全电路欧姆定律与部分电路欧姆定律

全电路欧姆定律与部分电路欧姆定律
全电路欧姆定律与部分电路欧姆定律

全电路欧姆定律与部分电路欧姆定律解析

一、部分电路欧姆定律与闭合电路欧姆定律的内容

部分电路欧姆定律也就是初中学过的欧姆定律,内容表述为:导体中的电流跟导体两端的电压U 成正比,跟导体的电阻R 成反比。用公式表述为:R

U I =,上式可变形I U R =或IR U =,电路图如图1中的虚线部分所示。 闭合电路欧姆定律也叫全电路欧姆定律,其内容表述为:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。用公式表述为:r

R E I +=,上式可变形为Ir IR E +=或写成外内U U E +=,电路图如图2所示。 二、部分电路欧姆定律与闭合电路欧姆定律的比较

1.相同点

二者的相同点:两表达式中的R 一般指纯电阻(线性电阻),都既可应用于直流电路又可应用于交流电路。

2.不同点

二者的不同点:(1)、部分电路欧姆定律中不涉及电源,而闭合电路欧姆定律应用于内、外电路组成的闭合回路,必有电源(电动势);

U

图1 图2

图3 图4

(2)、部分电路欧姆定律常用于计算电路中某元件的电阻、电流与电压间的关系,而闭合电路欧姆定律则注重的是整个闭合电路的电阻、电流与电动势的关系;

(3)部分电路欧姆定律常表示某一个金属导体在温度没有显著变化的前提下,电阻是不变的,可用U I -图象(导体的伏安特性曲线)表示,如图3。而闭合电路欧姆定律r

R E I +=可变式为Ir IR E +=,即Ir E U -=,也可用I U -图象表示,如图4,这条向下倾斜的直线为电源的外特性曲线;当外电路断开时,也就是0=I ,Ir 也变为零,则E U =,这就是说,断路时的路端电压等于电源电动势;当电源两端短路时,外电阻0=R ,而r

E I =

0,根据图象可求电源的内阻。

跟踪练习

1.下列说法中正确的是( )

A .由I U R =知道,一段导体的电阻跟它两端的电压成正比,跟通过它的电流成反比

B .比值I U 反映了导体阻碍电流的性质,即I

U R = C .导体电流越大,电阻越小

D .由R U I =知道,通过一段导体的电流跟加在它两端的电压成正比

2、根据部分电路欧姆定律,下列判断中正确的是( )

A .对欧姆定律适用的导体或器件,电流与电压不成正比,伏安特性曲线不是直线

B .电流经过电阻时,沿电流方向电势要降低

C .导体中的电压越大,电阻越大

D .电阻是反映导体材料导电性能的物理量

3.有一电池,当两端接Ω3的电阻时,电流为A 0.1;当再串联一只Ω3的电阻时,路端电压为V 6.3。那么,电源的电动势为 V 、内阻为 Ω。

4.有一个电源,因其外电路电阻发生了变化,使电源的路端电压增加了

V 8.4,同时使输出电流变化了A 4.0,则这个电源的内电阻为 Ω。

5.如图10-5所示,当滑动变阻器的滑片向上移

动时( )

A .电压表的示数增大,电流表的示数减小

B .电压表、电流表的示数都增大

C.电压表、电流表的示数都减小

D.电压表的示数减小,电流表的示数增大

答案:1、BD 2、BD 3、4.5,1.5 4、1.2 5、A 如有侵权请联系告知删除,感谢你们的配合!

