抛物线的简单几何性质(学案)
3.3.2第1课时 抛物线的简单几何性质 导学案答案

3.3.2 抛物线的简单几何性质 第1课时 抛物线的简单几何性质【课前预习】知识点一向右 向左 向上 向下 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R x 轴 y 轴 (0,0) e=1 诊断分析(1)× (2)√ (3)√ [解析] (1)抛物线不关于原点对称. (2)抛物线只有一个焦点、一条对称轴,抛物线没有对称中心. (3)抛物线的离心率均为1.知识点二1.(2)焦点弦 x 0+p2 p2-x 0 y 0+p2 p2-y 0 2.2p 诊断分析(1)√ (2)× (3)× [解析] (1)抛物线x 2=4y ,y 2=4x 的焦点到准线的距离都是2,是相同的,离心率都是1,也相同. (2)过抛物线的焦点且垂直于对称轴的弦长是2p. (3)抛物线y 2=2px (p>0)的焦半径长|PF|=x 1+p2. 【课中探究】探究点一例1 解:(1)由y 2=8x ,得p=4,变量x 的范围为x ≥0,∴该抛物线的顶点、焦点、准线、对称轴分别为(0,0),(2,0),直线x=-2,x 轴.(2)椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px ,其中p>0.∵抛物线的焦点到顶点的距离为3,即p2=3,∴p=6,∴抛物线的标准方程为y 2=12x 或y 2=-12x ,其准线方程为x=-3或x=3.变式 解:(1)设AB 与x 轴交于点E ,则由|AB|=2得E (√3,0),∴A (√3,1).设抛物线的方程为y 2=2px (p>0),则1=2p ·√3,∴2p=√33,∴抛物线的方程为y 2=√33x.(2)由(1)知2p=√33,∴p 2=√312,∴抛物线的焦点坐标为(√312,0),准线方程为x=-√312,离心率e=1.探究点二例2 解:(1)因为直线l 的倾斜角为60°,所以其斜率k=tan 60°=√3,又F (32,0),所以直线l 的方程为y=√3(x -32).由{y 2=6x ,y =√3(x -32),消去y 得x 2-5x+94=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5,而|AB|=|AF|+|BF|=x 1+p2+x 2+p2=x 1+x 2+p , 所以|AB|=5+3=8.(2)结合(1)知|AB|=|AF|+|BF|=x 1+p2+x 2+p2=x 1+x 2+p=x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3,又准线方程是x=-32,所以点M 到准线的距离为3+32=92.变式 AD [解析] 设直线AB 的方程为x=ty+p 2,将x=ty+p2代入y 2=2px ,得y 2-2pty-p 2=0,则y 1+y 2=2pt ,y 1y 2=-p 2,x 1+x 2=t (y 1+y 1)+p=2pt 2+p ,x 1x 2=y 12y 224p2=p24.当直线AB 与x 轴垂直时,t=0,|AB|最小,故A 中说法正确;1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24=2p,故B 中说法错误;以弦AB 为直径的圆的圆心为(x 1+x 22,y 1+y 22),半径为12|AB|=12(x 1+x 2+p )=pt 2+p ,圆心到准线的距离d=12(x 1+x 2)+12p=pt 2+p=12|AB|,所以圆与准线x=-p 2相切,故C 中说法错误;y 1y 2=-p 2,故D 中说法正确.故选AD .探究点三例3 (1)A (2)2√2 [解析] (1)依据抛物线的对称性,以及等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=4x 上,可设另外两个顶点的坐标分别为(m 24,m),(m 24,-m)(m>0),∴tan 30°=√33=mm 24,解得m=4√3,故这个等边三角形的边长为2m=8√3.故选A .(2)因为抛物线C 的方程为y 2=4√2x ,所以2p=4√2,可得p2=√2,所以焦点为F (√2,0),准线方程为x=-√2,又P 为抛物线C 上一点,且|PF|=3√2,所以点P 到准线x=-√2的距离为3√2,所以x P =3√2-√2=2√2,所以y P 2=4√2×2√2=16,所以|y P |=4,所以S △POF =12×|OF|×|y P |=12×√2×4=2√2.变式 (1)B [解析] 根据题意,可得F (1,0),准线方程为x=-1.不妨设A (x ,y )(y>0),∵|AQ|=43,∴x+1=43,∴x=13,∴A (13,2√33),∴直线AF 的方程为2√33-0=x -113-1,即y=-√3(x-1).将x=-1代入y=-√3(x-1)中,可得y=2√3,∴B (-1,2√3).将y=2√3代入y 2=4x 中,可得x=3,∴P (3,2√3).△PBF 的周长C △PBF =|FB|+|PF|+|PB|,又|FB|=√22+(2√3)2=4,|PF|=|PB|=4,∴C △PBF =12.故选B .(2)解:设点A (x 0,y 0)(x 0>0),由题意可知点B (x 0,-y 0).∵抛物线的焦点F (p2,0)是△AOB 的垂心,∴AF ⊥OB ,∴k AF ·k OB =-1,即y 0x 0-p2·(-y 0x 0)=-1,∴y 02=x 0(x 0-p 2).又y 02=2px 0,∴x 0=2p+p 2=5p2, ∴直线AB 的方程为x=5p2.。
《抛物线的简单几何性质》教案全面版

《抛物线的简单几何性质》教案课题:8.6抛物线的简单几何性质(一)教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:“抛物线的简单几何性质”是课本第八章最后一节,它在全章占有重要的地位和作用本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为x (或y ),则x 轴(或y 轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数p本节分两课时进行教学第一课时内容主要讲抛物线的四个几何性质、抛物线的画图、例1、例2、及其它例题;第二课时主要内容焦半径公式、通径、例3教学过程:一、复习引入:1.抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线图形xyOFl xyOFl方程)0(22p px y)0(22p px y)0(22p py x)0(22p py x焦点)0,2(p )0,2(p )2,0(p )2,0(p 准线2p x 2p x 2p y2p yxyO FlxyOF l2.抛物线的标准方程:相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的距离都等于一次项系数绝对值的41,即242p p 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2,左端为2x(2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号二、讲解新课:抛物线的几何性质1.范围因为p >0,由方程022p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x ≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.2.对称性以-y 代y ,方程022p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.3.顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程022p px y中,当y=0时,x=0,因此抛物线022p px y 的顶点就是坐标原点.4.离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1.对于其它几种形式的方程,列表如下:标准方程图形顶点对称轴焦点准线离心率22ppx yxyOFl,0x 轴,2p 2p x1e 022ppx yxyOFl,0x 轴,2p2p x1e22ppy x,0y 轴2,0p 2p y1e 022ppy x,0y 轴2,0p 2p y1e 注意强调p 的几何意义:是焦点到准线的距离抛物线不是双曲线的一支,抛物线不存在渐近线通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率附:抛物线不存在渐近线的证明.(反证法)假设抛物线y 2=2px 存在渐近线y =mx +n ,A (x ,y )为抛物线上一点,A 0(x ,y 1)为渐近线上与A 横坐标相同的点如图,则有px y2和y 1=mx +n .∴pxn mxy y 21xp xn mx 2当m ≠0时,若x →+∞,则yy 1当m =0时,px ny y 21,当x →+∞,则yy 1这与y =mx +n 是抛物线y 2=2px 的渐近线矛盾,所以抛物线不存在渐近线三、讲解范例:例1已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(M ,求它的标准方程,并用描点法画出图形.分析:首先由已知点坐标代入方程,求参数p .xyA 0AO解:由题意,可设抛物线方程为px y 22,因为它过点)22,2(M ,所以22)22(2p ,即2p因此,所求的抛物线方程为x y42.