一些抗菌机制及其细菌抗药性

合集下载

常用抗菌药物机制

常用抗菌药物机制

常用抗菌药物机制
1.细胞壁合成抑制剂:包括β-内酰胺类抗生素、糖肽类抗生素、糖
类抗生素等。

这类抗菌药物通过抑制细菌细胞壁的合成来发挥抗菌作用。

细菌细胞壁在维持细菌形态、结构和稳定性方面起着重要的作用,抑制细
菌细胞壁的合成可导致细菌死亡。

其中,β-内酰胺类抗生素特别重要,
如青霉素、头孢菌素等,它们通过抑制细菌的革兰阳性和革兰阴性细菌细
胞壁的合成发挥抗菌作用。

2.蛋白质合成抑制剂:包括氯霉素、大环内酯类、四环素类等。

这些
抗菌药物通过选择性地与细菌的核糖体结合来阻断细菌蛋白质合成的过程,从而防止细菌的增殖和生长。

3.核酸合成抑制剂:包括氟喹诺酮类抗生素、磺胺类抗生素等。

这类
抗菌药物通过干扰细菌的核酸合成来发挥抗菌作用。

例如,氟喹诺酮类抗
生素通过抑制细菌DNA复制和转录过程中的酶的活性来抑制细菌的生长和
增殖。

4.细胞膜破坏剂:包括多粘菌素类抗生素、聚肽类抗菌肽等。

这些抗
菌药物能够与细菌的细胞膜相互作用,导致细胞膜的破裂和渗透性增加,
最终导致细菌的死亡。

5.酶抑制剂:包括β-内酰胺酶抑制剂等。

由于细菌的耐药机制普遍
存在,细菌通过产生一种名为β-内酰胺酶的酶来降解β-内酰胺类抗生素,从而使抗生素失去效力。

因此,开发β-内酰胺酶抑制剂已经成为一
种重要的策略,目的是通过抑制β-内酰胺酶的活性来恢复抗生素的活性。

抗菌药物作用机制与细菌耐药性

抗菌药物作用机制与细菌耐药性

抗菌药物作用机制与细菌耐药性抗菌药物是指能够杀死或抑制细菌生长的药物。

不同的抗菌药物具有不同的作用机制,但总的来说,抗菌药物通过以下几种方式发挥作用:1.干扰细菌细胞壁的合成:细菌的细胞壁对于细菌的存活和生长起着重要的作用。

许多抗菌药物,如β-内酰胺类抗生素,作用于细菌细胞壁的合成,导致细菌无法正常维持细胞壁的完整性,最终导致细菌死亡。

2.干扰细菌蛋白质合成:蛋白质是细菌生命活动的重要组成部分,对其合成的干扰可以使细菌无法正常生长和繁殖。

例如,青霉素类抗生素可以抑制革兰氏阳性菌的细胞壁合成,而红霉素可以抑制细菌蛋白质合成。

3.干扰细菌核酸合成:核酸是细菌内部的遗传物质,包括DNA和RNA。

一些抗菌药物可以与细菌的DNA或RNA结合,干扰其正常合成过程,阻止细菌的遗传信息的传递和复制。

例如,环丙沙星是一种广谱喹诺酮类抗生素,可以通过抑制细菌DNA的合成来发挥抗菌作用。

4.干扰细菌细胞膜的功能:细菌细胞膜对于细菌的存活和正常功能发挥起关键作用,因此,一些抗菌药物可以通过影响细菌细胞膜的结构和功能,引起细菌死亡。

例如,聚霉素B是一种抑制细菌细胞膜形成的抗生素,通过影响细菌细胞膜的通透性来杀死细菌。

细菌耐药性是指细菌通过自身的遗传变异或获得外源基因片段等途径,使得原本对抗菌药物敏感的细菌菌株变得对抗菌药物产生抗性的现象。

细菌耐药性的形成机制包括以下几个方面:1.靶点变异:细菌通过基因突变或重组等方式改变抗菌药物的作用靶点,使得抗菌药物无法与其结合,或者结合后无法发挥抗菌作用。

例如,青霉素类抗生素主要通过抑制细菌细胞壁合成发挥抗菌作用,而一些细菌可以通过改变靶点的结构或增加其生产量来降低抗生素的作用效果。

2.药物的降解或排出:细菌可以通过改变自身代谢途径,降解或排出抗菌药物,降低药物在细胞内的浓度,从而降低抗菌药物对细菌的杀菌效果。

例如,革兰氏阴性菌通过改变外膜渠道的蛋白结构或功能来限制抗生素进入细胞。

3.转移抗性基因:细菌可以通过水平基因转移的方式获得耐药性基因,这些基因可以来自其他细菌,也可以来自环境中其他微生物。

常见抗菌药的细菌耐药机制分析

   常见抗菌药的细菌耐药机制分析

常见抗菌药的细菌耐药机制分析常见抗菌药的细菌耐药机制分析抗菌药物在医疗领域中扮演着非常重要的角色,然而,随着时间的推移,越来越多的细菌出现了对抗菌药物的耐药性。

这对医疗行业和公共卫生带来了巨大的挑战。

深入了解常见抗菌药物的细菌耐药机制是理解和应对这一问题的关键。

1. β-内酰胺类药物的细菌耐药机制β-内酰胺类药物是一类常用的抗生素,如青霉素和头孢菌素。

细菌耐药性主要是通过产生β-内酰胺酶来实现的。

这些酶能够分解β-内酰胺类药物,使其失去抗菌活性。

另外,细菌还可以通过改变药物作用的靶点,如青霉素结合蛋白,来降低药物的亲和性。

2. 氨基糖苷类药物的细菌耐药机制氨基糖苷类药物包括庆大霉素和阿米卡星等。

细菌耐药主要是通过四种机制实现的:a) 细菌细胞膜通透性下降,减少药物进入细胞的量;b) 靶标蛋白的结构变异,导致药物与其结合的亲和性下降;c) 抗药性酶的产生,如氨基糖苷磷酸化酶和氨基糖苷酰转移酶,可改变药物的结构,从而使其失去活性;d) 负荷机制,细菌通过降低细胞外药物浓度来降低其对药物的敏感性。

