2020年四川省成都市成华区中考数学二诊试卷

合集下载

2020年四川省成都市中考数学二诊试卷

2020年四川省成都市中考数学二诊试卷

中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.在,0,-1,π这四个数中,最大的数是()A. B. π C. 0 D. -12.下列汽车标志中,既是轴对称又是中心对称图形的是()A. B.C. D.3.举世瞩目的港珠澳大桥工程总投资约726亿元,用科学记数法表示726亿元正确的是()A. 72.6×109元B. 7.26×1010元C. 0.726×1011元D. 7.26×1011元4.如图是由4个完全相同的小正方体组成的立体图形,则它的俯视图是()A. B. C. D.5.下列运算正确的是()A. x3+x3=2x6B. x8÷x2=x4C. x m•x n=x m+nD. (-x4)5=x206.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A. 众数是90B. 中位数是90C. 平均数是90D. 极差是157.由于国家出台对房屋的限购令,某市2017年3月平均房价为每平方米15500元,连续两年降价后,2019年同期平均房价为每平方米12000元,设这两年平均房价年平均下跌的百分率为x,根据题意,下面所列方程正确的是()A. 15500(1+x)2=12000B. 15500(1-x)2=12000C. 12000(1+x)2=15500D. 12000(1-x)2=155008.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的周长为()A. 16B. 20C. 12D. 249.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=()A. 3B.C.D.10.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()A. abc>0B. 2a+b=1C. 4a+2b+c<0D. 对于任意x均有ax2+bx≥a+b二、填空题(本大题共9小题,共36.0分)11.函数y=中自变量x的取值范围是______.12.如图,∠1=80°,∠2=80°,∠3=84°,则∠4=______.13.观察下列等式(式子中“!”是一种数学运算符号,n是正整数):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…计算=______.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(3a,4a+5),则a的值为______.15.若x1,x2是方程x2-2x-4=0的两个不相等的实数根,则代数式的值2x12-2x1+x22-3为______.16.数学学霸甲、乙两人在一次解方程组比赛中,甲求关于x、y的方程组的正确解与乙求关于x、y的方程组的正确的解相同,则的值为______.17.直线y=x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC,反比例函数y=(x<0)的图象过点C,则m=______.18.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).则的值为______.19.将一张圆形纸片,进行了如下连续操作(1)将圆形纸片左右对折,折痕为AB,如图(2)所示(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示(4)连结AE、AF,如图(5)所示,则S△AEF:=______.三、计算题(本大题共1小题,共6.0分)20.先化简,再求值:,其中a=-2,b=2四、解答题(本大题共8小题,共72.0分)21.(1)计算:-22++|tan60°-2|+(π-)0(2)解不等式组:,并把解集在数轴上表示出来.22.如图,大楼AB高18米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD及大楼与塔之间的距离BD的长(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)23.某校的一个数学兴趣小组在本校学生中开展主题为“交通规则知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学生共有______人;(2)将扇形统计图和条形统计图补充完整;(3)在“非常了解”的调查结果里,初一年级学生共有4人,其中3男1女,在这4人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学恰好都是男同学的概率?24.已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(4,m),点B的坐标为(n,﹣4),tan∠BOC=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E,使得△BCE的面积是△BCO的面积的一半,求出点E的坐标25.如图,在△ABC中,BC为⊙O的直径,AB交⊙O于点D,DE⊥AC,垂足为点E,延长DE交BC的延长线于点F,若∠A=∠ABC(1)求证:BD=AD;(2)求证:DF是⊙O的切线;(3)若⊙O的半径为6,sin∠F=,求DE的长.26.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.27.在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:=______,并结合图②证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)28.如图,在△OAB中,AO=AB,∠OAB=90°,点B坐标为(10,0).过原点O的抛物线,又过点A和G,点G坐标为(7,0).(1)求抛物线的解析式;(2)边OB上一动点T(t,0),(T不与点O、B重合)过点T作OA、AB的垂线,垂足分别为C、D.设△TCD的面积为S,求S的表达式(用t表示),并求S 的最大值;(3)已知M(2,0),过点M作MK⊥OA,垂足为K,作MN⊥OB,交点OA于N.在线段OA上是否存在一点Q,使得Rt△KMN绕点Q旋转180°后,点M、K恰好落在(1)所求抛物线上?若存在请求出点Q和抛物线上与M、K对应的点的坐标,若不存在请说明理由.答案和解析1.【答案】B【解析】解:∵,最大的数是π,故选:B.题中只有2个正数,比较两个正数的大小,找到最大的数即可.考查实数的比较;用到的知识点为:0大于一切负数;正数大于0;注意应熟记常见无理数的约值.2.【答案】A【解析】解:A、既是轴对称又是中心对称的图形,故本选项正确;B、是轴对称,不是中心对称的图形,故本选项错误;C、是轴对称,不是中心对称的图形,故本选项错误;D、是轴对称,不是中心对称的图形,故本选项错误.故选:A.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:726亿=72600 000 000,用科学记数法表示时n=10,∴72600 000000=7.26×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:根据题意,从上面看原图形可得到,故选:C.直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.本题主要考查了简单组合体的三视图的知识,俯视图是从上往下看得到的平面图形.5.【答案】C【解析】解:A、x3+x3=2x3,故本选项错误;B、x8÷x2=x6,故本选项错误;C、x m•x n=x m+n,故本选项正确;D、(-x4)5=-x20,故本选项错误.故选:C.根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.本题考查同底数幂的除法,合并同类项,幂的乘方.题目比较简单,解题需细心.6.【答案】C【解析】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95-80=15;故D正确.综上所述,C选项符合题意,故选:C.根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.7.【答案】B【解析】解:设这两年平均房价年平均下降率为x,根据题意得:15500(1-x)2=12000.故选:B.首先根据题意可得2019年的房价=2018年的房价×(1-下降率),2018年的房价=2017年的房价×(1-下降率),由此可得方程15500(1-x)2=12000.