将已知方程变形为x y 2,根据x y2计算抛物线在0x的范围内几个点的坐标,得x 0 1 2 3 4 …y22.83.54…描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.例 2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点位置.分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p 值.解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于灯口直径.设抛物线的标准方程是px y22(p >0).由已知条件可得点A 的坐标是(40,30),代入方程,得402302p ,即445p所求的抛物线标准方程为x y 2452.例3 过抛物线px y 22的焦点F 任作一条直线m ,交这抛物线于A 、B 两点,求证:以AB 为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图.设AB 的中点为E ,过A 、E 、B 分别向准线l 引垂线AD ,EH ,BC ,垂足为D 、H 、C ,则|AF |=|AD |,|BF |=|BC |∴|AB |=|AF |+|BF |=|AD |+|BC |=2|EH |所以EH 是以AB 为直径的圆E 的半径,且EH ⊥l ,因而圆E 和准线l 相切.四、课堂练习:1.过抛物线x y42的焦点作直线交抛物线于11,y x A ,22,y x B 两点,如果621x x ,那么||AB =( B )(A )10(B )8(C )6(D )4xyEOF B ADC H2.已知M 为抛物线x y42上一动点,F 为抛物线的焦点,定点1,3P ,则||||MF MP 的最小值为( B )(A )3 (B )4(C )5(D )63.过抛物线02a axy 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp11=( C )(A )a2(B )a21(C )a4(D )a44.过抛物线x y42焦点F 的直线l 它交于A 、B 两点,则弦AB 的中点的轨迹方程是______ (答案:122x y )5.定长为3的线段AB 的端点A 、B 在抛物线x y2上移动,求AB 中点M 到y 轴距离的最小值,并求出此时AB 中点M 的坐标(答案:22,45M , M到y 轴距离的最小值为45)五、小结:抛物线的离心率、焦点、顶点、对称轴、准线、中心等六、课后作业:1.根据下列条件,求抛物线的方程,并画出草图.(1)顶点在原点,对称轴是x 轴,顶点到焦点的距离等于8.(2)顶点在原点,焦点在y 轴上,且过P (4,2)点.(3)顶点在原点,焦点在y 轴上,其上点P (m ,-3)到焦点距离为5.2.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影是A 2,B 2,则∠A 2FB 2等于3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长为16,求抛物线方程.4.以椭圆1522yx的右焦点,F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?习题答案:1.(1)y 2=±32x (2)x 2=8y(3)x 2=-8y2.90°3.x 2=±16 y 4.545.520米七、板书设计(略)八、课后记:课题:8.6抛物线的简单几何性质(二)教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.掌握焦半径公式、直线与抛物线位置关系等相关概念及公式;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:抛物线的几何性质:标准方程图形顶点对称轴焦点准线离心率22ppx yxyOFl,0x 轴,2p 2p x1e 022ppx yxyOFl,0x 轴,2p2p x1e 022ppy x,0y 轴2,0p 2p y1e 022ppy x,0y 轴2,0p 2p y1e 注意强调p 的几何意义:是焦点到准线的距离抛物线不是双曲线的一支,抛物线不存在渐近线二、讲解新课:1.抛物线的焦半径及其应用:定义:抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径焦半径公式:抛物线)0(22p px y,022x p p x PF抛物线)0(22p px y,0022x p p x PF抛物线)0(22p py x,0022y p p y PF抛物线)0(22p py x,0022y p p y PF2.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)下面分别就公共点的个数进行讨论:对于)0(22p px y当直线为0y y ,即0k,直线平行于对称轴时,与抛物线只有唯一的交点当0k ,设bkxyl :将b kxy l :代入0:22FEy Dx Cy AxC ,消去y ,得到关于x 的二次方程02cbxax (*)若0,相交;0,相切;0,相离综上,得:联立pxyb kx y 22,得关于x 的方程02cbx ax当0a (二次项系数为零),唯一一个公共点(交点)当0a,则若0,两个公共点(交点)0,一个公共点(切点)0,无公共点(相离)(2)相交弦长:弦长公式:21k ad,其中a 和分别是02c bx ax(*)中二次项系数和判别式,k 为直线b kxy l :的斜率当代入消元消掉的是y 时,得到02cby ay ,此时弦长公式相应的变为:211kad(3)焦点弦:定义:过焦点的直线割抛物线所成的相交弦。
学案1:3.3.2 第1课时 抛物线的简单几何性质

3.3.2第1课时抛物线的简单几何性质学习目标核心素养1.掌握抛物线的几何性质.(重点)2.掌握直线与抛物线的位置关系的判断及相关问题.(重点)3.能利用方程及数形结合思想解决焦点弦、弦中点等问题.(难点) 1.通过抛物线几何性质的应用,培养学生的数学运算核心素养.2.通过直线与抛物线的位置关系、焦点弦及中点弦、抛物线综合问题的学习,提升学生的逻辑推理、直观想象及数学运算的核心素养.情景导入(1)通过多媒体课件展示.抛物线形反射镜,平行光束聚焦于焦点,激发学生兴趣.(2)问题:一抛物线形拱桥跨度为4米,拱顶离水面2米,一水面漂浮一宽2米,高出水面1.6米的大木箱,问能否通过该拱桥?为了解决这个问题,我们先来研究一下抛物线的简单几何性质.新知初探1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质焦点⎝⎛⎭⎫p2,0⎝⎛⎭⎫-p2,0⎝⎛⎭⎫0,p2⎝⎛⎭⎫0,-p2准线x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 对称轴x轴y轴顶点(0,0)离心率e=12.直线过抛物线y2=2px(p>0)的焦点F,与抛物线交于A(x1,y1)、B(x2,y2)两点,由抛物线的定义知,|AF |=x 1+p 2,|BF |=x 2+p2,故|AB |= .3.直线与抛物线的位置关系直线与抛物线有三种位置关系:相离、相切和相交.设直线y =kx +m 与抛物线y 2=2px (p >0)相交于A (x 1,y 1),B (x 2,y 2)两点,将y =kx +m 代入y 2=2px ,消去y 并化简,得k 2x 2+2(mk -p )x +m 2=0. ①k =0时,直线与抛物线只有 交点;②k ≠0时,Δ>0⇔直线与抛物线 ⇔有 个公共点. Δ=0⇔直线与抛物线 ⇔只有 公共点. Δ<0⇔直线与抛物线 ⇔ 公共点.思考:直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗? 初试身手1.思考辨析(正确的打“√”,错误的打“×”) (1)抛物线是无中心的圆锥曲线.( ) (2)抛物线y 2=2px 过焦点且垂直于对称轴的弦长是2p . ( ) (3)抛物线y =-18x 2的准线方程为x =132.( )2.顶点在原点,对称轴为y 轴,顶点到准线的距离为4的抛物线的标准方程是( ) A .x 2=16y B .x 2=8y C .x 2=±8yD .x 2=±16y3.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,则|AB |=( ) A .10 B .8 C .6D .44.若双曲线x 23-16y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p =________.合作探究类型1 抛物线性质的应用例1 (1)已知抛物线的顶点在坐标原点,对称轴为x 轴且与圆x 2+y 2=4相交的公共弦长等于23,则抛物线的方程为________.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=4,求抛物线的方程.规律方法用待定系数法求抛物线方程的步骤提醒:求抛物线的方程时要注意抛物线的焦点位置,不同的焦点设出不同的方程.跟踪训练1.若直线x=m与抛物线y2=43x交于A、B两点,F是其焦点,若△ABF为等边三角形,求m的值.类型2 直线与抛物线的位置关系例2 (1)过定点P (0,1)作与抛物线y 2=2x 只有一个公共点的直线有几条?(2)若直线l :y =(a +1)x -1与曲线C :y 2=ax (a ≠0)恰好有一个公共点,试求实数a 的取值集合. 规律方法直线与抛物线交点问题的解题思路(1)判断直线与抛物线的交点个数时,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为一元二次方程,则利用判别式判断方程解的个数.(2)直线与抛物线有一个公共点时有两种情形:(1)直线与抛物线的对称轴重合或平行;(2)直线与抛物线相切. 