测定; 间接测定法包括计算纸(方格纸)法、纸重法、称干重法、求积仪法、长宽系数法、拓印法等。 其中,叶面积仪法方便准确,长宽系数法和称重法由于不需要特殊的仪器,经常使用。 长宽系数测定法适用于大中型叶片,整株植物叶片大小相对均匀,且叶片比较规整的植物,但是需要知道特定品种作物的校正系数。 称重法选择标准植株10—20株,刈割后,确定所有叶片的干重,结合实测的比叶面积(单位叶片重量的面积),计算标准植株总叶面积,然后换算成群落的叶面积指数。

2.SWAP-WOFOST计算LAI的公式及其前提假设 a.净增长阶段 在计算叶面积指数时模型需要输入的相关参数如下: 1.出苗时叶面积指数(LAIEM); 2.叶面积指数最大相对增长速率(RGRLAI); 3.比叶面积(SLA); 4.茎和储存器官的绿色面积指数(SPA、SSA) 在叶片生长的初始阶段叶片外形和最终叶片大小受温度的限制,主要受到细胞分裂和延展的影响而非同化物的供应。较高的温度会加快生长发育,导致生长期缩短,对于相对较宽的温度范围,生长速率或多或少与温度呈线性反应(Hunt et al,1985; Causton and Venus,1981; Van Dobben,1962),因此,WOFOST使用温度和来描述温度对初始生长阶段的影响。。在这个所谓的指数生长阶段,叶面积指数的增长速度w LAI(ha ha-1 d-1)计算公式如下: 是叶面积指数最大相对增长速率(℃-1 d-1),有效温度T eff 其中的w LAI ,max 根据日平均气温计算,各作物及地区的取值不同,需要用户指定其与日平均气温的关系。 WOFOST假设叶面积指数的指数阶段增长速率将持续到等于受同化物供应限制下的叶面积指数增长速率,在此之后叶面积增长速率又进入了第二阶段

第十二届同济大学大学生结构设计与模型竞赛计算书

理论分析计算书目录 一、设计说明 (3) 1、方案构思 (3) 2、结构选型 (4) 3、结构特色 (5) 二、方案设计 (5) 1、设计基本假定 (5) 2、模型结构图 (5) 3、节点详图 (8) 4、主要构件材料表及结构预计重量 (10) 三、结构设计计算 (11) 1、静力分析 (11) 2、内力分析 (13) 3、承载力及位移计算 (15) 四、结构分析总结 (16)

一、设计说明 根据竞赛规则要求,我们从模型制作的材料抗压特性,冲击荷载形式和静力加载大小要求等方面出发,结合节省材料,经济美观,承载力强等特点,采用比赛提供的木材细杆和木板,502胶水味粘结剂精心设计制作了“三足鼎立”结构模型,空间桁架结构为该模型的一大亮点。 1、方案构思 模型主要承受150N竖直静荷载和一定的竖向冲击荷载,竖直静荷载较容易满足,而竖向冲击荷载结构的刚度要求较高,同时要求结构有较强的抗剪能力。 (1)本结构主要构思是想利用三根柱子的轴力来抵抗荷载的作用 (2)设计的总原则是:尽可能的利用竖向支撑的三根粗杆来提高柱子的承载力而在柱子之间辅以细杆来稳定结构,并利用木材的抗拉性能,及抗压性能来抵抗荷载的作用。 2、结构选型 由于三角形具有较强的稳定性,而且在平面上容易找平,我们选择三角形为主体结构框架,桁架受力均匀简单,仅受轴力,便于木材性能的发挥,我们以空间桁架为主导。 2.1结构外形 结构上平面为边长225mm的等边三角形,底面在半径为240mm的圆上,整体为相似三角形,内部采用空间桁架结构加强稳定性。 2.2材料截面选择

主体三根柱子截面为四根2*8的杆件粘接而成,形成外侧10mm,内侧8mm的箱型,保证抗压的同时减轻材料的质量。 T型柱稳定性较好,我们用T型柱搭出上部的空间角锥体,使结构整体稳定。 主体承力T型柱由2*6㎜翼缘2*4㎜腹板组成框架结构。 外围由2*4㎜与2*6的L行梁连接,结构内部由2*2㎜斜梁与主体柱交叉相连,增强整体稳定性。 2.3节点设计 主体框架结构相交的节点由于杆的倾斜在加动载和静载时会引起较大的剪力,在连接时用小木片填充密实,再用2*2水平短木条相连使木条在下面顶住节点上部斜梁,在加载处节点贴上薄木片来增大接触面积,从而来增大节点强度,从而在结构受力计算时一些节点模拟成刚节点。 斜梁相交时,两根梁搭出榫结,用胶水加固,增大节点强度和刚度。 3、结构特色 这个名为漫步天下的结构是在我们制作结构对结构进行试验的多次循环反复而后的出来的结构,它凝聚了所有的试验所得的经验。它的优点: (1)从结构的外形上看,我们选择正三角形作为主体形状,受力均匀,加载方便,上宽下窄,形状渐随着高度逐渐变化,有活力。 (2)根据SAP2000软件建立的模型分析,可得出结构位移最大

工程量计算规则(地基处理)