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:若变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.【答案】B【解析】解:∵∠B=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=5,∴正方形ACEF的边长为5,∴正方形ACEF的周长为20,故选:B.据已知可求得△ABC是等边三角形,从而得到AC=AB,从而求出正方形ACEF的边长,进而可求出其周长.本题考查菱形与正方形的性质,属于基础题,对于此类题意含有60°角的题目一般要考虑等边三角形的应用.9.【答案】C【解析】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,∴AN=CN,AM=BM,∴BC=2MN,∵MN=,∴BC=2,故选:C.根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.10.【答案】B【解析】解:A.∵函数图象开口朝上,∴a>0对称轴为x=1,即=1,∴b<0,又函数与y轴的交点在负半轴,故c<0.因此abc>0,故A正确;B.由函数对称轴为-=1,得2a+b=0.故B错误;C.当x=2时,由图知:y=ax2+bx+c=4a+2b+c<0.故C正确;D.由函数图象,当x=1时,函数y=a+b+c取得最小值,∴ax2+bx+c≥a+b+c即ax2+bx≥a+b.故选:B.本题根据二次函数的图象与系数的关系逐一判断,可得出答案.本题考查二次函数图象与系数的关系,理解清楚二次函数的基本性质对于此类题尤为重要,另外要善于从函数图象中读取信息.11.【答案】x≤5且x≠1【解析】解:根据题意得,所以x≤5且x≠1.故答案为x≤5且x≠1.利用分式有意义的条件和二次根式有意义的条件得到,然后解不等式即可.本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.12.【答案】96°【解析】解:∵∠1=80°,∠2=80°,∴∠1=∠2,∴a∥b,∴∠3+∠4=180°,∵∠3=84°,∴∠4=96°.故答案为:96°.直接利用平行线的判定方法得出a∥b,再利用平行线的性质得出答案.此题主要考查了平行线的判定与性质,正确掌握平行线的性质是解题关键.13.【答案】n2-n【解析】解:原式==n(n-1)=n2-n,故答案为n2-n,.根据题目给出的运算法则,代入分式计算即可.本题考查了分式的运算,读懂题意按照题目中的运算法则解题是关键.14.【答案】-【解析】解:由作法得OP平分∠MON,即点P在第二象限的角平分线上,所以3a+4a+5=0,所以a=-.故答案为-.根据基本作图可判断OP平分∠MON,则利用第二象限的角平分线上点的坐标特征得到3a+4a+5=0,然后解关于a的方程即可.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.【答案】13【解析】解:∵x1,x2是方程x2-2x-4=0的实数根∴x12-2x1-4=0,x22-2x2-4=0,∴x12=2x1+4,x22=2x2+4,∴2x12-2x1+x22-3=2(2x1+4)-2x1+2x2+4-3=2(x1+x2)+9,∵x1+x2=2,∴2x12-2x1+x22-3=2×2+9=13.故答案为13.先利用一元二次方程根的定义得到x12=2x1+4,x22=2x2+4,则2x12-2x1+x22-3可化为2(x1+x2)+9,然后根据根与系数的关系得到x1+x2=2,从而利用整体代入的方法可计算出代数式的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.16.【答案】2【解析】解:联立得:,解得:,代入得:,解得:,则原式=1+1=2.故答案为:2联立不含a与b的方程求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.17.【答案】-【解析】解:如图,过C点作CD⊥x轴于D,CE⊥y轴于E,∵y=x+3,∴令x=0,得y=3;令y=0,得x+3=0,解得x=-6,∴A点坐标为(-6,0),B点坐标为(0,3),在Rt△OAB中,OA=6,OB=3,∴AB==3,∵△ACB为等腰直角三角形,∴∠ACB=90°,CA=CB=AB=,而∠DCE=90°,∴∠ACD=∠BCE,∴Rt△ACD≌Rt△BCE,∴CD=CE,∴四边形CDOE为正方形,∴正方形CDOE的面积=四边形CAOB的面积=S△CAB+S△OAB=CA•CB+OA•OB=××+×6×3=,∴CD=CE=,∴C点坐标为(-,),把C(-,)代入y=,得m=-×=-.故答案为-.过C点作CD⊥x轴于D,CE⊥y轴于E,先确定A点坐标为(-6,0),B点坐标为(0,3),再利用勾股定理计算出AB=3,然后根据等腰三角形的性质得到∠ACB=90°,CA=CB=AB=,由于∠DCE=90°,根据等角的余角相等得到∠ACD=∠BCE,易证得Rt△ACD≌Rt△BCE,则CD=CE,得到四边形CDOE为正方形,并且正方形CDOE的面积=四边形CAOB的面积,再计算出四边形CAOB的面积=S△CAB+S△OAB=CA•CB+OA•OB=,则CD=CE=,可确定C点坐标为(-,),然后把C点坐标代入反比例函数解析式即可得到m的值.本题考查了反比例函数图象上点的坐标特征;运用待定系数法确定反比例函数的解析式;直线与坐标轴的交点坐标求法;等腰直角三角形和正方形的性质;全等三角形的判定与性质;勾股定理等知识.综合性较强,有一定难度.求出C点坐标是解题的关键.18.【答案】【解析】解:由拼图前后的面积相等得:[(x+y)+y]y=(x+y)2,可得:x2+xy-y2=0,解得:x==y(负值不合题意,舍去),则x=y,故==.故答案为:.已知中的①和②,③和④形状大小分别完全相同,结合图中数据可知①④能拼成一个直角三角形,②③能拼成一个直角三角形,并且这两个直角三角形形状大小相同,利用这两个直角三角形即可拼成矩形;利用拼图前后的面积相等,可列:[(x+y)+y]y=(x+y)2,整理即可得到答案.本题主要考查了图形的剪拼,培养了学生动手能力,题型由正方形变成矩形,逆向思维,难点是求x的值.19.【答案】3:2π【解析】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,连接ME,如图所示:则ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,设圆的半径为r,则MN=r,EN=r,∴EF=2EN=r,AN=r+r=r,∴S△AEF:S圆=(×r×r):πr2=3:2π;故答案为:3:2π.由折叠的性质可得∠BMD=∠BNF=90°,证得CD∥EF,再根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,连接ME,求出∠MEN=30°,再求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,由三角形的外角性质求出∠AEM=30°,得到∠AEF=60°,同理求出∠AFE=60°,判定△AEF是等边三角形,设圆的半径为r,求出MN=r,EN=r,然后求出AN、EF,再根据三角形的面积公式与圆的公式列式整理即可得出结果.本题三角形综合题目,主要考查了翻折变换的性质,平行线的判定,垂径定理,等边三角形的判定与性质,三角形面积公式以及圆的面积公式等知识;理解折叠的方法,证明△AEF是等边三角形是解题关键.20.【答案】解:原式=÷=•=,当a=-2,b=2时,原式==.【解析】根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.【答案】解:(1)原式=-4+2+2-+1=-1;(2),由①得,x≥-2,由②得,x<3,所以,不等式组的解集为:-2≤x<3,在数轴上表示如下:.【解析】(1)分别根据整数指数幂、根式的化简、绝对值的性质、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.【答案】解:过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=18米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,∵在Rt△BCD中,tan∠CBD=,∴CD=BD tan 38.5°≈0.8x,∵在Rt△ACE中,tan∠CAE=,∴CE=AE tan 22°≈0.4x,∵CD-CE=DE,∴0.8x-0.4x=18,∴x=45,即BD=45(米),CD=0.8×45=36(米),答:塔高CD是36米,大楼与塔之间的距离BD的长为45米.