3. 氟喹诺酮类药物的细菌耐药机制氟喹诺酮类药物是广谱抗生素,如氧氟沙星和左氧氟沙星。

细菌耐药性主要是通过目标突变和外排机制来实现的。

细菌通过改变靶标蛋白DNA旋转酶的结构来减少药物与其结合的能力,从而降低药物的抗菌活性。

此外,细菌还可以通过外排泵机制将药物排出细胞外,减少细胞内药物的浓度。

4. 糖肽类抗生素的细菌耐药机制糖肽类抗生素包括万古霉素和链霉素等。

细菌耐药性主要是通过改变靶标蛋白的结构来实现的。

细菌通过改变核糖体上的蛋白质结构,使得糖肽类抗生素无法与其结合,从而降低药物的抗菌活性。

5. 磷酸芘类抗生素的细菌耐药机制磷酸芘类抗生素包括利福霉素和克林霉素等。

细菌耐药性主要是通过目标修饰和靶标突变来实现的。

细菌通过修饰药物的目标位点,如目标蛋白表面的磷酸位点,从而降低药物与其结合的能力。

此外,细菌还可以通过突变目标位点的结构,使得药物无法与其结合,从而降低药物的抗菌活性。

抗菌药物作用机制与细菌耐药性

抗菌药物作用机制与细菌耐药性

抗菌药物作用机制与细菌耐药性导言抗菌药物是一类用于治疗细菌感染的药物,其作用机制包括抑制细菌生长和杀灭细菌。

然而,随着时间的推移,细菌对抗菌药物产生了耐药性,导致常规治疗变得无效。

细菌耐药性的出现与抗菌药物作用机制之间存在密切的关系。

本文将探讨抗菌药物的作用机制与细菌耐药性的原因及其对公共卫生的影响。

抗菌药物的作用机制抗菌药物通过多种机制对抗细菌感染。

下面列举了主要的作用机制:1. 细胞壁的破坏一类抗菌药物可以破坏细菌的细胞壁,如β-内酰胺类抗生素。

这些药物通过抑制细菌合成细胞壁所需的酶,导致细菌细胞壁的合成和修复受阻,最终导致细菌死亡。

2. 核酸的抑制一些抗菌药物可以抑制细菌核酸的合成,从而干扰其生长和繁殖。

例如,氟喹诺酮类抗生素可以与细菌DNA拓扑异构酶结合,阻断DNA 的正常复制和修复。

3. 蛋白质的合成抑制抗菌药物还可以通过干扰细菌的蛋白质合成来抑制其生长。

例如,氨基糖苷类抗生素可以结合细菌的核糖体,阻碍蛋白质的合成过程。

4. 代谢酶的抑制某些抗菌药物可以抑制细菌体内关键酶的活性,从而影响其代谢途径。

例如,磺胺类抗生素可以抑制细菌体内对二氢叶酸的合成,干扰细菌的新陈代谢。

细菌耐药性的原因细菌耐药性的出现是由一系列因素引起的,包括自然进化和人为原因。

1. 自然进化细菌具有很高的遗传变异率,使其能够适应不同的环境条件。

在大量抗菌药物使用的环境下,细菌可以经过基因突变或者水平基因转移来获得耐药性。

这些突变或基因传递事件可能导致细菌拥有对抗菌药物的特定机制或者获得外源性耐药基因。