工程量计算规则 一、地基处理。 1.填料加固按设计图示尺寸以体积计算。 2.地基强夯按设计图示强夯处理范围以面积计算。设计无规定时,按建筑物外围轴线每边各加4m计算。 3.低锤满拍按实际面积计算。 4.振冲桩按设计桩截面乘以桩长以体积计算。 5.沉管灌注砂石桩按设计桩顶至桩尖长度加超灌长度(设计没有明确的按)乘以设计桩截面积以体积计算,不扣除桩尖虚体积。 6.水泥搅拌桩: (1)深层水泥搅拌桩、双轴水泥搅拌桩、三轴水泥搅拌桩按设计桩长加(设计有明确的按设计长度)乘以设计桩外径截面积,以体积计算。 (2)空孔部分按设计桩顶标高到自然地坪标高减导向沟的深度(设计未明确时按1m考虑)以体积计算。(3)插拔型钢按设计图示尺寸以质量计算。 (4)水泥搅拌桩凿桩头按凿桩长度乘桩截面积以体积计算,套用第三章桩基础工程凿桩头灌注钢筋混凝土桩子目,其中,人工、机械乘以系数。 7.高压旋喷桩:设计桩长加上超灌长度计算。若设计未明确超灌长度的,桩的超灌长度按计算;凿桩头按凿桩长度乘桩截面积以体积计算,套用第三章桩基础工程凿桩头灌注钢筋混凝土桩子目,其中,人工、机械乘以系数。<勘误一> 8.注浆地基: (1)分层注浆钻孔数量按设计图示以钻孔深度计算。注浆数量按设计图纸注明加固土体的体积计算。(2)压密注浆钻孔数量按设计图示以钻孔深度计算。注浆数量按下列规定计算: ①设计图纸明确加固土体体积的,按设计图纸注明的体积计算。

②设计图纸以布点形式图示土体加固范围的,则按两孔间距的一半作为扩散半径,以布点边线各加扩散半径,形成计算的平面,计算注浆体积。 ③如果设计图纸注浆点在钻孔灌注桩之间,按两注浆孔的一半作为每孔的扩散半径,依此圆柱体积计算注浆体积。 二、基坑与边坡支护。 1.打、拔槽型钢板桩按单根钢板桩全长的理论重量乘以钢板桩根数以质量计算。 2.砂浆土钉、砂浆锚杆的钻孔、注浆,按设计文件或经批准的施工组织设计,按钻孔深度以长度计算。 3.有粘结预应力钢绞线按设计图示尺寸以锚固长度与工作长度的质量之和计算。 4.锚杆制作安装按锚杆长度以质量计算。 5.喷射混凝土支护区分有筋与无筋按设计文件或经批准的施工组织设计,以面积计算。 6.锚头制作、安装、张拉、锁定按设计图示以“套”计算。 7.木、钢挡土板按设计文件或经批准的施工组织设计规定的支档范围以面积计算。 8.袋土围堰按设计图示尺寸以体积计算。 9. 人工打圆木桩按设计长度及截面尺寸套相应的材积表以体积计算。<勘误一>

岩溶地区地基处理及稳定性分析

《现代工程地质学》 读书报告 岩溶地区 地基处理及稳定性分析 姓名:罗国才 学号:15121158 班级:硕1508班 专业:地质资源与地质工程 指导老师:王连俊教授

岩溶地区地基处理及稳定性分析 岩溶地区的地质构成常常会引起地基的不均与沉降、承载力不足以及地基的塌陷或滑动等严重破坏。而随着经济的发展,越来越多的建筑工程在岩溶地区展开,岩溶地基就成为了工程建设过程中最为突出、亟待解决的重要问题。 一、岩溶地区存在的工程地质问题 岩溶地区就是我们常说的喀斯特地貌,是硫酸盐岩、碳酸盐岩等可溶性的岩石在水的腐蚀和崩塌的作用下,产生的各种地质形态、作用和现象的统称。在这样的地区进行工程建设,建筑物的基础很容易遇到土洞、溶洞等不良的地质问题。这些天然的土洞和溶洞都是由能够溶于水的石灰岩组成的,由于石灰岩长期受到水的冲刷和溶蚀,石灰岩的结构出现变化,日积月累就会形成土洞和溶洞。这些天然的土洞和溶洞不管是大小还是分布都会造成工程建筑在设计和施工方面的重大影响。 在岩溶地区进行工程建筑,地基处理是工程施工中的难点,更是重点。以下是岩溶地区可能出现的工程地质问题。 (1)地基不稳及塌陷问题 由于地表的岩溶作用,石灰岩的表层会有溶沟发育,在这些发育的溶沟之间常常会残留尖棱状或者锥状的石芽,导致石灰岩地基出现高低不平的现象,从而形成石芽地基。此外,石芽间的溶沟会被土填充,所以具有较低的强度和较高的压缩性,容易引起建筑地基的不均匀沉降,从而无法保证建筑的稳定性。土洞地基和溶洞地基也容易在建筑物的荷重作用下产生塌陷,给建筑物造成严重的安全隐患。 (2)突水和渗漏问题 在岩溶地区,由于岩体中存在的缝隙、溶洞和管道,导致在地基基坑开挖或隧道开挖时,如果有承压水,那么很容易引起地下突水,从而导致地基基坑的排水困难,严重的还会把地基淹没。 影响岩溶地基稳定性的自身因素有:溶洞顶板的厚度和跨度,洞体完整程度和充填情况,岩体强度和产状分布,岩溶裂隙发育和。外部因素有:荷载大小和作用时间长度等。 二、岩溶地区的地基处理 岩溶地基变形破坏主要形式有地基承载力不足、不均匀沉降、地基滑动、地表坍塌等。

相关文档
最新文档