【解析】过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,分别在Rt△BCD中和Rt△ACE 中,用x表示出CD和CE=AE,利用CD-CE=DE得到有关x的方程求得x的值即可.本题考查的是解直角三角形的应用-仰角俯角问题,解答此题的关键是作出辅助线,构造出直角三角形,利用直角三角形的性质进行解答.23.【答案】100【解析】解:(1)根据题意得:30÷30%=100人;故答案为:100;(2)D等级人数为100×10%=10(人),C等级人数为100-(30+40+10)=20(人),B等级百分比为×100%=40%,C等级百分比为×100%=20%,如图(3)列表如下:∵共有12种等可能的结果数,其中恰好都是男同学的结果数有6种,∴P(都是男同学)==.(1)由A等级人数及其所占百分比可得总人数;(2)总人数乘以D对应百分比求得其人数,继而由各等级人数之和等于总人数求出C的人数,利用百分比的概念求出B、C的百分比,从而补全图形;(3)列表得出所有等可能结果,找到符合条件的结果数,利用概率公式求解可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)作BD⊥x轴于D,垂足为D,∵B(n,-4),∴BD=4,在Rt△OBD中,,即,故OD=10,∴B(-10,-4),∴k=x B y B=40,∴反比例函数的解析式为;当x=4时,y=10,∴A(4,10)B(-10,-4)代入y=ax+b中,∴,解得,∴一次函数的解析式为y=x+6;(2)由y=x+6得C(-6,0),即OC=6,∵,,∴,即|x E-x C|=3,∴x E+6=±3,解得x E=-3或x E=-9,∴点E的坐标为(-3,0)或(-9,0).【解析】(1)作BD⊥x轴于D,可得BD=4,根据正切的定义求出OD,得出点B的坐标,运用待定系数法即可得出反比例函数的解析式;再根据反比例函数的解析式求出点A的坐标,由A、B两点的坐标即可求出一次函数的解析式;(2)由y=x+6得C(-6,0),即OC=6,再根据△BCE的面积是△BCO的面积的一半以及三角形的面积公式即可求出点E的坐标.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.【答案】(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵∠A=∠ABC,∴AC=BC,∴BD=AD;(2)证明:∵∠A=∠B,∠AED=∠BDC=90°,∴∠ADE=∠DCO,∵OC=OD,∴∠DCO=∠CDO,∴∠CDO=∠ADE,∵∠ADE+∠CDE=90°,∴∠CDO+∠CDE=90°,∴∠ODF=90°,∴DF是⊙O的切线;(3)在Rt△DOF中,∵sin∠F==,∴OF=10,CF=10-6=4,DF==8,∵∠DEA=∠ODF=90°,∴OD∥AC,∴△CEF∽△ODF,∴=,∴=,解得:DE=4.8.【解析】(1)根据圆周角定理得到∠BDC=90°,根据等腰三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠DCO=∠CDO,求得∠CDO=∠ADE,于是得到结论;(3)根据三角函数的定义得到OF=10,CF=10-6=4,DF==8,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,相似三角形的判定和性质,解直角三角形,圆周角定理,熟练掌握切线的判定和性质定理是解题的关键.26.【答案】解:(1)设y1与x的关系式y1=kx+b,由表知,解得k=-20,b=1500,即y1=-20x+1500(0<x≤20,x为整数),(2)根据题意可得,解得11≤x≤15,∵x为整数,∴x可取的值为:11,12,13,14,15,∴该商家共有5种进货方案;(3)解法一:y2=-10(20-x)+1300=10x+1100,令总利润为W,则W=(1760-y1)x+(20-x)×[1700-(10x+1100)]=30x2-540x+12000,=30(x-9)2+9570,∵a=30>0,∴当x≥9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大=10650;解法二:根据题意可得B产品的采购单价可表示为:y2=-10(20-x)+1300=10x+1100,则A、B两种产品的每件利润可分别表示为:1760-y1=20x+260,1700-y2=-10x+600,则当20x+260>-10x+600时,A产品的利润高于B产品的利润,即x>=11时,A产品越多,总利润越高,∵11≤x≤15,∴当x=15时,总利润最高,此时的总利润为(20×15+260)×15+(-10×15+600)×5=10650.答:采购A种产品15件时总利润最大,最大利润为10650元.【解析】(1)设y1与x的关系式y1=kx+b,由表列出k和b的二元一次方程,求出k和b的值,函数关系式即可求出;(2)首先根据题意求出x的取值范围,结合x为整数,即可判断出商家的几种进货方案;(3)令总利润为W,根据利润=售价-成本列出W与x的函数关系式W=30x2-540x+12000,把一般式写成顶点坐标式,求出二次函数的最值即可.本题主要考查二次函数的应用的知识点,解答本题的关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润,此题难度一般.27.【答案】(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,,∴△BOG≌△POE(ASA);(2)证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即;故答案为;(3)解:如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.由(2)同理可得BF=BM,∠MBN=∠EPN,∴△BMN∽△PEN,∴.在Rt△BNP中,tanα=,∴=tanα.即=tanα.∴tanα.【解析】(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE;(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.则可求得的值;(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得.此题考查了正方形的性质、菱形的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的定义等知识.此题综合性很强,难度较大,注意准确作出辅助线是解此题的关键,注意数形结合思想的应用.28.【答案】解(1)∵△OAB是等腰直角三角形,OB=10,∴点A的坐标为(5,5),设抛物线的解析式为y=ax2+bx,把点A(5,5)和点G(7,0).代入上式,得,解得:,抛物线的解析式为;(2)∵∠OAB=90°,TC⊥OA,TD⊥AB,∴四边形ACTD为矩形,又∵△OAB为等腰直角三角形,∴△OCT、△TDB均为等腰直角三角形,∵OT=t,OB=10,∴CT=,TD=,∴,∵,∴当t=5 时,S 的最大值为;(3)存在.∵△OMK是等腰直角三角形,点M(2,0),MK⊥OA,∴点K的坐标为(1,1),设Rt△KMN旋转后对应三角形是Rt△K′M′N′由题意可知,K'与A重合∴点K'的坐标为(5,5),∵Q点在OA上,且是KA的中点,∴Q点的坐标为(3,3),又∵Rt△KMN≌Rt△K′M′N′,且MK∥M′K′∴点M'坐标为(4,6),把x=4 代入得,∴点M'(4,6)在抛物线上,∴点Q的坐标是(3,3),抛物线上与M、K对应的点的坐标分别是M′(4,6)、K′(5,5).【解析】(1)根据△OAB是等腰直角三角形,OB=10,得出点A的坐标,再设抛物线的解析式为y=ax2+bx,把点A和G代入求出a,b的值,即可求出抛物线的解析式;(2))根据∠OAB=90°,TC⊥OA,TD⊥AB,得出四边形ACTD为矩形,再根据△OAB 为等腰直角三角形,得出△OCT、△TDB均为等腰直角三角形,再根据OT=t,OB=10,得出CT和TD的值,即可求出S的表达式和S的最大值;(3)根据△OMK是等腰直角三角形,点M(2,0),MK⊥OA,得出点K的坐标,设出Rt△KMN旋转后对应三角形是Rt△K'M'N',由题意可知,K'与A重合,得出K'和Q点的坐标,再根据Rt△KMN≌Rt△K'M'N',MK∥M'K',得出点M'坐标,即可求出解析式,从而得出它们的对应点的坐标.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用;此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.第21页,共21页。