2. 滥用和过度使用抗菌药物滥用和过度使用抗菌药物是细菌耐药性不断增加的主要原因之一。

当患者不按医嘱使用抗菌药物,或者医生过度开具抗菌药物时,细菌面临低浓度抗菌药物的压力,耐药菌株更容易出现。

此外,长期的低浓度抗菌药物暴露也会刺激细菌进化和耐药基因的传递。

3. 患者与抗菌药物的接触患者与抗菌药物的接触也会促使细菌耐药性的发展。

抗菌药物作用机制与细菌耐药性

抗菌药物作用机制与细菌耐药性
第二阶段 随着对细菌细胞壁的分离和粘肽组成的认
识开始,人们观察到在青霉素的作用下,细 菌细胞变成了球形,很类似受溶菌酶作用而 产生的原生质体,由此认为青霉素必定影响 了细胞壁的合成。Park及其同事则观察到受 抑制的葡萄球菌累积了尿核苷,推测这是由 于青霉素阻断了细菌细胞壁合成的某一步。
β-内酰胺类抗生素的作用机制
细菌细胞壁结构
在这三种细菌的细胞壁中都具有肽聚 糖组分,其由N-乙酰胞壁酸(Nacetylmuramic acid,NAM))和N-葡萄 糖胺(N-acetylglucosamine,NAG)。
NAM 和NAG紧密连接成线状,线与 线之间通过连接在NAM 和NAG上的内肽桥 的连接成片状(图),片与片的堆积成为 细胞壁的肽聚糖(图)。
TRC-1
2c(A II,IV 青霉素类 +
类)
羧苄青霉

- PSE-1、 PSE-3、
PSE-4
2d(D V 类)
青霉素 ± 邻氯青霉

OXA-1至 OXA-11、
PSE2(OXA10)
2e(A Ic 类)
头孢菌素 + 类
- 普通变形杆 菌的诱 导性头 孢菌素 酶
2f(A 未包括 青霉素类、 + - 阴沟肠杆菌
分类
底物
抑制剂
基因定位
I
头孢菌素类
邻氯青霉素
染色体
II
青霉素类
邻氯青霉素和 染色体
棒酸
III
青霉素类和头 邻氯青霉素和 质粒
孢菌素类
棒酸
IV
青霉素类和头 对-氯汞苯甲酸 染色体
孢菌素类
酯和棒酸
V
青霉素类
棒酸
质粒

抗菌药物的作用机制及细菌耐药性机制的研究进展

抗菌药物的作用机制及细菌耐药性机制的研究进展

抗菌药物的作用机制及细菌耐药性机制的研究进展(一)自1940年青霉素问世以来,抗生素的开发与研究取得了迅速的发展。

最初在土壤样品中寻找新品种,从微生物培养液中提取抗生素,继而开创了用化学方法全合成或半合成抗生素。

β-内酰胺类抗生素品种经历了青霉素、半合成青霉素及头孢菌素等的飞跃发展;20世纪70年代末喹诺酮抗菌药物的问世及其新的衍生物的不断研究与开发,使该类药物的抗菌谱扩大和抗菌作用的增强;其他如氨基糖甙类及大环内酯类经过结构改造,各自均有新品种问世。