关于全电路欧姆定律及其应用

关于全电路欧姆定律及其应用 摘要在电学中,全电路欧姆定律是最基本、最主要的内容之一,并且涉及到很多其他的物理学内容。基于此,本文将阐述全电路欧姆定律的概念,以各个物理量之间的关系为基础,探究全电路欧姆定律的实际应用,旨在降低对全电路欧姆定律的理解难度,实现更灵活的应用,为相关人员提供参考。 关键词全电路欧姆定律;能量转化;能量守恒 前言 在理工类科学研究中,物理學是基础内容,也是进一步研究的基础,明确各个物理量之间关系,才能有序进行后续研究。因此,进行研究的过程中中,研究人员要更加重视基础的理论知识,完善自身的掌握程度,深入了解全电路欧姆定律的内涵以及应用的方式。只有有效掌握该定律,才能做到在实际工作中有效、灵活应用,为各类相关研究提供保障。 1 全电路欧姆定律 根据物理学中的能量转化定律、能量守恒定律可以发现,全电路中应该包含以下内容:It=UIt+I2rt,=U+Ir。因为在相关定律中,U=IR,所以=IR+Ir,由此可知,全电路欧姆定律即为:I=/(R+r)。具体来说,全电路欧姆定律就是根据物理学中能量转化定律、能量守恒定律而得出的,因此可以说全电路欧姆定律就是能量转化定律、能量守恒定律来两种概念、公式在电学中的应用,并且具有具有普遍性的特征。但是,在导出公式的过程中,又只能运用全电路欧姆定律中的一部分,故而该定律存在局限性,仅仅可以将其应用在纯电阻的电路中[1]。 2 全电路欧姆定律的应用 2.1 明确物理量之间的关系 在电学中,全电路欧姆定律包含很多的物理量,且相互之间存在着密切的联系,具体主要现在以下几方面: 第一组关系:电动势与内外电压。根据公式I=/(R+r)可以得出以下公式与结论:=U+U内、=I(R+r)。 第二组关系:路端电压与电流。根据公式=U+U内可以发现,U=-Ir,并且此公式能够说明在某一段电路中,路端的电压值会随着电流的增大而逐渐变小。 第三组关系:外电阻与电流。同样根据公式I=/(R+r)可知,对于全电路中的某一处电源来说,电阻值变大其电流的逐渐减小。

全电路欧姆定律

全电路欧姆定律(教案) 教学目标 知识目标: (1)知道电动势的概念,知道电源的电动势等于外电压和内电压之和 (2)理解闭合电路欧姆定律及其公式,并能熟练地解决有关的电路问题 能力目标: 理解全电路欧姆定律及其公式,并能熟练地解决有关的电路问题 情感目标:培养学生实验探索和科学推理相结合的物理思维方法 重点和难点 重点:电动势的概念; 闭合电路欧姆定律的内容及其理解 难点:电动势的概念 关键:做好演示实验 教学方法 教学方法:实验法、设疑EWB仿真实验 学情分析 知识基础:学生已经掌握了最基本的电路知识包括最基本的一个完整电路由几部分组成,部分电路欧姆定律,串、并联电路等。掌握了电流产生的条件,电压、电势等概念. 能力分析:学生已经具备了一定的动手、观察、归纳能力. 情感分析:多数学生对物理学习有一定的兴趣,能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强. 学习方法:引导学生采用自主探索与互相协作相结合的学习方式.让每一个学生都能参与研究,并最终学会学习 教学过程 ? 1. 直接感受激情导入 复习提问:电荷的定向移动形成电流.那么,导 体中形成电流的条件是什么呢? 演示实验:将小灯泡接在充满电的电容器和电池 两端,分别看到什么现象?为什么会出现这种现 象呢?(小灯泡闪亮一下就熄灭.接在电池两端 能持久亮着。) (学生分析、研究、讨论) 教师归纳:当电容器充完电后,其上下两极板分 别带上正负电荷,两板间形成电势差.当用导线 把小灯泡和电容器两极板连通后,电子就在电场 力的作用下通过导线产生定向移动而形成电流,但这是一瞬间的电流.因为两极板上正负电荷逐渐中和而减少,电势差也逐渐减少为零,所以电流减小为零.而电池就不同了。 结论:为了形成持续的电压,必须不断补充两极板上减少的电荷.这才能使两极板保持恒定的电势差,从而在导线中维持恒定的电流,能够提供这种非静电力的装置叫电源.