2020年四川省成都市中考数学二诊试卷

2020年四川省成都市中考数学二诊试卷

中考数学二诊试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.代数式3x2可以表示为()A. x2+x2+x2B. x2•x2•x2C. x+x+xD. x•x•x2.据统计,2018年我国快递业务量达到了507亿件,比上年增长26.6%.预计2019年我国快递业务量将超过600亿件.把数据“507亿”用科学记数法可表示为()A. 507×108B. 50.7×109C. 5.07×109D. 5.07×10103.如图,一个几何体由4个相同的正方体拼成,下列判断正确的是()A. 三个视图面积一样大B. 主视图面积最大C. 左视图面积最大D. 俯视图面积最大4.在平面直角坐标系中,点M(-2,3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A. 120°B. 110°C. 100°D. 70°6.在下列函数的图象中,经过坐标原点的是()A. y=3B. y=3-xC. y=3xD. y=x2-37.下列两个三角形中,一定全等的是()A. 两个等腰三角形B. 两个等腰直角三角形C. 两个等边三角形D. 两个周长相等的等边三角形8.已知七名选手参加演讲比赛,所得分数各不同.其中一名选手想知道自己能否进入前四名,他除了知道他本人的分数外,还要知道七名选手分数的()A. 中位数B. 众数C. 平均数D. 方差9.平行四边形一定具有的性质是()A. 邻边相等B. 邻角相等C. 对角相等D. 对角线相等10.如图,在三角形ABC中,分别以点A、B为圆心,大于AB长为半径画弧,两弧相交于点M、N,作直线MN交AB于点O,连接CO,则下列判断不正确的是()A. AO=BOB. MN⊥ABC. AN=BND. AB=2CO二、填空题(本大题共9小题,共36.0分)11.分式方程=的解为______.12.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是______.13.已知扇形的半径为6,圆心角为150°,则此扇形的面积是______.(结果保留π)14.如图,把边长为6的正三角形剪去三个三角形得到一个正六边形,这个正六边形的面积为______.15.一元二次方程x2-3x-4=0的两根的平方和等于______.16.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为______.17.设a1、a2、a3…是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数),已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2019等于______.18.如图,在直角坐标系xOy中,以点O为圆心,半径为2的圆与反比例函数y=(k>0)的图象交于点A、B两点,若的长为π,则k的值为______.19.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=______.三、解答题(本大题共9小题,共72.0分)20.(1)计算:0+(-7+5)÷(-2)-2+2cos45°(2)先化简,再求值:,其中x=+121.解不等式组:,并求出它的最小整数解22.体育老师随机抽取了部分同学参加体能测试,并按测试成绩分成A、B、C、D四个等级,已知有60%的同学获得A等级.根据测试成绩,体育绘制了如下条形统计图(不完整)(1)请将条形统计图补充完整,并在图中标注相应数据;(2)体育老师从C、D两个等级的同学中随机选择2名同学进行体训,求事件“2名同学中至少有一名同学是C等级”发生的概率.(树状图或列表法)23.如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°(1)求道路AB段的长(结果精确到1米)(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.700224.如图,直线y=x+2与反比例函数y=(k>0,x>0)的图象交于点A(2,m),与y轴交于点B.(1)求m、k的值;(2)连接OA,将△AOB沿射线BA方向平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=(k>0)的图象上时,求点O'的坐标;(3)设点P的坐标为(0,n)且0<n<4,过点P作平行于x轴的直线与直线y=x+2和反比例函数y=(k>0)的图象分别交于点C,D,当C、D间距离小于或等于4时,直接写出n的取值范围.25.如图,在△ABC中,已知AB=AC=5,sin B=,点P为BC边上一动点,过点P作射线PE,交射线BA于点D,∠BPD=∠BAC,以点P为圆心,PC长为半径作⊙P交射线PD于点E,连接CE.(1)当⊙P与AB相切时,⊙P的半径为______(2)当点D在BA的延长线上,且BD=n(5<n<)时,求线段CE的长(用含n的代数式表示);(3)如果⊙O经过B、C、E三点且OP=,请直接写出线段AD的长.26.某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:x(件)…5101520…y(元/件)…75706560…(1)由题意知商品的最低销售单价是______元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?27.如图1,四边形ABCD的对角线AC、BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠1+∠2=∠3(1)请写出∠BAD与∠3的数量关系;(2)求m:n的值;(3)如图2,将△ACD沿CD翻折,得到△A'CD,连接BA',与CD相交于点P,若CD=,请直接写出线段PC的长.28.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,-3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标答案和解析1.【答案】A【解析】解:3x2可以表示为x2+x2+x2,故选项A符合题意;x2•x2•x2=x6,故选项B不合题意;x+x+x=3x,故选项C不合题意;x•x•x=x3,故选项D不合题意.故选:A.根据幂的意义解答即可.本题主要考查了幂的乘方的意义,熟练掌握幂的运算法则是解答本题的关键.2.【答案】D【解析】解:把数据“507亿”用科学记数法可表示为507×108=5.07×1010.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:该几何体的主视图是:主视图的面积是4;该几何体的左视图是:左视图的面积是2;该几何体的俯视图是:俯视图的面积是3;故选:B.根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.4.【答案】B【解析】解:∵-2<0,3>0,∴(-2,3)在第二象限,故选:B.横坐标小于0,纵坐标大于0,则这点在第二象限.本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:-,+;第三象限:-,-;第四象限:+,-;是基础知识要熟练掌握.5.【答案】A【解析】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:A.直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.【答案】C【解析】解:A、直线y=3平行x轴,不经过原点,故本选项错误;B、当x=0时,y=3≠0,即不经过原点,故本选项错误;C、当x=0时,y=0,即经过原点,故本选项正确;D、当x=0时,y=-3≠0,即不经过原点,故本选项错误;故选:C.把(0,0)分别代入函数解析式进行检验即可.本题考查的是一次函数图象上点的坐标特点,二次函数图象上点的坐标特征,熟知函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.【答案】D【解析】解:∵两个等腰三角形不一定全等,∴选项A不正确;∵两个等腰直角三角形一定相似,不一定全等,∴选项B不正确;∵两个等边三角形一定相似,不一定全等,∴选项C不正确;∵两个周长相等的等边三角形的边长相等,∴两个周长相等的等边三角形一定全等,∴选项D正确;故选:D.由全等三角形的判定方法得出A、B、C不正确,D正确,即可得出结论.本题考查了全等三角形的判定方法、等边三角形的性质、等腰直角三角形的性质、等腰三角形的性质;熟记全等三角形的判定方法是解决问题的关键.8.【答案】A【解析】解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:A.7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.9.【答案】C【解析】解:A、平行四边形的邻边不相等,故此选项错误;B、平行四边形邻角互补,故此选项错误;C、平行四边形的对角相等,故此选项正确;D、平行四边形的对角线不相等,故此选项错误;故选:C.直接利用平行四边形的性质分别分析得出答案.此题主要考查了平行四边形的性质,正确把握相关性质是解题关键.10.【答案】D【解析】解:由作法得MN垂直平分AB,∴OA=OB,MN⊥AB,AN=BN,当∠ACB=90°时,OC=AB.故选:D.利用基本作图得到MN垂直平分AB,根据线段垂直平分线的性质得到OA=OB,MN⊥AB,AN=BN,可对A、B、C进行判断;由于当∠ACB=90°时,OC=AB,则可对D进行判断.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.11.【答案】x=3【解析】解:去分母得:3(x-1)=2x,去括号得:3x-3=2x,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.【答案】-1【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 根据判别式的意义得到△=22-4×(-a)=0,然后解一次方程即可.【解答】解:根据题意得△=22-4×(-a)=0,解得a=-1.故答案为-1.13.【答案】15π【解析】解:扇形的面积==15π,故答案为:15π.把已知数据代入扇形面积公式计算,得到答案.本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.14.【答案】6【解析】解:∵六边形DFHKGE是正六边形,∴∠EDF=∠DFH=∠FHK=∠KGE=∠GED=120°,DE=DF,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=DE=AE,同理:BH=BF=FH,∴AD=DF=BF=2,∴S正六边形DFHKGE=6S△ADE=6××22=6,故答案为:6.先求出△ADE是等边三角形,再证明AD=DF=BF=2,即可求出S正六边形DFHKGE=6S△ADE.本题主要考查的是正多边形和圆,熟知等边三角形的性质及正六边形的性质是解题的关键.15.【答案】17【解析】解:一元二次方程x2-3x+2=0的两根为x1,x2,∵a=1,b=-3,c=-4,x1+x2=-=3,x1x2=-4则x12+x22=(x1+x2)2-2x1x2=32-2×(-4)=17.故答案为:17找出一元二次方程中的a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后把所求的两根的平方和配方变形为两根之和与两根之积的形式,把求出的两根之和与两根之积的值代入即可求出值.此题考查了根与系数的关系,熟练运用两根之和与两根之积的式子是解本题的关键.16.【答案】【解析】解:连接AF,EF,AE,过点F作FN⊥AE于点N,∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故答案为:.利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可.此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AE的长是解题关键.17.