跟踪训练2.若抛物线y 2=4x 与直线y =x -4相交于不同的两点A ,B ,求证OA ⊥OB .证明:由⎩⎪⎨⎪⎧y 2=4x ,y =x -4,消去y ,得x 2-12x +16=0.∵直线y =x -4与抛物线相交于不同两点A ,B , ∴可设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=12,x 1x 2=16.∵OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)=x 1x 2+x 1x 2-4(x 1+x 2)+16=16+16-4×12+16=0,∴OA →⊥OB →,即OA ⊥OB . 类型3 中点弦及弦长公式例3 过点Q (4,1)作抛物线y 2=8x 的弦AB ,恰被点Q 所平分,求AB 所在直线的方程. 规律方法“中点弦”问题解题方法跟踪训练3.已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为π4的直线l 被抛物线所截得的弦长为6,求抛物线的标准方程.类型4 抛物线的综合应用 [探究问题]1.若两条直线的斜率存在且倾斜角互补时,两条直线的斜率有什么关系?2.如何对待圆锥曲线中的定点、定值问题?例4 如图所示,抛物线关于x 轴对称,它的顶点为坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)求抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值. 母题探究1.若本例题改为:如图所示,已知直线l :y =2x -4交抛物线y 2=4x 于A ,B 两点,试在抛物线AOB 这段曲线上求一点P ,使△P AB 的面积最大,并求出这个最大面积.如何求解?2.若本例改为“抛物线方程为y2=x,且过点P(3,-1)的直线与抛物线C交于M,N两个不同的点(均与点A(1,1)不重合),设直线AM,AN的斜率分别为k1,k2”,求证:k1·k2为定值.应用抛物线性质解题的常用技巧(1)抛物线的中点弦问题用点差法较简便.(2)轴对称问题,一是抓住对称两点的中点在对称轴上,二是抓住两点连线的斜率与对称轴所在直线斜率的关系.(3)在直线和抛物线的综合题中,经常遇到求定值、过定点问题.解决这类问题的方法很多,如斜率法、方程法、向量法、参数法等.解决这些问题的关键是代换和转化.(4)圆锥曲线中的定点、定值问题,常选择一参数来表示要研究问题中的几何量,通过运算找到定点、定值,说明与参数无关,也常用特值探路法找定点、定值.课堂小结1.抛物线的性质可以总结为五个“1”,即:一个顶点,一个焦点,一条准线,一条对称轴,离心率为1的无心圆锥曲线.2.抛物线中常见的几个结论:已知AB 是抛物线y 2=2px (p >0)的焦点弦,且A (x 1,y 1),B (x 2,y 2).点F 是抛物线的焦点(如图).则有(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p .(3)以过焦点的弦为直径的圆与准线相切. (4)以焦半径为直径的圆与y 轴相切. 课堂检测1.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( ) A .12B .14C .16D .182.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4, 则点A 的坐标是( ) A .(2,±22) B .(1,±2) C .(1,2)D .(2,22)4.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是________. 5.已知点P (1,m )是抛物线C :y 2=2px 上的点,F 为抛物线的焦点,且|PF |=2,直线l :y =k (x -1)与抛物线C 相交于不同的两点A ,B . (1)求抛物线C 的方程;(2)若|AB |=8,求k 的值.参考答案新知初探 2.x 1+x 2+p . 3.①一个 ②相交 两相切 一 相离 没有思考: [提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点. 初试身手1.[提示] (1)√ (2)√ (3)× 2.【答案】D【解析】顶点到准线的距离为p 2,则p2=4.解得p =8,又因对称轴为y 轴,则抛物线方程为x 2=±16y . 3.【答案】B【解析】|AB |=x 1+x 2+p =6+2=8. 4.【答案】4【解析】双曲线的左焦点为(-3+p 216,0),由条件可知,-p2=-3+p 216,解得p =4. 合作探究类型1 抛物线性质的应用例1 (1)【答案】y 2=3x 或y 2=-3x【解析】根据抛物线和圆的对称性知,其交点纵坐标为±3,交点横坐标为±1,则抛物线过点(1,3)或(-1,3),设抛物线方程为y 2=2px 或y 2=-2px (p >0), 则2p =3,从而抛物线方程为y 2=3x 或y 2=-3x .(2)解:如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得:|BC |=2a , 由定义得:|BD |=a ,故∠BCD =30°, 在Rt △ACE 中,∵|AF |=4,|AC |=4+3a ,∴2|AE |=|AC |,∴4+3a =8,从而得a =43,∵BD ∥FG ,∴43p =23,p =2.因此抛物线的方程是y 2=4x . 跟踪训练1.解:根据题意△ABF 为等边三角形,则tan 60°=|m -3|43m ,m >0,解得m =73±12.类型2 直线与抛物线的位置关系例2 解:(1)当直线的斜率不存在时,直线x =0,符合题意.当直线的斜率存在时,设过点P 的直线方程为y =kx +1,当k =0时,直线l 的方程为y =1,满足直线与抛物线y 2=2x 仅有一个公共点;当k ≠0时,将直线方程y =kx +1代入y 2=2x ,消去y 得k 2x 2+2(k -1)x +1=0.由Δ=0,得k =12,直线方程为y =12x +1.故满足条件的直线有三条. (2)因为直线l 与曲线C 恰好有一个公共点,所以方程组⎩⎪⎨⎪⎧y =(a +1)x -1,y 2=ax只有一组实数解,消去y ,得[(a +1)x -1]2=ax ,即(a +1)2x 2-(3a +2)x +1=0 ①.(ⅰ)当a +1=0,即a =-1时,方程①是关于x 的一元一次方程,解得x =-1,这时,原方程组有唯一解⎩⎪⎨⎪⎧x =-1,y =-1.(ⅱ)当a +1≠0,即a ≠-1时,方程①是关于x 的一元二次方程. 令Δ=(3a +2)2-4(a +1)2=a (5a +4)=0,解得a =0(舍去)或a =-45.所以原方程组有唯一解⎩⎪⎨⎪⎧x =-5,y =-2.综上,实数a 的取值集合是⎩⎨⎧⎭⎬⎫-1,-45.跟踪训练2.证明:由⎩⎪⎨⎪⎧y 2=4x ,y =x -4,消去y ,得x 2-12x +16=0.∵直线y =x -4与抛物线相交于不同两点A ,B , ∴可设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=12,x 1x 2=16.∵OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)=x 1x 2+x 1x 2-4(x 1+x 2)+16=16+16-4×12+16=0,∴OA →⊥OB →,即OA ⊥OB . 类型3 中点弦及弦长公式例3 解:法一:(点差法)设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∴(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∴y 1-y 2=4(x 1-x 2), 即y 1-y 2x 1-x 2=4,∴k AB =4. ∴AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0. 法二:由题意知AB 所在直线斜率存在,设A (x 1,y 1),B (x 2,y 2), 弦AB 所在直线的方程为y =k (x -4)+1.联立⎩⎪⎨⎪⎧y 2=8x ,y =k (x -4)+1,消去x ,得ky 2-8y -32k +8=0,此方程的两根就是线段端点A ,B 两点的纵坐标. 由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∴k =4.∴AB 所在直线的方程为4x -y -15=0. 跟踪训练3.解:当抛物线焦点在x 轴正半轴上时,可设抛物线标准方程为y 2=2px (p >0),则焦点F ⎝⎛⎭⎫p 2,0,直线l 的方程为y =x -p 2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过点A ,B 向抛物线的准线作垂线,垂足分别为点A 1,点B 1,则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=⎝⎛⎭⎫x 1+p2+⎝⎛⎭⎫x 2+p2=x 1+x 2+p =6, ∴x 1+x 2=6-p .①由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px消去y ,得⎝⎛⎭⎫x -p 22=2px ,即x 2-3px +p 24=0.∴x 1+x 2=3p ,代入①式得3p =6-p ,∴p =32.∴所求抛物线的标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x . 类型4 抛物线的综合应用 [探究问题]1.[提示] 两条直线的斜率互为相反数.2.