随着抗生素研究的进展其作用原理及细菌的耐药机制的研究业已深入到分子生物学水平。

1 β-内酰胺类抗生素β-内酰胺类抗生素的作用机制β-内酰胺类抗生素为高效杀菌剂,对人的毒性极小,(过敏除外)。

β-内酰胺类抗生素按其结构分为青霉烷、青霉烯、氧青霉烷、氧青霉烯、碳青霉烷、碳青霉烯、头孢烯、碳头孢烯、单环β-内酰胺(氮杂丁烷酮)等十类。

其作用机制主要是阻碍细菌细胞壁的合成,导致胞壁缺损、水分内渗、肿胀、溶菌。

而哺乳动物真核细胞无细胞壁,故不受影响。

细菌具有特定的细胞壁合成需要的合成酶,即青霉素结合蛋白(Penicillin binding proteins,PBP)当β-内酰胺类抗菌药物与PBP结合后,PBP便失去酶的活性,是细胞壁的合成受到阻碍,最终造成细胞溶解、细菌死亡。

PBP按分子量的不同可分为五种:每种又有若干亚型,这些PBP存在于细菌细胞的质膜中,对细菌细胞壁的合成起不同的作用。

β-内酰胺类抗生素的抗菌活力,一是根据与PBP亲和性的强弱,二是根据其对PBP 及其亚型的选择即对细菌的作用特点而决定的。

同是β-内酰胺类抗生素的青霉素、头孢菌素和碳青霉烯类,对PBP的亲和性是不同的。

β-内酰胺类抗生素通过与这些PBP的结合阻碍其活性而显示抗菌活性。

MIC90的值可间接反映抗生素与PBP的亲和性。

细菌对β-内酰胺类抗生素产生耐药性的作用机制随着β-内酰胺类抗生素的广泛大量使用,对β-内酰胺类抗生素耐药的细菌越来越多,其耐药机制涉及以下四个途径:细菌产生β-内酰胺酶产生β-内酰胺酶使β-内酰胺类抗生素开环失活,这是细菌对β-内酰胺类抗生素产生耐药的主要原因。