【答案】4037【解析】解:∵4a n=(a n+1-1)2-(a n-1)2,∴(a n+1-1)2=(a n-1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1-1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n-1,∴a2019=4037.故答案为4037.由4a n=(a n+1-1)2-(a n-1)2,可得(a n+1-1)2=(a n-1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n-1,即可求出a2018=4035本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.18.【答案】【解析】解:连接OA、OB,∵的长为π,OA=OB=2,∴=π,解得n=30°,即∠AOB=30°,过点A作AC⊥x轴,过点B作BD⊥y轴,∵点A、B均在反比例函数y=的图象上,OB=OA,∴点A和点B关于y=x对称,∴BD=AC,OD=OC,∴△AOC≌△BOD,∴∠AOC=═30°,设A(a,b),则OC=a=OA•cos30°=2×=,AC=b=OA×sin30°=2×=1,∴k=ab=×1=.故答案为.连接OA、OB,由弧长公式求出∠AOB的度数,过点A作AC⊥x轴,过点B作BD⊥y轴,由OB=OA可知点A和点B关于y=x对称,从而得出BD=AC,OD=OC,故△AOC≌△BOD,由此可求出∠AOC的度数,再设A(a,b),根据锐角三角函数的定义即可求出a、b的值.本题考查的是反比例函数综合题反比例函数图象上点的坐标特征,根据题意作出辅助线构造出直角三角形,根据直角三角函数求得A的坐标是解题的关键.19.【答案】或7【解析】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=,∴,∴DG=4,由翻折得:∠DA′E=∠A,A′D=AD=5,∴sin∠DA′E=sin∠A=,∴,∴DF=3,∴FG=4-3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8-1=7,∴A′H=A′E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A′B==;②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD 和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA′E=∠A,A′D=AD=5,由矩形性质和勾股定理可以得出结论:A′B=;②如图2,作辅助线,构建矩形A′MNF,同理可以求出A′B的长.本题考查了翻折变换的性质、勾股定理、矩形的性质、三角函数及解直角三角形的有关知识,作辅助线构建矩形是本题的关键,明确翻折前后的对应角和边相等,在证明中利用同角的三角函数列比例式比证明相似列比例式计算简单.20.【答案】解:(1)原式=1+(-2)÷+2×=1+(-8)+=-7+;(2)原式==,当x=+1时,原式==.【解析】(1)先计算零指数幂、负指数幂和三角函数,然后计算加减法;(2)把分式化简后,再把分式中x值代入求出分式的值.本题考查了分式的混合运算,熟练分解因式是解题的关键.21.【答案】解:解不等式①得:x≥1,解不等式②得:x>2,∴不等式组的解集是x>2,∴最小整数解是3.【解析】先求出每个不等式的解集,再找出不等式组的解集,最后求出最小整数解即可.本题考查了解一元一次不等式(组),不等式组的整数解的应用,主要考查学生能否根据不等式的解集找出不等式组的解集.22.【答案】解:(1)被调查的学生人数为15÷60%=25(人),则C等级人数为25-15-6-2=2(人),补全图形如下:(2)画树状图如下:由树状图知,共有12种等可能结果,其中2名同学中至少有一名同学是C等级的有10种结果,∴2名同学中至少有一名同学是C等级的概率为=.【解析】(1)由A等级人数及其所占百分比求出总人数,总人数减去A、B、D人数求出C等级人数,从而补全图形;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.【答案】解:(1)在Rt△ACD中,AC=CD•tan∠ADC=400×2=800,在Rt△ABC中,AB==≈1395;(2)车速为:≈15.5m/s=55.8km/h<60km/h,∴该汽车没有超速.【解析】(1)根据锐角三角函数的定义即可求出答案.(2)求出汽车的实际车速即可判断.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.24.【答案】解:(1)∵直线y=x+2过点A(2,m),∴m=2+2=4,∴点A的坐标为(2,4).将A(2,4)代入y=,得:4=,∴k=8.(2)∵△AOB沿射线BA方向平移,直线AB的解析式为y=x+2,∴直线OO′的解析式为y=x.联立直线OO′及反比例函数解析式成方程组,得:,解得:,(舍去),∴点O′的坐标为(2,2).(3)∵点P的坐标为(0,n),∴点C的坐标为(n-2,n),点D的坐标为(,n).∵CD=-(n-2)≤4,n>0,∴n2+2n-8≥0,解得:n≥2或n≤-4(舍去),又∵0<n<4,∴2≤n<4.【解析】(1)利用一次函数图象上点的坐标特征可求出m的值,进而可得出点A的坐标,再利用待定系数法即可求出k值;(2)由直线AB的解析式可得出直线OO′的解析式为y=x,联立直线OO′及反比例函数解析式成方程组,通过解方程组即可得出点O'的坐标(取正值);(3)由点P的坐标,可得出点C,D的坐标,结合CD≤4即可得出关于n的一元二次不等式,再结合0<n<4即可求出n的取值范围.本题考查了一次函数图象上点的坐标特征、待定系数法反比例函数解析式、反比例函数图象上点的坐标特征、解一元二次不等式以及反比例函数与一次函数的交点问题,解题的关键是:(1)利用一次函数图象上点的坐标特征及待定系数法,求出m,k的值;(2)联立直线与反比例函数解析式成方程组,通过解方程组求出点O'的坐标;(3)由CD 的范围,找出关于n的一元二次不等式.25.【答案】3【解析】解:(1)如图1,设⊙P与AB相切时,切点为点H,连接PH,则PH⊥AB,设⊙P的半径为r,sin B=,则cos B=BC=2AB cosB=10×=8,则PB=8-r,sin B===,解得:r=3,故答案为3;(2)∵AB=AC,∠BPD=∠BAC,∴△PBD、△ABC均为底角为α的等腰三角形,即sinα=sin B=,过点P作PN⊥EC,则PC=PE,∠EPN=∠CPN=α,∵BD=n,则BP==,(BD=BP),PC=BC-BP=8-,EC=2CN=2×PC sinα=2×(8-)×=-;(3)作EC和BC的中垂线PN、AM交于点O,①当点M在BP上时,OP=,在Rt△OPM中,PM=OP cos∠MPO=cosα=1,则BP=4+1=5,而BD=BP,则BD=8,AD=BD-AB=8-5=3;②当点M在CP上时,同理可得:BP=4-1=3,则BD=,则AD=;故AD=3或.(1)BC=2AB cosB=10×=8,则PB=8-r,sin B===,即可求解;(2)BP==,(BD=BP),PC=BC-BP=8-,EC=2CN,即可求解;(3)分点M在BP上、点M在CP上两种情况分别求解.本题考查的是圆的综合运用,涉及到解直角三角形、等腰三角形的性质、中垂线性质等,其中(3),要注意分类求解,避免遗漏.26.【答案】50【解析】解:(1)40(1+25%)=50(元),故答案为:50;设y=kx+b,根据题意得:,解得:k=-1,b=80,∴y=-x+80,根据题意得:,且x为正整数,∴0<x≤30,x为正整数,∴y=-x+80(0≤x≤30,且x为正整数)(2)设所获利润为P元,根据题意得:P=(y-40)•x=(-x+80-40)x=-(x-20)2+400,即P是x的二次函数,∵a=-1<0,∴P有最大值,∴当x=20时,P最大值=400,此时y=60,∴当销售单价为60元时,所获利润最大,最大利润为400元.(1)由40(1+25%)即可得出最低销售单价;根据题意由待定系数法求出y与x的函数关系式和x的取值范围;(2)设所获利润为P元,由题意得出P是x的二次函数,即可得出结果.本题考查了二次函数的应用、用待定系数法求一次函数的解析式、二次函数的最值问题;由题意求出一次函数和二次函数的解析式是解决问题的关键.27.【答案】解:(1)如图1中,在△ABD中,∵∠BAD+∠1+∠2=180°,又∵∠1+∠2=∠3,∴∠BAD+∠3=180°,故答案为∠BAD+∠3=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠1=∠ODE,∵OB=OD,∴△OAB≌△OED(AAS),∴AB=DE,OA=OE,设AB=DE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠3=180°,∴∠EDA=∠3,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy-x2=0,∴()2+-1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,由(2)知,∠EDA=∠ACB,∠DEA=∠BAE,∴△EAD∽△ABC,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=,∵CD=,∴PC=1.【解析】(1)利用三角形的内角和定理以及等量代换即可解决问题.(2)证明△OAB≌△OED(AAS),推出AB=DE,OA=OE,设AB=DE=CE=x,OA=OE=y,证明△EAD∽△ABC,可得===,推出=,可得4y2+2xy-x2=0,求出的值即可解决问题.(3)如图2中,作DE∥AB交AC于E.证明A′D∥BC,推出△PA′D∽△PBC,推出==即可解决问题.本题属于四边形综合题,考查了相似三角形的判定和性质,三角形内角和定理,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.28.【答案】解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=-x2+1,∵点A(1,0),D(0,-3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2-3;(2)设M(m,-m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2-3)为第四象限的图形上一点,∴MM'=(1-m2)-(3m2-3)=4-4m2,由抛物线的对称性知,若有内接正方形,∴2m=4-4m2,∴m=或m=(舍),∵0<<1,∴MM'=∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,-3),∴E(0,-),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,-1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3-n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3-n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(-,-2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,-),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,-)或(,-1)或(1,-)或(-,-2).【解析】(1)利用待定系数法即可得出结论;(2)先确定出MM'=(1-m2)-(3m2-3)=4-4m2,进而建立方程2m=4-4m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:①如图1,当△DBC∽△DAE时,得出,进而求出DE=,即可得出E(0,-),再判断出△DEF∽△DAO,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;②如图2,当△DBC∽△ADE时,得出,求出AE=,当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E坐标,当E'在直线DA右侧时,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键.。