[提示] 常选择一个参数来表示要研究问题中的几何量,通过运算说明与参数无关,进而找到定点、定值.也常用特值法找定点、定值.例4 解:(1)由题意可设抛物线的方程为y 2=2px (p >0),则由点P (1,2)在抛物线上,得22=2p ×1,解得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)证明:因为P A 与PB 的斜率存在且倾斜角互补,所以k P A =-k PB ,即y 1-2x 1-1=-y 2-2x 2-1. 又A (x 1,y 1),B (x 2,y 2)均在抛物线上,所以x 1=y 214,x 2=y 224,从而有y 1-2y 214-1=-y 2-2y 224-1,即4y 1+2=-4y 2+2,得y 1+y 2=-4,故直线AB 的斜率k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.1.【答案】A【解析】线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝⎛⎭⎫12,0,则焦点到直线AB 的距离为1-12=12. 2.【答案】D【解析】抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有⎩⎪⎨⎪⎧ y 2=16x ,x 2+y 2=(x -4)2+y 2⇒⎩⎪⎨⎪⎧ y 2=16x ,x =2⇒⎩⎨⎧x =2,y =±4 2. 所以符合题意的点为(2,±42).]3.【答案】B【解析】由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0, 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B.4.【答案】158【解析】设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14. ∵|AB |=y 1+y 2+p =4,∴y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158. 5.解:(1)抛物线C :y 2=2px 的准线为x =-p 2, 由|PF |=2得:1+p 2=2,得p =2. 所以抛物线的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =k x -1,y 2=4x ,可得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0,∴x 1+x 2=2k 2+4k2. ∵直线l 经过抛物线C 的焦点F ,∴|AB |=x 1+x 2+p =2k 2+4k2+2=8, 解得k =±1,所以k 的值为1或-1.。
3.3.2第1课时 抛物线的简单几何性质 导学案正文

3.3.2抛物线的简单几何性质第1课时抛物线的简单几何性质【学习目标】能类比椭圆、双曲线几何性质的研究方法得到抛物线的范围、对称性、顶点、离心率等几何性质及其代数表达.◆知识点一抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形焦点坐标(p2,0)(-p2,0)(0,p2)(0,-p2)准线方程x=-p2x=p2y=-p2y=p2开口方向范围对称轴顶点坐标离心率【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线关于原点对称.( )(2)抛物线只有一个焦点、一条对称轴,无对称中心. ( )(3)抛物线的标准方程虽然各不相同,但是其离心率都相同.( )◆知识点二抛物线的焦半径、焦点弦与通径1.焦半径与焦点弦(1)抛物线上一点与焦点F连接的线段叫作焦半径.(2)过抛物线焦点的直线与抛物线相交,直线被抛物线所截得的线段称为抛物线的.设A(x0,y0)为抛物线上任意一点,则四种标准方程形式下的焦半径公式和焦点弦长|MN|(M(x1,y1),N(x2,y2))为标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)焦半径|AF|焦点弦长|MN|x1+x2+p-x1-x2+p y1+y2+p-y1-y2+p2.通径经过抛物线的焦点作垂直于对称轴的直线交抛物线于A,B两点,线段AB称为抛物线的通径,通径的长|AB|为.【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线x2=4y,y2=4x的焦点到准线的距离是相同的,离心率也相同.( )(2)过抛物线的焦点且垂直于对称轴的弦长是p(p>0).( )(3)P(x1,y1)是抛物线y2=2px(p>0)上一点,F是抛物线的焦点,则|PF|=x1+p.( )◆探究点一抛物线的几何性质例1 (1)已知抛物线y2=8x,求出变量x的范围及该抛物线的顶点、焦点、准线、对称轴.(2)抛物线的顶点在原点,对称轴与椭圆9x2+4y2=36的短轴所在的直线重合,抛物线的焦点到顶点的距离为3,求抛物线的标准方程及抛物线的准线方程.变式已知等边三角形AOB的边长为2,O为坐标原点,AB⊥x轴,且点A在第一象限.(1)求以O为顶点且过点A,B的抛物线的方程;(2)求(1)中所求抛物线的焦点坐标、准线方程及离心率e.[素养小结]运用抛物线的几何性质要把握三个要点:(1)定性:由抛物线的标准方程看抛物线的开口方向,关键是看准二次项是x还是y,一次项的系数是正还是负.(2)定量:确定焦点到准线的距离p(p>0).(3)转化:抛物线上的一点到焦点的距离与到准线的距离相等,解题时适时转化可起到事半功倍的效果.◆探究点二焦点弦的性质问题例2已知直线l经过抛物线y2=6x的焦点F,且与抛物线交于A,B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.变式 (多选题)经过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则下列说法中正确的是( )A.当AB与x轴垂直时,|AB|最小B.1|AF|+1|BF|=p2C.以弦AB为直径的圆与直线x=-p2相离D.y1y2=-p2[素养小结]抛物线焦点弦长的求法:设过抛物线y2=2px(p>0)的焦点F的弦的端点为A(x1,y1),B(x2,y2),利用弦所在直线的方程(注意方程的设法)与抛物线方程联立、消元,由根与系数的关系求出x1+x2,由公式|AB|=x1+x2+p求出焦点弦长.◆探究点三抛物线几何性质的应用例3 (1)已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个等边三角形的边长为( )A.8√3B.4√2C.4√3D.3√2(2)已知抛物线C:y2=4√2x的焦点为F,O为坐标原点,P为抛物线C上一点,且满足|PF|=3√2,则△POF的面积为.变式 (1)以抛物线C:y2=4x的焦点F为端点的射线与C及C的准线l分别交于A,B两点,过B且平行于x轴的直线交C于点P,过A且平行于x轴的直线交l于点Q,若|AQ|=43,则△PBF的周长为( )A.16B.12C.10D.6(2)已知A,B是抛物线y2=2px(p>0)上不同的两点,O为坐标原点,若|OA|=|OB|,且△AOB的垂心恰是此抛物线的焦点,求直线AB的方程.[素养小结]利用抛物线的性质可以解决的问题:(1)对称性:解决抛物线的内接三角形问题.(2)焦点、准线:解决与抛物线的定义有关的问题.(3)范围:解决与抛物线有关的最值问题.(4)焦点:解决焦点弦问题.。
《抛物线的简单几何性质》 学历案

《抛物线的简单几何性质》学历案一、学习目标1、掌握抛物线的定义、标准方程。
2、理解并掌握抛物线的简单几何性质,如范围、对称性、顶点、离心率等。
3、能够运用抛物线的几何性质解决相关问题。
二、学习重难点1、重点(1)抛物线的几何性质。
(2)利用几何性质求抛物线的方程和解决相关问题。
2、难点(1)抛物线的几何性质的应用。
(2)与抛物线相关的综合问题。
三、知识回顾1、抛物线的定义:平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线。
点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线。
2、抛物线的标准方程:(1)焦点在 x 轴正半轴上,方程为 y²= 2px(p > 0),焦点坐标为(\(\frac{p}{2}\),0),准线方程为 x =\(\frac{p}{2}\)。
(2)焦点在 x 轴负半轴上,方程为 y²=-2px(p > 0),焦点坐标为(\(\frac{p}{2}\),0),准线方程为 x =\(\frac{p}{2}\)。
(3)焦点在 y 轴正半轴上,方程为 x²= 2py(p > 0),焦点坐标为(0,\(\frac{p}{2}\)),准线方程为 y =\(\frac{p}{2}\)。
(4)焦点在 y 轴负半轴上,方程为 x²=-2py(p > 0),焦点坐标为(0,\(\frac{p}{2}\)),准线方程为 y =\(\frac{p}{2}\)。
四、新课导入我们已经学习了抛物线的定义和标准方程,那么抛物线还有哪些重要的几何性质呢?这些性质又能帮助我们解决哪些问题呢?让我们一起来探究吧。
五、抛物线的几何性质1、范围以抛物线 y²= 2px(p > 0)为例,因为抛物线上的点到焦点的距离等于到准线的距离,所以对于抛物线上任意一点 M(x,y),有\(x \geq 0\),即抛物线在 x 轴的右侧(包括 x 轴)。
同理,对于抛物线 y²=-2px(p > 0),有\(x \leq 0\),即抛物线在 x 轴的左侧(包括 x 轴)。
抛物线的简单几何性质教案