简述抗菌药作用机制

简述抗菌药作用机制抗菌药是一类用于治疗和预防细菌感染的药物,其作用机制多种多样,主要针对细菌的特定结构和功能进行干扰或破坏,从而达到抑制或杀灭细菌的目的。

以下是抗菌药常见的几种作用机制:1. 干扰细胞壁合成细菌的细胞壁主要由肽聚糖构成,是细菌的重要保护结构。

抗菌药通过干扰细胞壁的合成,降低细胞壁的坚韧性,导致细菌细胞壁缺损,细菌水分由外环境不断渗入高渗的菌体内,致细菌膨胀,变形死亡。

常见的这类药物有β-内酰胺类、万古霉素等。

2. 损伤细胞膜细菌的细胞膜是由磷脂双分子层构成的膜结构,具有选择透过性,控制着细胞内外物质的运输和能量转换。

抗菌药通过破坏细胞膜的完整性或抑制其功能,导致细菌内外物质交换受阻,能量代谢失调,生长受到抑制甚至死亡。

例如,阳离子抗菌药和某些表面活性剂、染料等能插入磷脂分子间的疏水结合部或嵌入膜的亲水层,使膜结构破坏,导致细胞死亡。

3. 干扰蛋白质合成细菌的蛋白质合成需要多种酶的参与,抗菌药通过抑制这些酶的活性或干扰蛋白质合成的其他环节,使细菌不能正常合成蛋白质,从而抑制细菌的生长和繁殖。

例如,大环内酯类、林可霉素等通过与核糖体不可逆结合,干扰延长因子G的功能而抑制细菌蛋白质的合成。

又如四环素类抗生素能抑制氨基酰-tRNA与核糖体A位上的结合,影响肽酰-tRNA的移位和多肽链的延长。

4. 抑制核酸合成核酸是细菌生长和繁殖的基础,抗菌药通过抑制核酸的合成,影响DNA复制、转录和翻译等过程,从而抑制细菌的生长和繁殖。

例如喹诺酮类抗菌药主要通过抑制DNA回旋酶和拓扑异构酶Ⅳ的活性,导致DNA复制受阻,抑制细菌的生长。

又如磺胺类药物能抑制二氢叶酸合成酶活性,使二氢叶酸不能转变为四氢叶酸,后者是合成核酸分子的必需物质,因此抑制了核酸的合成。

5. 破坏细胞壁自溶某些细菌在生长过程中会释放自溶素,诱导自身死亡。

抗菌药可以抑制自溶素的产生或者激活自溶系统,使细菌自溶或被机体免疫防御系统所清除。

例如青霉素可抑制细菌细胞壁的自溶酶的活性而使细菌自溶或细胞壁水解。

细菌耐药的机制

细菌耐药的机制
细菌耐药的机制
一、细菌耐药机制
细菌耐药是指细菌可以耐受一定剂量的抗菌药物而不被杀灭的能力,这种能力来源于细菌本身的一种机制或方式,耐药机制的研究对于抗菌药物的开发与使用具有重要意义。

细菌耐药机制主要包括以下几种:
1、药物代谢:抗生素经过细菌代谢,获得降解产物,从而抑制抗生素的活性,抗生素被细菌代谢降解的过程称为药物代谢。

2、膜抗性:抗生素被细菌细胞膜所吸收抑制,从而减弱抗生素的作用,这种机制称为膜抗性。

3、非特异性阻断:抗生素可能破坏细菌活性结构,从而降低抗生素的活性,这种机制称为非特异性阻断。

4、合成阻断:抗生素可能阻断细菌的基因表达,防止细菌的抗药性基因表达,这种机制称为合成阻断。

5、自噬阻断:抗生素可能破坏细菌的自噬机制,使得细菌无法抵抗外在环境的侵害,这种机制称为自噬阻断。

二、细菌耐药的对策
细菌耐药对医学上的治疗具有重要意义,但是细菌耐药正在越来越成为一个问题,为了在治疗过程中有效避免细菌耐药的发生,应当采取以下几种措施:
1、合理使用抗生素:应当避免过度使用抗生素,减少耐药菌的
繁殖和传播,尽量使用广谱的抗生素。

2、药物杂交:不同类型的抗生素可以形成杂交,增强抗菌作用,可以有效减少耐药菌的繁殖。

3、抗菌的技术:通过“联合抗菌疗法”,结合多种抗菌药物及各种抗菌技术,有效限制耐药菌的繁殖。

4、定期监测:定期监测病原体的抗药性,及时筛查耐药菌的类型和分布,根据耐药性及时调整抗生素的类型及剂量。

5、抗菌药物的开发:抗菌药物的新型药物的开发是一项重要的研究,以满足复杂的耐药菌的治疗要求。

归纳总结抗菌药物的作用机制

归纳总结抗菌药物的作用机制
抗菌药物是用于杀死或抑制细菌生长的药物,其作用机制多种多样,主要可以分为以下几类:
抑制细菌细胞壁合成:一些抗菌药物通过抑制细菌细胞壁的合成来达到杀菌作用,如青霉素类、头孢菌素类等。