四川省成都市四县市2020年中考数学二诊试卷

四川省成都市四县市2020年中考数学二诊试卷

2020年四川省成都市四县市中考数学二诊试卷一、选择题1.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.2.如图,是由6个相同的小正方体组成的几何体,那么该几何体的俯视图是()A.B.C.D.3.110年前,中国首条自行设计和建造的铁路,京张铁路落成;110年后,在同样的地方,世界首条智能高铁京张高铁正式运行,中国速度,一直在路上,2019年底,中国高铁里程将突破3.5万公里,全世界超过的高铁轨道铺设在中国.为你骄傲,中国高铁!请将3.5万公里中的数“3.5万”用科学记数法表示为()A.3.5×101B.0.35×105C.35×103D.3.5×1044.如图,已知直线m∥n,将一块含45°角的直角三角板ABC,按如图所示方式放置,其中斜边AC与直线m交于点D.若∠2=25°,则∠1的度数为()A.25°B.45°C.70°D.75°5.下列运算错误的是()A.b2•b3=b5B.(a﹣b)(b+a)=a2﹣b2C.a5+b5=a10D.(﹣a2b)2=b2a46.在平面直角坐标系中,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(﹣4,0)D.(0,﹣4)7.疫情期间,为调查某校学生体温的情况,张老师随机调查了50名学生,结果如表:体温(单位:℃)36.236.336.536.736.8人数8107x12则这50名学生体温的众数和中位数分别是()℃A.36.7,36.6B.36.8,36.7C.36.8,36.5D.36.7,36.5 8.若关于x的一元二次方程ax2﹣2x+1=0有实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≥1D.a≤1且a≠0 9.如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD 的面积为()A.πB.πC.πD.2π10.二次函数y=﹣x2+ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当x>2.5时,y随x的增大而减小C.当x=﹣1时,b>5D.当b=8时,函数最大值为10二、填空题(每小题4分,共16分)11.已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=.12.已知正多边形的一个外角为72°,则该正多边形的内角和为.13.一次函数y1=kx+b的图象与反比例函数y2=﹣的图象相交于A(﹣1,3),B(m,﹣3)两点,请先画出图象,然后根据图象写出当y1<y2时,x的取值范围为.14.如图:已知锐角∠AOC,依次按照以下顺序操作画图:(1)在射线OA上取一点B,以点O为圆心,OB长为半径作,交射线OC于点D,连接BD;(2)分别以点B,D为圆心,BD长为半径作弧,交于点M,N;(3)连接ON,MN.根据以上作图过程及所作图形可知下列结论:①OC平分∠AON;②MN∥BD;③MN=3BD;④若∠AOC=30°,则MN=ON.其中正确结论的序号是.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(π﹣2020)0﹣+4sin60°﹣|3﹣|;(2)解方程:(x+2)(x﹣3)=(x+2).16.先化简,再求值:÷(x+2﹣),其中x=.17.成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:(1)本次抽样调查了多少户贫困户?(2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?(3)2020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.18.小颖“综合与实践”小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.课题测量旗杆的高度成员组长:小颖,组员:小明,小刚,小英测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.62m,测点A,B与H在同一水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数30.6°31.4°31°∠GDE的度数36.8°37.2°37°A,B之间的距离10.1m10.5m m ……(1)任务一:完成表格中两次测点A,B之间的距离的平均值.(2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.如图所示,一次函数y=﹣x﹣6与x轴,y轴分别交于点A,B将直线AB沿y轴正方向平移与反比例函数y=(x>0)的图象分别交于点C,D,连接BC交x轴于点E,连接AC,已知BE=3CE,且S△ABE=27.(1)求直线AC和反比例函数的解析式;(2)连接AD,求△ACD的面积.20.如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.(1)求证:△FED∽△AEB;(2)若=,AC=2,连接CE,求AE的长;(3)在点E运动过程中,若BG=CG,求tan∠CBF的值.一、填空题(每小题4分,共20分)21.已知正实数m,n满足m2=5,n3=11,则m n.(填“>”“<”或“=”)22.如图所示,已知线段AC=1,经过点A作AB⊥AC,使AB=AC,连接BC,在BC上截取BE=AB,在CA上截取CD=CE,则的值是.23.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.24.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴,y轴分别交于点D,C.点G,H是线段CD上的两个动点,且∠GOH=45°,过点G作GA⊥x轴于A,过点H作HB⊥y轴于B,延长AG,BH交于点E,则过点E的反比例函数y=的解析式为.25.如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.大邑县某汽车出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨25%.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为3200元;旺季所有的货车每天能全部租出,日租金总收入为6000元.(1)求该出租公司这批对外出租的货车共有多少辆?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,该出租公司的日租金总收入最高是多少元?当日租金总收入最高时,每天出租货车多少辆?27.如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG 并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠FAD,求tan∠FAD的值.28.如图,一次函数y=x﹣2的图象与x轴交于点A,与y轴交于点B,点D的坐标为(﹣1,0),二次函数y=ax2+bx+c(a≠0)的图象经过A,B,D三点.(1)求二次函数的解析式;(2)如图1,已知点G(1,m)在抛物线上,作射线AG,点H为线段AB上一点,过点H作HE⊥y轴于点E,过点H作HF⊥AG于点F,过点H作HM∥y轴交AG于点P,交抛物线于点M,当HE•HF的值最大时,求HM的长;(3)在(2)的条件下,连接BM,若点N为抛物线上一点,且满足∠BMN=∠BAO,求点N的坐标.参考答案一、选择题(每小题3分,共30分。