抛物线的简单几何性质(一)导学案【教学目标】知识与技能:了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.使学生理解并掌握抛物线的几何性质,从定义和标准方程出发,探究有关抛物线的焦半径和焦点弦的常见性质.过程与方法:从抛物线的定义和标准方程出发,结合几何分析和坐标运算,推导抛物线的性质。
培养学生分析、归纳、推理等能力.情感态度与价值观:使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,解决抛物线中的弦的问题.【学法指导】结合椭圆和双曲线的几何性质,类比抛物线的性质,通过对抛物线的标准方程的讨论,进一步理解用代数方法研究几何性质的优越性,感受坐标法和数形结合的基本思想.教学重难点:1.重点:有关抛物线焦半径和焦点弦几何性质的推理过程中所应用的方法、技巧和结论.2.难点:对抛物线的几何性质和焦点弦几何性质推理和应用的方法渗透.学情分析:【知识回顾】1.抛物线的定义、标准方程。
(生口述完成)2.焦半径直线过抛物线y2=2px (p>0)的焦点F,与抛物线交于A(x1,y1)、B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,3.填空(顶点在原点,焦点在坐标轴)方程,焦点,准线,开口.1.26y x=2.()1,0F-3.1y=-4.2270x y+=二、新课讲授【问题探究一】探究点一抛物线的几何性质问题1类比椭圆、双曲线的几何性质,结合图象,说出抛物线y2=2px (p>0)的范围、对称性、顶点、离心率.怎样用方程验证?(生通过预习,完成导学案上的表格,并小组之间互相分享结果,互相讨论)1.抛物线的几何性质(方程的方法进行验证)(生口述完成) 研究抛物线)0(22>=p px y : (1)范围因为0>p ,由方程可知0≥x ,所以抛物线在y 轴的右侧,当x 的值增大时,||y 也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以y -代y ,方程不变,所以抛物线关于x 轴对称.我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当0=y 时0=x ,因此抛物线的顶点就是坐标原点.(4)离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知1=e例题1:【引题】已知斜率为1直线经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.求线段AB 的长。
§2.3.2抛物线的简单几何性质学案
【复习巩固】1. ____________________________________________________________________叫做抛物线;_______________叫做抛物线的焦点,________________叫做抛物线的准线;焦点在x 轴上抛物线的标准方程为_________________,其焦点坐标为__________,准线方程为________________,其中p 的几何意义为________________. 3. 完成下表:4. 抛物线24(0)y ax a =<的焦点坐标是( ) A. 104a ⎛⎫⎪⎝⎭, B . 1016a ⎛⎫ ⎪⎝⎭, C. 1016a ⎛⎫- ⎪⎝⎭, D.1016a ⎛⎫⎪⎝⎭, 5. 一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点( ) A. (4,0) B . (2,0) C.(0,2) D. (0,-2)6. 已知F 为抛物线22y x =的焦点,定点Q (2,1)点P 在抛物线上,要使||PQ PF +的值最小,点P 的坐标为( ) A. (0,0) B. 112⎛⎫⎪⎝⎭, C.D. (2,2)7. 已知抛物线型拱桥的顶点到水面2m 时,水面宽为8m ,当水面升高1m 后,水面宽为____________一、抛物线22(0)y px p =>的简单几何性质 1. 范围:______________________2. 对称轴:_________________________________________ 3.顶点:____________________________________________ 4. 离心率:_____________________________________________ 二、小结:抛物线的简单几何性质一览表【例1】已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过(2M -,,求它的标准方程。
抛物线的简单几何性质教学设计
抛物线的简单几何性质教学设计教学设计:抛物线的简单几何性质一、教学目标:1.理解抛物线的定义和特点;2.掌握抛物线的几何性质;3.能够应用抛物线的性质解决相关问题。
二、教学过程:1.导入(5分钟):通过向学生展示一些有关抛物线的图片,引起他们对抛物线的兴趣。
然后询问学生对抛物线的认识,并鼓励他们提出自己对抛物线的猜测。
2.概念讲解(15分钟):2.1抛物线的定义:抛物线是一个平面曲线,它的定义由以下两个要素确定:焦点F和直线l,且F不在l上。
抛物线上的所有点与F的距离等于该点到直线l的距离。
2.2抛物线的特点:2.2.1抛物线的轴:过焦点F垂直于直线l的直线称为抛物线的轴。
2.2.2焦点和直线的关系:抛物线上任意一点P与焦点F之间的距离等于该点到抛物线的轴的距离。
2.2.3抛物线的对称性:抛物线关于抛物线的轴具有对称性。
2.2.4抛物线的顶点:焦点F和抛物线的轴的交点称为抛物线的顶点。
3.性质探究(30分钟):3.1性质1:焦点到顶点的距离等于顶点到抛物线轴的距离。
教师通过绘图和具体计算等方法,让学生发现并验证这个性质。
学生可以使用尺子或折纸法等方法进行测量,加深对这个性质的理解。
3.2性质2:顶点到抛物线上任意一点的距离等于该点到抛物线轴的距离。
教师通过绘图和具体计算等方法,让学生发现并验证这个性质。
学生可以使用尺子或折纸法等方法进行测量,加深对这个性质的理解。
3.3性质3:抛物线的对称性。
教师通过绘图和具体计算等方法,让学生发现并验证这个性质。
学生可以在纸上绘制抛物线,使用尺子或折纸法等方法观察抛物线的对称性。
4.拓展应用(30分钟):4.1问题1:已知抛物线焦点F为(0,4),顶点为(0,0),求抛物线的方程。
教师引导学生分析问题,让学生通过已知条件,利用抛物线的特征来确定未知数,并列出方程。
然后让学生自主计算,并核对答案。
4.2问题2:已知抛物线焦点F为(2,2),顶点为(0,0),直线l的方程为y=x+1,求抛物线的方程。
人教版数学高二数学人教A版选修2-1学案抛物线的简单几何性质
2.4.2抛物线的简单几何性质预习课本P68~72,思考并完成以下问题抛物线有哪些几何性质?[新知初探]抛物线的简单几何性质类型y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) 图象性质焦点F⎝⎛⎭⎫p2,0F⎝⎛⎭⎫-p2,0F⎝⎛⎭⎫0,p2F⎝⎛⎭⎫0,-p2准线x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0 对称轴x轴y轴顶点O(0,0)离心率e=1开口方向向右向左向上向下1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)抛物线x2=2py(p>0)有一条对称轴为y轴()(2)抛物线y=-18x2的准线方程是x=132()答案:(1)√(2)×2.过抛物线y2=8x的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为() A.8B.16C.32D.64答案:B3.若双曲线x23-16y2p2=1(p>0)的左焦点在抛物线y2=2px的准线上,则p=________.答案:4抛物线方程及其几何性质[典例] 已知A ,B 是抛物线y 2=2px (p >0)上不同的两点,O 为坐标原点,若|OA |=|OB |,且△AOB 的垂心恰是此抛物线的焦点F ,求直线AB 的方程.[解] 如图所示.设A (x 0,y 0),由题意可知,B (x 0,-y 0), 又F ⎝⎛⎭⎫p 2,0是△AOB 的垂心,则AF ⊥OB ,∴k AF ·k OB =-1, 即y 0x 0-p 2·⎝⎛⎭⎫-y 0x 0=-1,∴y 20=x 0⎝⎛⎭⎫x 0-p 2, 又y 20=2px 0,∴x 0=2p +p 2=5p 2. 因此直线AB 的方程为x =5p2.根据抛物线的几何性质求抛物线的方程,一般利用待定系数法,先“定形”,再“定量”.但要注意充分运用抛物线定义,并结合图形,必要时还要进行分类讨论.[活学活用]已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.解:由题意,可设抛物线方程为y 2=2ax (a ≠0),则 焦点F ⎝⎛⎭⎫a 2,0,直线l :x =a2, ∴A ,B 两点坐标分别为⎝⎛⎭⎫a 2,a ,⎝⎛⎭⎫a 2,-a , ∴|AB |=2|a |. ∵△OAB 的面积为4, ∴12·a2·2|a |=4,∴a =±22. ∴抛物线方程为y 2=±42x .直线与抛物线的位置关系[典例] OA ⊥OB .[证明] 由⎩⎪⎨⎪⎧y 2=4x ,y =x -4,消去y ,得x 2-12x +16=0.∵直线y =x -4与抛物线相交于不同两点A ,B , ∴可设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=12,x 1x 2=16.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)= x 1x 2+x 1x 2-4(x 1+x 2)+16=16+16-4×12+16=0, ∴OA ⊥OB ,即OA ⊥OB .