这些药物通过与细菌细胞壁上的靶点结合,抑制细胞壁的合成,使细菌细胞壁缺损,水分由外环境不断渗入高渗的菌体内,致细菌膨胀变形死亡。

增加细菌细胞壁自溶酶的活性:一些抗菌药物通过增加细菌细胞壁自溶酶的活性来杀菌,如溶菌酶、自溶菌等。

这些药物可以激活细菌细胞壁自溶酶,使细菌自行溶解死亡。

抑制细菌DNA合成:一些抗菌药物通过抑制细菌DNA的合成来杀菌,如喹诺酮类、磺胺类等。

这些药物可以干扰细菌DNA的复制和转录,导致细菌无法正常生长繁殖而死亡。

干扰细菌蛋白质合成:一些抗菌药物通过干扰细菌蛋白质的合成来杀菌,如大环内酯类、氨基糖苷类等。

这些药物可以干扰细菌蛋白质合成的各个环节,导致细菌无法正常生长繁殖而死亡。

抑制细菌RNA合成:一些抗菌药物通过抑制细菌RNA的合成来杀菌,如四环素类、氯霉素类等。

这些药物可以干扰细菌RNA的合成,导致细菌无法正常生长繁殖而死亡。

综上所述,抗菌药物的作用机制多种多样,主要通过干扰或抑制细菌生长繁殖的相关过程来实现杀菌作用。

在临床应用中,需要根据不同抗菌药物的特性以及患者病情选择合适的药物进行治疗。

细菌耐药性产生的机理

细菌耐药性产生的机理
1、细菌产生破坏药物结构的灭活酶。

该耐药细菌常常可以产生一种或多种灭活酶或钝化酶来水解或修饰进入细菌细胞内的药物,使之失去生物活性,这是引起细菌耐药性的最重要的机制。

2、靶位的改变。

药物作用靶位改变后会使其失去作用位点,从而使药物失去作用。

3、细菌生物被膜的形成。

这类细菌群体耐药性极强,可以逃避宿主免疫作用,且感染部位难以彻底清除,是临床上难治性感染的重要原因之一。

4、阻碍抗菌药向细菌内的渗透。

细菌细胞壁的障碍或细胞膜通透性的改变,使抗菌药无法进入细胞内达到作用靶位而发挥抗菌效能,这是细菌自身的一种防卫机制。

5、主动外排系统(外排泵)。

细菌细胞膜上存在一类蛋白,可将药物选择性或非选择性地排出细菌细胞外,从而使达到作用靶位的药物浓度明显降低而导致耐药。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抑制细菌细胞壁合成的各类抗生素的作用机制的主要区别
β-内酰胺类抗生素:青霉素——转肽酶
糖肽类抗生素:万古霉素——转糖基和转肽反应
磷霉素——UDP-NAG转移酶
杆菌肽——焦磷酸酶
D-环丝氨酸,邻甲氨酰-D-丝氨酸
——丙氨酸消旋酶和合成酶
作用位点和机制是不同的
抑制细菌蛋白质合成的各类抗生素的作用机制的主要区别
氨基糖苷类:链霉素——30S小亚基,全程
大环内酯类:红霉素——50S大亚基,抑制组装和肽酰转移酶(移位)
四环素类:四环素——30S小亚基,抑制氨基酰tRNA进入A位(进位)
氯霉素——50S大亚基,抑制肽酰转移酶(转肽,即延伸)
甾类:羧链孢酸——延伸因子EF-G,抑制延长(移位)
嘌呤霉素——肽酰-tRNA,(进位)
莫匹罗星——异亮氨酰RNA合成酶
作用位点和机制是不同的
利福霉素类抗生素的作用机制及细菌耐药性
通过抑制RNA聚合酶的活性,来干扰细菌DNA的正常转录,从而达到抗菌的目的。

利福霉素与RNA聚合酶的β亚基形成不可逆的复合物来干扰转录。

由于依赖于DNA的RNA多聚酶β亚基的氨基酸发生变异。

细菌生物被膜的形成机制
1)条件膜的沉积
主要涉及体液中各种糖蛋白、粘多糖、金属离子等的吸附
(2)细菌的初始到达及吸附
指在钠、镁等阳离子的介导下的细菌对植入物表面的吸附
(3)细菌的生长繁殖
指细菌的吸附、生长、繁殖及扩散
(4)生物被膜的形成
细菌程序性的表达并分泌细胞外蛋白多糖(EPS),不断形成微菌落,最终联合成为成熟的生物被膜的过程。

(5)细菌的分散及持续性感染
细菌生物被膜的抗性机制
(1)细菌生物被膜对抗生素的耐药性机制
①渗透限制:细菌生物被膜的屏障作用
②细菌生物被膜环境的不均一性:微环境改变
(2)细菌生物被膜的抗免疫清除机制
①细菌生物被膜的屏蔽作用
②免疫复合物效应
简要阐述多烯类抗真菌抗生素的作用机制与真菌耐药性机制。