2020年四川省成都市中考数学二诊试卷(含答案)

2020年四川省成都市中考数学二诊试卷(含答案)

四川省成都市中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2 D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109 B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2<6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AC⊥b,垂足为C,若∠1=48°,则∠2的度数为()[A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.π C.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x 轴的一个交点坐标为(3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0 B.b2﹣4ac<0C.a+b+c=0 D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC=∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M 处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM 的高是0.8m,点M 到护栏的距离MD 的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED 的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A (n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;=2S△AOC,求点M的坐(2)若直线AB上有一点M,连接MC,且满足S△AMC标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD ⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx ﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案与试题解析一、选择题1.B.2.B.3.C.4.B.5.A6.D7.D8.C9.A10.C.二、填空题11.712.﹣813.9.14.3.三、解答题15.解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.解:====,当a=+1时,原式=.17.解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED 的长4.8m.18.解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC =2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题21.解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x 轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC ∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a (a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x ﹣m)2﹣2m﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C =S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。

2020届四川省成都市中考数学二模试卷((有答案))(已纠错)

2020届四川省成都市中考数学二模试卷((有答案))(已纠错)

四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,。

2020届四川省成都市中考数学二模试卷((有答案))(加精)

2020届四川省成都市中考数学二模试卷((有答案))(加精)

四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,。

2019-2020学年四川省成都市中考数学二模试卷((有标准答案))

四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95 人数 4 6 8 5 7对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3 B.y=(x﹣1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3 8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K 1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L 2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y =ax 2+bx +c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 (用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x 元.(1)写出售出一个可获得的利润是多少元(用含x 的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF = ;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 (用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95人数 4 6 8 5 7 对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3 B.y=(x﹣1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A .∠BAD 与∠B 互补B .∠1=∠2C .∠BAD 与∠D 互补 D .∠BCD 与∠D 互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB ∥CD ,∴∠BAD 与∠D 互补,即C 选项符合题意;当AD ∥BC 时,∠BAD 与∠B 互补,∠1=∠2,∠BCD 与∠D 互补,故选项A 、B 、D 都不合题意,故选:C .【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7…叫做“正六边形的渐开线”,其中弧FK 1,弧K 1K 2,弧K 2K 3,弧K 3K 4,弧K 4K 5,弧K 5K 6,…的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为L 1,L 2,L 3,L 4,L 5,L 6,….当AB =1时,L 2016等于( )A .B .C .D ..【分析】用弧长公式,分别计算出l 1,l 2,l 3,…的长,寻找其中的规律,确定l 2016的长.【解答】解:根据题意得:l 1==,l 2==, l 3===π,则L 2016=, 故选:B . 【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l 2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x +y =4,x ﹣=1,则4x 2﹣y 2= 8 .【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN= 2 .【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE=2,ED=4,∵△ABE∽△ADB,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4 .【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9 .【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF 是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y 1、y 2、y 3的大小关系.【解答】解:∵抛物线的对称轴与x 轴交于点(﹣1,0), ∴抛物线的对称轴为直线x =﹣1,∵点(2,y 1)到直线x =﹣1的距离最大,点(0,y 3)到直线x =﹣1的距离最小, ∴y 3<y 2<y 1. 故答案为y 3<y 2<y 1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键. 五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x 元. (1)写出售出一个可获得的利润是多少元(用含x 的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个? (3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少? 【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x ,列方程求解,根据题意取舍; (3)利用函数的性质求最值. 【解答】解:由题意得: (1)50+x ﹣40=x +10(元) (2)设每个定价增加x 元.列出方程为:(x +10)(400﹣10x )=6000 解得:x 1=10 x 2=20要使进货量较少,则每个定价为70元,应进货200个. (3)设每个定价增加x 元,获得利润为y 元.y =(x +10)(400﹣10x )=﹣10x 2+300x +4000=﹣10(x ﹣15)2+6250当x =15时,y 有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F . (1)若AB =6,AE =4,BD =2,则CF = 4 ; (2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 1﹣cos α (用含α的表达式表示).【分析】(1)先求出BE 的长度后发现BE =BD 的,又∠B =60°,可知△BDE 是等边三角形,可得∠BDE =60°,另外∠DEF =60°,可证得△CDF 是等边三角形,从而CF =CD =BC ﹣BD ;(2)证明△EBD ∽△DCF ,这个模型可称为“一线三等角•相似模型”,根据“AA ”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D 作DM ⊥BE ,DG ⊥EF ,DN ⊥CF ,则DM =DG =DN ,从而证明△BDM ≌△CDN 可得BD =CD ;【探索】由已知不能求得C △ABC =AB +BC +AC =2AB +2OB =2(m +m cos α),则需要用m 和α是三角函数表示出C △AEF ,C △AEF =AE +EF +AF =AG +AH =2AG ;题中直接已知点O 是BC 的中点,应用(2)题的方法和结论,作OG ⊥BE ,OD ⊥EF ,OH ⊥CF ,可得EG =ED ,FH =DF ,则C △AEF =AE +EF +AF =AG +AH =2AG ,而AG =AB ﹣BO ,从而可求得.【解答】(1)解:∵△ABC 是等边三角形,∴AB =BC =AC =6,∠B =∠C =60°.∵AE =4,∴BE =2,则BE =BD ,∴△BDE 是等边三角形,∴∠BED =60°,又∵∠EDF =60°,∴∠CDF =180°﹣∠EDF ﹣∠B =60°,则∠CDF =∠C =60°,∴△CDF 是等边三角形,∴CF =CD =BC =BD =6﹣2=4.故答案是:4;。

2020年四川省成都市中考数学二诊试卷含答案


析式为( )
A.
B.
C.
D.
10. 如图,正方形 ABCD 的正三角形 AEF 都内接于⊙O,则 ∠DAF 的度数是( )
A. 45° B. 30° C. 15° D. 10°
二、填空题(本大题共 9 小题,共 36.0 分) 11. 因式分解:xy2-9x=______.
12. 已知关于 x 的方程
28. 如图,在平面直角坐标系中,已知抛物线 y=ax2+bx+c(a<0)经过点 A(-1,0)、
B(4,0)与 y 轴交于点 C,tan∠ABC= .
(1)求抛物线的解析式; (2)点 M 在第一象限的抛物线上,ME 平行 y 轴交直线 BC 于点 E,连接 AC、CE ,当 ME 取值最大值时,求△ACE 的面积. (3)在 y 轴负半轴上取点 D(0,-1),连接 BD,在抛物线上是否存在点 N,使 ∠BAN=∠ACO-∠OBD?若存在,请求出点 N 的坐标;若不存在,请说明理由.
第 1 页,共 22 页
A. 57
B. 40
C. 73
D. 65
8. 关于 x 的一元二次方程式 x2-ax-2=0,下列结论一定正确的是( )
A. 该方程有两个相等的实数根
B. 该方程有两个不相等的实数根
C. 该方程没有实数根
D. 无法确定
9. 将抛物线
向右平移 3 个单位,再向下平移 2 个单位,得到抛物线解
中考数学二诊试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30得失相反,要令正负以名之”,意思是:今有两数若 其意义相反,则分别叫做正数与负数,若收入 60 元记作+60 元,则-20 元表示( )