将直线方程与抛物线方程联立,转化为一元二次方程,可通过直线与抛物线的位置关系转化为对判别式Δ或者对向量数量积的限制条件,利用限制条件建立不等式或等式,利用根与系数的关系运算求解.[活学活用]过点(-3,2)的直线与抛物线y 2=4x 只有一个公共点,求此直线方程. 解:显然,直线斜率k 存在, 设其方程为y -2=k (x +3),由⎩⎪⎨⎪⎧y -2=k (x +3),y 2=4x , 消去x ,整理得ky 2-4y +8+12k =0.①(1)当k =0时,方程①化为-4y +8=0,即y =2, 此时过(-3,2)的直线方程为y =2,满足条件. (2)当k ≠0时,方程①应有两个相等实根.由⎩⎪⎨⎪⎧ k ≠0,Δ=0,即⎩⎪⎨⎪⎧k ≠0,16-4k (8+12k )=0,得k =13或k =-1.所以直线方程为y -2=13(x +3)或y -2=-(x +3),即x -3y +9=0或x +y +1=0.故所求直线有三条,其方程分别为:y =2,x -3y +9=0,x +y +1=0.抛物线中的最值问题[典例] 离的最小值.[解] 法一:设p (x 0,y 0)是y 2=2x 上任一点,则点P 到直线l 的距离d =|x 0-y 0+3|2=y 202-y 0+32=|(y 0-1)2+5|22, 当y 0=1时,d min =524,∴P ⎝⎛⎭⎫12,1. 法二:设与抛物线相切且与直线x -y +3=0平行的直线方程为x -y +m =0,由⎩⎪⎨⎪⎧x -y +m =0,y 2=2x ,得y 2-2y +2m =0, ∵Δ=(-2)2-4×2m =0,∴m =12.∴平行直线的方程为x -y +12=0,此时点到直线的最短距离转化为两平行线之间的距离,则d min =3-122=524,此时点P 的坐标为⎝⎛⎭⎫12,1.解决与抛物线有关的最值问题时,一方面注意从几何方面观察、分析,并利用抛物线的定义解决问题;另一方面,还要注意从代数角度入手,建立函数关系,利用函数知识求解.总之,与抛物线有关的最值问题主要有两种方法:(1)定义法;(2)函数法.[活学活用]设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.解析:依题意,结合图形的对称性可知,要使满足题目约束条件的圆的半径最大,圆心位于x 轴上时才有可能,可设圆心坐标是(a,0)(0<a <3),则由条件知圆的方程是(x -a )2+y 2=(3-a )2.由⎩⎪⎨⎪⎧(x -a )2+y 2=(3-a )2,y 2=2x ,消去y 得x 2+2(1-a )x +6a -9=0,结合图形分析可知,当Δ=[2(1-a )]2-4(6a -9)=0且0<a <3,即a =4-6时,相应的圆满足题目约束条件,因此所求圆的最大半径是3-a =6-1.答案:6-1层级一 学业水平达标1.已知抛物线的对称轴为x 轴,顶点在原点,焦点在直线2x -4y +11=0上,则此抛物线的方程是( )A .y 2=-11xB .y 2=11xC .y 2=-22xD .y 2=22x解析:选C 在方程2x -4y +11=0中, 令y =0得x =-112,∴抛物线的焦点为F ⎝⎛⎭⎫-112,0,即p 2=112,∴p =11, ∴抛物线的方程是y 2=-22x ,故选C .2.过点(2,4)作直线l ,与抛物线y 2=8x 只有一个公共点,这样的直线l 有( ) A .1条 B .2条 C .3条D .4条解析:选B 可知点(2,4)在抛物线y 2=8x 上,∴过点(2,4)与抛物线y 2=8x 只有一个公共点的直线有两条,一条是抛物线的切线,另一条与抛物线的对称轴平行.3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA ·AF =-4,则点A 的坐标为( )A .(2,±2 2)B .(1,±2)C .(1,2)D .(2,22)解析:选B 设A (x ,y ),则y 2=4x ,① 又OA =(x ,y ),AF =(1-x ,-y ), 所以OA ·AF =x -x 2-y 2=-4.② 由①②可解得x =1,y =±2.4.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A ,B 两点,则弦AB 的长为( ) A .213 B .215 C .217D .219解析:选B 设A (x 1,y 1),B (x 2,y 2). 由题意知AB 的方程为y =-2(x -1), 即y =-2x +2.由⎩⎪⎨⎪⎧y 2=8x ,y =-2x +2,得x 2-4x +1=0, ∴x 1+x 2=4,x 1·x 2=1.∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+4)(16-4)=5×12=215.5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .334B .938C .6332D .94解析:选D 易知抛物线中p =32,焦点F ⎝⎛⎭⎫34,0,直线AB 的斜率k =33,故直线AB 的方程为y =33⎝⎛⎭⎫x -34,代入抛物线方程y 2=3x ,整理得x 2-212x +916=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212.由抛物线的定义可得弦长|AB |=x 1+x 2+p =212+32=12,结合图象可得O 到直线AB 的距离d =p 2·sin 30°=38,所以△OAB 的面积S =12|AB |·d =94.6.直线y =x -1被抛物线y 2=4x 截得的线段的中点坐标是________.解析:将y =x -1代入y 2=4x ,整理,得x 2-6x +1=0.由根与系数的关系,得x 1+x 2=6,x 1+x 22=3,∴y 1+y 22=x 1+x 2-22=6-22=2. ∴所求点的坐标为(3,2). 答案:(3,2)7.过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB 的中点M 到抛物线准线的距离为________.解析:抛物线的焦点为F (1,0),准线方程为x =-1.由抛物线的定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,即x 1+x 2+2=7,得x 1+x 2=5,于是弦AB 的中点M 的横坐标为52.因此,点M 到抛物线准线的距离为52+1=72.答案:728.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A ,B 两点(点A 在y 轴左侧),则|AF ||FB |=________. 解析:由题意可得焦点F ⎝⎛⎭⎫0,p 2,故直线AB 的方程为y =33x +p 2,与x 2=2py 联立得A ,B 两点的横坐标为x A =-33p ,x B =3p ,故A -33p ,16p ,B 3p ,32p ,所以|AF |=23p ,|BF |=2p ,所以|AF ||BF |=13.答案:139.已知抛物线y 2=6x ,过点P (4,1)引一弦,使它恰在点P 被平分,求这条弦所在的直线方程.解:设弦的两个端点为P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减得(y 1+y 2)(y 1-y 2)=6(x 1-x 2).① ∵y 1+y 2=2,代入①得k =y 2-y 1x 2-x 1=3. ∴直线的方程为y -1=3(x -4),即3x -y -11=0.10.已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点. (1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值.解:由y 2=4x ,得p =2,其准线方程为x =-1,焦点F (1,0).设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知,|AF |=x 1+p 2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±23.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1). 与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y ,整理得 k 2x 2-(2k 2+4)x +k 2=0.∵直线与抛物线相交于A ,B 两点, 则k ≠0,并设其两根为x 1,x 2, ∴x 1+x 2=2+4k2.由抛物线的定义可知,|AB |=x 1+x 2+p =4+4k2>4.当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线相交于A (1,2),B (1,-2),此时|AB |=4,∴|AB |≥4,即线段AB 的长的最小值为4.层级二 应试能力达标1.边长为1的等边三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A ,B 的抛物线方程是( )A .y 2=36x B .y 2=-36x C .y 2=±36xD .y 2=±33x解析:选C 设抛物线方程为y 2=ax (a ≠0).又A ⎝⎛⎭⎫±32,12(取点A 在x 轴上方),则有14=±32a ,解得a =±36,所以抛物线方程为y 2=±36x .故选C . 2.过抛物线y 2=4x 的焦点,作一条直线与抛物线交于A ,B 两点,若它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有两条C .有无穷多条D .