抗生素发挥作用时首先与真菌细胞膜上的重要成分麦角甾醇(ergosterol)结合,其结合程度与膜内甾醇含量成正比。

结合后生成的膜——抗生素复合物,使细胞质膜结构发生改变,在膜脂质双层中形成由多烯大环内酯抗生素与甾醇结合的环状化合物,构成亲水通道,致使细胞内容物向胞外泄漏。

所泄漏的物质种类与抗生素的性质、浓度及作用时间有关,如钾离子、无机磷、有机磷、氨基酸、磷酸酯直至核酸、蛋白等,从而产生杀菌作用。

耐药性的产生是由于麦角甾醇的生物合成途径受阻
①耐药性的高低与细胞膜中累积的麦角甾醇中间体的种类有关
②细胞膜中的麦角甾醇结构发生了改变
简要阐述棘白菌素类(芬净类)抗真菌抗生素的作用机制与真菌耐药性机制
非竞争性的抑制真菌细胞壁中β-1,3-葡聚糖合成酶的活性,进而引起真菌细胞壁的裂解以及细胞内外渗透压的改变从而将真菌细胞彻底杀死。

FKS1基因发生突变的菌株,其对脂肽类抗菌药物的耐受性非常高(比敏感菌高十倍以上)。

FKS2基因发生突变的菌株,其不影响对药物的敏感性。

推测酿酒酵母对脂肽类抗真菌药物的耐药机制主要是FKS1基因的改变所致,这一基因编码的蛋白是真菌细胞壁葡聚糖合成酶的主要成分,也是药物作用的主要靶位。

阳离子多肽的两个显著特征是什么?
一是根据组成多肽分子的精氨酸和赖氨酸的数量,这些多肽具有至少一个净的二价正电荷,这些氨基酸在自然pH条件下都带有正电荷;
二是这些带有正电荷的多肽能够在与细菌质膜发生作用时折叠成三维空间结构,从而可以形成由一个非极性氨基酸侧链组成的疏水面,和另外一个由极性氨基酸残基和带有正电荷氨基酸残基组成的亲水面。

各种多肽在氨基酸组成、多少和与细胞质膜发生作用后所形成的三维结构上差距甚大。

阳离子多肽的作用机制是什么?
细胞膜是抗菌肽的主要作用靶点,多肽通过肽-膜脂作用而在细胞膜上形成孔道:
造成细胞膜结构破坏
膜内外电压失衡
内容物泄漏
最终导致细胞死亡
试通过原核生物和真核生物细胞膜的差异来解释抗菌肽的选择性杀伤机制。

原核生物和真核生物细胞膜最主要的区别在于其脂质的组成和排列:
哺乳动物细胞膜外层脂质为其所特有的呈电中性的两性磷脂,主要是卵磷脂和鞘磷脂。

细菌细胞膜则含有大量的带有负电荷的磷脂(如磷脂酰甘油和心磷脂),且有时其含量会超过50%,使其必然暴露于细胞外膜。

此外,革兰氏阴性菌细胞壁主要由带大量负电荷的脂多糖组成。

简述蒽环类抗肿瘤抗生素的结构特征和作用机制。

蒽环类:蒽环+六元环+氨基糖
影响DNA的空间结构,抑制DNA和RNA的合成。

抑制核内拓扑异构酶的活力,导致DNA双链或单链断裂。

影响线粒体的结构和功能,使线粒体的氧耗及ATP形成减少。

具有形成超氧基自由基的功能,并有特殊破坏细胞膜结构和功能的作用。

简述丝裂霉素C的结构特征和作用机制。

苯醌、氨甲酰基、环乙亚胺基三种有效基团
(1)通过与DNA交联,作为一种强效的细胞毒损伤物质。

(2)生物还原性药物活性:丝裂霉素C作为原型起作用。

简述烯二炔类抗肿瘤抗生素的结构特征和作用机制。

烯二炔类抗生素切断DNA的作用涉及到这类抗生素与DNA双螺旋小沟的结合,其活化形式必须先经过Bergman重排反应形成芳香双自由基活性物质。

在DNA小沟中的双自由基接近两根链的糖-磷酸骨架。

通过双自由基,同时从相对链的糖上夺取氢原子从而导致双链的断裂。

相关文档
最新文档