四川省成都市2019-2020学年中考二诊数学试题含解析

3.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()
A. B. C. D.
4.下列四个图形中,是中心对称图形的是()
A. B. C. D.
5.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为 ,当电压为定值时,I关于R的函数图象是()
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
6.D
【解析】
【分析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4 ,错误;
C.原 式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
12.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()
A.5 B. C. D.7
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.
14.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.
故选B.
【点睛】
本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
8.D
【解析】
【分析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.
【详解】
甲的速度= =70米/分,故A正确,不符合题意;

初2020届成都市某区某校中考数学九年级二诊数学试卷(含答案)

初2020届成都市某区某校中考数学九年级二诊数学试卷(考试时间:120分钟满分:150分)A 卷(共100分)、选择题(每小题 3分,共30分。

下列各小题给出的四个选项中,只有一个符合题目要求)1 .在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数, 下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是(2 .如图,是由6个相同的小正方体组成的几何体,那么该几何体的俯视图是(正视方向4.如图,已知直线 m// n,将一块含45°角的直角三角板 ABC 按如图所示方式放置,其中斜边 m 交于点D.若/ 2 = 25 ,则/ 1的度数为()A.B. C.D.D.110年前,中国首条自行设计和建造的铁路,京张铁路落成;110年后,在同样的地方,世界首条智能高铁京张高铁正式运行,中国速度,一直在路上, 过菖的高铁轨道铺设在中国.为你骄傲,中国高铁2019年底,中国高铁里程将突破3.5万公里,全世界超!请将3.5万公里中的数“ 3.5万”用科学记数法表示为__1A. 3.5 X 10 — 5B. 0.35 X 10 _ 3C. 35X10 一 — 一4D. 3.5 X 10AC 与直线3.B .y= - 2x 的图象沿y 轴负方向平移4个单位长度,则平移后的图象与的交点坐标为()A. (2, 0)B. (-2, 0)C. (-4, 0)D. (0, -4)7 .疫情期间,为调查某校学生体温的情况,张老师随机调查了 50名学生,结果如表:体温(单位:C ) 36.2 36.3 36.5 36.7 36.8 人数8107x12则这50名学生体温的众数和中位数分别是( )CA. 36.7 , 36.6B. 36.8 , 36.7C. 36.8 , 36.5D. 36.7 , 36.58 .若关于x 的一元二次方程ax 2-2x+1 =0有实数根,则实数 a 的取值范围是( )A. a< 1B, a<1C. a>1D. awl 且 aw09 .如图,四边形 ABCDrt 接于半径为3的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省成都市成华区中考数学二诊试卷
一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
1.(3分)下列关于0的说法正确的是()
A.0是有理数B.0是无理数C.0是正数D.0是负数2.(3分)一个物体如图所示,它的俯视图是()
A.B.
C.D.
3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()
A.平行四边形B.矩形
C.正三角形D.等腰直角三角形
4.(3分)截至5月6日,Covid﹣19感染人数己超365万,将365万用科学记数法表示为()
A.365×104B.3.65×105C.3.65×106D.3.65×107 5.(3分)下列运算正确的是()
A.(a+3)2=a2+9B.a8÷a2=a4
C.a2+a2=2a2D.a2•a3=a6
6.(3分)在主题为“我和我的祖国”的演讲比赛中,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.9分B.8.8分,8.8分
C.9.5分,8.9分D.9.5分,8.8分
7.(3分)下列函数中,y总随x的增大而减小的是()
A.y=﹣4x B.y=x﹣4C.y=D.y=x2
8.(3分)如图,AD是⊙O的直径,,若∠AOB=40°,则圆周角∠BPC的度数是()
A.40°B.50°C.60°D.70°
9.(3分)如图,△ABC中,∠C=90°,BC=2AC,则cos A=()
A.B.C.D.
10.(3分)如图所示的抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中错误的是
()
A.ac<0B.b2﹣4ac>0C.2a﹣b=0D.9a+3b+c=0
二.填空题(本大题4个小题,每小题4分,共16分)
11.(4分)代数式有意义,则x的取值范围是.
12.(4分)五个大小相同的乒乓球上面分别编号为2,3,4,5,6,把它们放在不透明的袋内,从袋内任抽一个球,抽中编号是偶数的概率是.
13.(4分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=.
14.(4分)如图,四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,射线BE交AD于点F,交AC于点O.若点O恰好是AC的中点,则CD的长为.
三.解答题(本大题共6个小题,满分54分)
15.(12分)(1)计算:4sin60°+(2020﹣π)0﹣()﹣2+|﹣2|;
(2)解不等式组:.
16.(6分)先化简,再求值:(﹣)÷﹣,其中x=2+,y=2.17.(8分)某校在参加了成都市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度:A﹣阅读素养、B﹣数学素养、C﹣科学素养、D﹣人文素养,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).现将调查的结果绘制成如图两幅不完整的统计图.
(1)求本次调查的学生总人数,并补全两幅统计图;
(2)求扇形统计图中的选项D对应的扇形圆心角的度数;
(3)该校八年级共有学生400人,请估计全年级选择选项B的学生有多少人?18.(8分)如图,在A的正东方向有一港口B.某巡逻艇从A沿着北偏东55°方向巡逻,到达C时接到命令,立刻从C沿南偏东60°方向以20海里/小时的速度航行,从C到B
航行了3小时.求A,B间的距离(结果保留整数).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73)
19.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于点A(﹣1,4)和点B(4,n).
(1)求这两个函数的解析式;
=S△BOM,求点M的坐(2)已知点M在线段AB上,连接OA,OB,OM,若S
△AOM
标.
20.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.
(1)求证:直线DF是⊙O的切线;
(2)求证:BC2=4CF•AC;
(3)若⊙O的半径为2,∠CDF=15°,求阴影部分的面积.
一.填空题(每小题4分,共20分)
21.(4分)一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则的值为.22.(4分)将等腰直角△ABC按如图方法放置在数轴上,点A和C分别对应的数是﹣2和1.以点A为圆心,AB长为半径画弧,交数轴的正半轴于点D,则点D对应的实数为.
23.(4分)从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数根的概率为.
24.(4分)如图,点O为坐标原点,▱ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为
OE的中点,DE与BC交于点F.若y=(x>0)的图象经过点C且S△BEF=,则k 的值为.
25.(4分)如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB 上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA’,则△CGA'的周长的最小值为.
二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)
26.(8分)某商场在五四青年节来临之际用2400元购进A,B两种运动衫共22件.已知购买A种运动衫与购买B种运动衫的费用相同,A种运动衫的单价是B种运动衫单价的1.2倍.
(1)求A,B两种运动衫的单价各是多少元?
(2)若计划用不超过5600元的资金再次购进A,B两种运动衫共50件,已知A,B两种运动衫的进价不变.求A种运动衫最多能购进多少件?
27.(10分)如图,已知△ABC中,AC=BC,∠ACB=120°,P为△ABC内部一点,且满足∠APB=∠BPC=150°.
(1)求证:△PAB∽△PBC;
(2)求证:PA=3PC;
(3)若AB=10,求PA的长.
28.(12分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(5,0),与y轴交于
点C(0,),顶点为D,对称轴交x轴于点E.
(1)求该抛物线的一般式;
(2)若点Q为该抛物线上第一象限内一动点,且点Q在对称轴DE的右侧,求四边形DEBQ面积的最大值及此时点Q的坐标;
(3)若点P为对称轴DE上异于D,E的动点,过点D作直线PB的垂线交直线PB于点F,交x轴于点G,当△PDG为等腰三角形时,请直接写出点P的坐标.。

相关文档
最新文档