不存在解析:选B 设A (x 1,y 1),B (x 2,y 2),由抛物线的定义,知|AB |=x 1+x 2+p =5+2=7.又直线AB 过焦点且垂直于x 轴的直线被抛物线截得的弦长最短,且|AB |min =2p =4,所以这样的直线有两条.故选B .3.直线y =kx -2交抛物线y 2=8x 于A ,B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .1或-1 C .2D .3解析:选C 由⎩⎪⎨⎪⎧y 2=8x ,y =kx -2,得k 2x 2-4(k +2)x +4=0.又由Δ=16(k +2)2-16k 2>0,得k >-1.则由4(k +2)k 2=4,得k =2.故选C . 4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA ·MB =0,则k =( ) A .12B .22C . 2D .2解析:选D 由题意可知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=4(k 2+2)k 2,x 1x 2=4.①由⎩⎪⎨⎪⎧y 1=k (x 1-2),y 2=k (x 2-2)⇒⎩⎪⎨⎪⎧y 1+y 2=k (x 1+x 2)-4k , ②y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]. ③ ∵MA ·MB =0,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0,即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D 项.5.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为________.解析:由⎩⎪⎨⎪⎧ y 2=4x ,y =x -3,消去y 得x 2-10x +9=0,得x =1或9,即⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6.所以|AP |=10,|BQ |=2或|BQ |=10,|AP |=2,|PQ |=8,所以梯形APQB 的面积S =10+22×8=48.答案:486.顶点为坐标原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得的弦长为15,则抛物线方程为________.解析:设所求抛物线方程为y 2=ax (a ≠0),联立⎩⎪⎨⎪⎧y 2=ax ,2x -y +1=0,得4x 2+(4-a )x +1=0,则Δ=(4-a )2-16>0,得a >8或a <0.设直线与抛物线的交点分别为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=a -44,x 1x 2=14. 所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2] =5×⎣⎡⎦⎤⎝⎛⎭⎫a -442-4×14=15,解得a =12或a =-4.所以抛物线方程为y 2=12x 或y 2=-4x . 答案:y 2=12x 或y 2=-4x7.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点,O 为坐标原点. (1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10 时,求实数k 的值.解:(1)证明:由⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1)消去x ,得ky 2+y -k =0.设A (x 1,y 1),B (x 2,y 2),由题意,知k ≠0,则y 1+y 2=-1k,y 1y 2=-1.由A ,B 在抛物线y 2=-x 上,可知y 21=-x 1,y 22=-x 2,则y 21y 22=x 1x 2.因为k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,所以OA ⊥OB .(2)设直线与x 轴交于点N . 令y =0,得x =-1,即N (-1,0).因为S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON |·|y 2|=12|ON ||y 1-y 2|,所以S △OAB =12×1×(y 1+y 2)2-4y 1y 2=12⎝⎛⎭⎫-1k 2+4=10. 解得k =±16.8.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p . 所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x . (2)依题意知l 与坐标轴不垂直, 故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2| =m 2+1·(y 1+y 2)2-4y 1y 2 =4(m 2+1).高中数学-打印版精心校对完整版 又l ′的斜率为-m ,所以l ′的方程为x =-1my +2m 2+3. 将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4| =1+1m 2·(y 3+y 4)2-4y 3y 4 =4(m 2+1) 2m 2+1m 2. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |, 从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4. 化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.。
学案8:2.3.2抛物线的简单几何性质
2.3.2抛物线的简单几何性质学习目标1.掌握抛物线的性质、焦半径、焦点弦的应用. 2.掌握直线与抛物线位置关系的判断.学习重点:会用抛物线的性质解决与抛物线相关的综合问题.学习难点:直线与抛物线的位置关系的应用.学习过程 自学导引1.抛物线的几何性质⎛⎫p ⎛⎫p⎛⎫p ⎛⎫p2.焦半径与焦点弦抛物线上一点与焦点F 的连线的线段叫做焦半径,过焦点的直线与抛物线相交所得弦叫做焦点弦,设抛物线上任意一点P (x 0,y 0),焦点弦端点A (x 1,y 1),B (x 2,y 2),则四种标准形式下的焦点弦,焦半径公式为度.名师点睛1.抛物线与双曲线的区别(1)抛物线的几何性质和双曲线的几何性质比较起来,差别较大,它的离心率为1,只有一个焦点、一个顶点、一条对称轴、一条准线,它没有对称中心.(2)抛物线与双曲线的一支,尽管它们都是不封闭的有开口的光滑曲线,但是它们的图象性质是完全不同的.事实上,从开口的变化规律来看,双曲线的开口是越来越阔,而抛物线开口越来越趋于扁平.2.抛物线的焦点弦如图,AB是抛物线y2=2px(p>0)过焦点F的一条弦,设A(x1,y1)、B(x2,y2),AB的中点M(x0,y0),相应的准线为l.(1)以AB为直径的圆必与准线l相切;(2)|AB|=2(x0+p2)(焦点弦长与中点关系);(3)|AB|=x1+x2+p;(4)若直线AB的倾斜角为α,则|AB|=2p sin2α;如当α=90°时,AB叫抛物线的通径,是焦点弦中最短的;(5)A、B两点的横坐标之积、纵坐标之积为定值,即x1·x2=p24,y1·y2=-p2.3.直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程ax2+bx+c=0的形式,(1)若a=0,直线与抛物线有一个公共点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)若a ≠0,当Δ>0时,直线与抛物线相交,有两个公共点; 当Δ=0时,直线与抛物线相切,有一个公共点; 当Δ<0时,直线与抛物线相离,无公共点. 例题解析例1已知抛物线关于x 轴对称,它的顶点为坐标原点,并且经过点M (2,),求它的标准方程.例2斜率为1的直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,求线段AB 的长.例3 过抛物线焦点 F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.例4 已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1) ,斜率为k , k 为何值时,直线l 与抛物线 y 2=4x :只有一个公共点;有两个公共点;没有公共点?拓展训练1、已知双曲线方程是x 28-y 29=1,求以双曲线的右顶点为焦点的抛物线的标准方程及抛物线的准线方程.2、抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.3、求过点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.4、已知抛物线y2=6x,过点P(4,1)引一条弦P1P2使它恰好被点P平分,求这条弦所在的直线方程及|P1P2|.5、已知A、B是抛物线y2=2px(p>0)上的两点,并满足OA⊥OB,求证:(1)A、B两点的横坐标之积、纵坐标之积,分别都是一个定值;(2)直线AB经过一个定点.6、如图,过抛物线y2=x上一点A(4,2)作倾斜角互补的两条直线AB,AC交抛物线于B,C两点,求证:直线BC的斜率是定值.参考答案学习过程自学导引1.抛物线的几何性质试一试: 通径的长度为2p .例题解析例1解:因为抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点M (2,),所以,可设它的标准方程为因为点M 在抛物线上,所以 即p =2.因此,所求抛物线的标准方程是例2【解析】由抛物线的方程可以得到它的焦点坐标,又直线l 的斜率为1,所以可以求出直线l 的方程;与抛物线的方程联立,可以求出A ,B 两点的坐标;利用两点间的距离公式可以求出∣AB |.这种方法虽然思路简单,但是需要复杂的代数运算.下面,我们介绍另外一种方法——数形结合的方法.如图,设A (x 1,y 1),B (x 2,y 2).由抛物线的定义可知|AF |等于点A 到准线的距离|AA ’|设|AA ’|=d A ,而d A =x 1+1,于是|AF|= d A =x 1+1.同理|BF |=|BB ’|= d B =x 2+1,于是得|AB |=|AF |+|BF |= x 1+x 2+2由此可见,只要求出点AB 的横坐标之和x 1+x 2,就可以求出|AB |.解:由题意得,p =2,,焦点F (1,0),准线l :x =-1.如图,设设A (x 1,y 1),B (x 2,-22(0)y px p =>2(22,p -=⨯24.y x =12p=y2),A,B到准线的距离分别为d A, d B.由抛物线的定义可知|AF|= d A=x1+1,|BF|=|BB’|= d B=x2+1,于是AB=|AF|+|BF|=x1+x2+2,由已知得抛物线的焦点为F(1,0),所以直线AB的方程为y=x-1.①将①代入方程y2=4x,得(x-1)2=4x化简得x2-6x+1=0由求根公式得x1, x2=3-,于是|AB|= x1+ x2=8.所以,线段AB的长是8.例3【解析】我们用坐标法证明,即通过建立抛物线及直线的方程,借助方程研究直线DB 与抛物线对称轴之间的位置关系.建立如图所示的直角坐标系,只要证明点D的纵坐标与点B的纵坐+标相等即可.证明:如图,以抛物线的对称轴为x轴,它的顶点为原点,建立直角坐标系.设抛物线的方程为过点A的坐标为(,y0),则直线OA的方程为抛物线的准线方程是联立(2)(3),可得点D的纵坐标为22y px, (1)=22yp2py x(y), (2)y=≠2px. (3)=-因为点F 的坐标为(,0),所以直线AF 的方程为联立(1)(5),可得点B 的纵坐标为由(4)(6)可知,DB ∥x 轴. 当y 2=p 2时,结论显然成立.所以,直线DB 平行于抛物线的对称轴.例4 【解析】用解析法解决这个问题,只要讨论直线l 的方程与抛物线的方程组成的方程组的解的情况,由方程组解的情况判断直线l 与抛物线的位置关系.由方程组2p y . (4)y =-2p022022022py py (x ), (5)y p y p .=--≠其中2p y . (6)y =-()12 ,y k x .-=+解:由题意设直线的方程为l ()2124y k x ,y x ,⎧-=+⎪⎨=⎪⎩()*()244210-++=可得ky y k ()101k ,y .==当时由方程得21144y y x,x .===把代入得114,(,).这时直线与抛物线只有一个公共点l ()()2201621k , k k .≠∆=-+-当时方程的判别式为211021012,k k ,k ,k .︒∆=+-==-=由即解得或拓展训练1、解 因为双曲线x 28-y 29=1的右顶点坐标为(22,0),所以p2=22,且抛物线的焦点在x 轴正半轴上,所以,所求抛物线方程为y 2=82x ,其准线方程为x =-2 2.规律方法 根据抛物线的几何性质求抛物线的方程,需要确定对称轴和开口方向以及一个待定系数p ,即先定型,再定量,必要时结合图形.2、解 椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上, ∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3,即p2=3,112,k ,k ,,.,.=-=*于是当或时方程①只有一个解从而方程组()只有一个解这时直线与抛物线只有一个公共点l 212021012,k k ,k .︒∆>+-<-<<由即解得1102,k k ,,.,.-<<≠于是当,且时方程有两个解从而方程组有两个解这时直线与抛物线有两个公共点l 112,k ,k ,,.,.<->于是当或时方程 没有实数解从而方程组没有解这时直线与抛物线没有公共点l ,综上我们可得1102k ,k ,k .=-==当或或时,直线与抛物线只有一个公共点l 1102k k ,.-<<≠当,且时直线与抛物线有两个公共点l 112k ,k ,,.<->当或时直线与抛物线没有公共点l∴p =6.∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3.3、解 (1)若直线斜率不存在,则过P (0,1)的直线方程为x =0.直线x =0与抛物线只有一个公共点.(2)若直线斜率存在,设为k ,则过P 的直线方程为y =kx +1.由方程组⎩⎪⎨⎪⎧y =kx +1,y 2=2x ,消元得:k 2x 2+2(k -1)x +1=0,①当k =0时,得⎩⎪⎨⎪⎧x =12,y =1,即直线y =1与抛物线只有一个公共点.②当k ≠0时,若直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0.∴k =12,∴直线方程为:y =12x +1.综上所述:所求直线方程为x =0或y =1或y =12x +1.4、解 设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2). ∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3,∴直线的方程为y -1=3(x -4),即3x -y -11=0.由⎩⎪⎨⎪⎧y 2=6x ,y =3x -11,得y 2-2y -22=0, ∴y 1+y 2=2,y 1·y 2=-22. ∴|P 1P 2|=1+1922-4×-22=22303. 5、解 (1)因为AB 斜率不为0,设直线AB 方程为my =x +b ,由⎩⎪⎨⎪⎧my =x +by 2=2px 消去x ,得y 2-2pmy +2pb =0. 由Δ=(-2pm )2-8pb >0, 又∵y 1+y 2=2pm ,y 1y 2=2pb , 又∵OA ⊥OB , ∴x 1·x 2+y 1·y 2=0,∴y 21·y 224p2+y 1·y 2=0, ∴b 2+2pb =0,∴b +2p =0,∴b =-2p . ∴y 1y 2=-4p 2,x 1·x 2=b 2=4p 2所以A 、B 两点的横坐标之积、纵坐标之积,分别是4p 2和-4p 2; (2)AB 方程为my =x -2p ,所以AB 过定点(2p,0). 6、证明 设k AB =k (k ≠0), ∵直线AB ,AC 的倾斜角互补, ∴k AC =-k (k ≠0),∵AB 的方程是y =k (x -4)+2.由方程组⎩⎪⎨⎪⎧y =k x -4+2,y 2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0. ∵A (4,2),B (x B ,y B )是上述方程组的解. ∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k 2.以-k 代换x B 中的k , 得x C =4k 2+4k +1k 2,∴k BC =y B -y Cx B -x C=k x B -4+2-[-k x C -4+2]x B -x C=k x B +x C -8x B -x C =k 8k 2+2k 2-8-8kk 2=-14.所以直线BC 的斜率为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线的简单几何性质(学案)
【知识梳理】:
例1、斜率为1的直线经过抛物线y2 =4x的焦点,与抛物线相交于两点A、B, 求线段AB 的长.
例2、已知抛物线方程为y2 =4x,直线l过定点P(-2,1),斜率为k.
(1)k为何值时,直线l与抛物线y2 =4x只有一个公共点;
(2)k为何值时,直线l与抛物线y2 =4x有两个公共点;
(3)k为何值时,直线l与抛物线y2 =4x没有公共点。
例3、已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值
【自测练习】
1.抛物线y =2x 2的焦点坐标是( )
(A) (0,41) (B) (0,81) (C) (21,0) (D) (4
1,0) 2.抛物线21x m
y =(m ≠0)的焦点坐标是( ) (A) (0,4m )或(0,4
m -) (B) (0,4m ) (C) (0,m 41)或(0,m 41-) (D) (0,m
41) 3. 过点(0,1)且与抛物线y 2=x 只有一个公共点的直线有 ( )
(A)一条 (B)两条 (C)三条 (D)无数条
4.顶点在原点,焦点在y 轴上,且过点P (4,2)的抛物线方程是( )
(A) x 2=8y (B) x 2=4y (C) x 2=2y (D) y x 2
12= *5、已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则
||||MF MP +的最小值为( )
(A )3 (B )4 (C )5 (D )6
6、抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长等于8,则抛物线方程为
7、已知抛物线y 2
=-6x ,则以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的标准方程是
8、求焦点在直线3x -4y -12=0上的抛物线标准方程
9、抛物线x2=4y上一点A到抛物线的焦点的距离是10,求A点坐标
10、有一抛物线型拱桥,当水面距拱顶4米时,水面宽20米,当水面上升1米时,水面宽是多少米?。