高中物理闭合电路的欧姆定律解题技巧及练习题及解析

高中物理闭合电路的欧姆定律解题技巧及练习题及解析 一、高考物理精讲专题闭合电路的欧姆定律 1.如图所示电路中,19ΩR =,230ΩR =,开关S 闭合时电压表示数为11.4V ,电流表 示数为0.2A ,开关S 断开时电流表示数为0.3A ,求: (1)电阻3R 的值. (2)电源电动势和内电阻. 【答案】(1)15Ω (2)12V 1Ω 【解析】 【详解】 (1)由图可知,当开关S 闭合时,两电阻并联,根据欧姆定律则有: 2 1123 ()IR U I R IR R =+ + 解得: 315ΩR = (2) 由图可知,当开关S 闭合时,两电阻并联,根据闭合电路的欧姆定律则有: 2 13 ()11.40.6IR E U I r r R =++ =+ S 断开时,根据闭合电路的欧姆定律则有: 212()0.3(39)E I R R r r =++=?+ 联立解得: 12V E = 1Ωr = 2.某实验小组设计了如图所示的欧姆表电路,通过调控电键S 和调节电阻箱2R ,可使欧姆表具有“1?”和“10?”两种倍率。已知:电源电动势 1.5V E =,内阻0.5Ωr =;毫安表满偏电流g 5mA I =,内阻g 20ΩR =,回答以下问题:

①图的电路中:A 插孔应该接_______表笔(选填红、黑);1R 应该选用阻值为_________Ω的电阻(小数点后保留一位小数); ②经检查,各器材均连接无误,则:当电键S 断开时,欧姆表对应的倍率为___________(选填“1?”、“10?”); ③为了测量电阻时便于读出待测电阻的阻值,需将毫安表不同刻度标出欧姆表的刻度值, 其中,中央刻度 g 2 I 处应标的数值是________________; ④该小组选择S 闭合的档位,欧姆调零操作无误,测量电阻x R 时,毫安表指针处于图位置,由此可知被测电阻x R =_______Ω。 【答案】黑 2.2 ×10 30 45 【解析】 【详解】 ①[1]欧姆档内部电源的正极接黑表笔; [2]根据欧姆档倍率关系,可知闭合开关可以将电流表量程变为原来的10倍,根据分流特点: 1g 5mA 105mA 5mA R R =?- 解得:1 2.2ΩR ≈; ②[3]当电键S 断开时,电流表的量程较小,在相同的电压下,根据闭合欧姆定律: E I R = 总 可知电流越小,能够接入的电阻越大,所以当电键S 断开时,对应10?档; ③[4]假设欧姆档内部电阻为R 内,根据闭合欧姆定律: g E I R = 内 g 0 2+I E R R = 内

全电路欧姆定律教案

精心整理 全电路欧姆定律 安全与法制教育: 加强学生日常的安全教育,心理疏导及其食品安全教育,课间操楼道拥挤注意事项,周末及其节假日放学不要乘坐三无车辆。 一、教材分析 课标分析:知道电源的电动势和内阻,理解闭合电路的欧姆定律 12 34512、通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法。 3、了解路端电压与电流的U-I 图像,培养学生利用图像方法分析电学问题的能力。 4、利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。 (三)情感态度价值观 1、通过探究物理规律培养学生的创新精神和实践能力。 2、通过实验探究,加强对学生科学素质的培养。 3、通过实际问题分析,拉近物理与生活的距离,增强学生学习物理的兴趣。 四、教学重点、难点

推导闭合电路欧姆定律,应用定律进行相关讨论是本节的重点,帮助学生理解电路中的能量转化关系是基础和关键。应用闭合电路欧姆定律讨论路端电压与负载关系是本节难点。 认识闭合电路 问题1:最简单的闭合电路 是由哪几部分组成的?

选做: 从电势角度分析、推导闭合电路欧姆定律。 设计目的:使学生利用已有知识,多角度推导闭合电路欧姆定律,更加深刻地理解闭合电路欧姆定律。 七、板书设计 §2-7闭合电路欧姆定律 1.认识闭合电路 外电路R沿电流方向电势降落 内电路r沿电流方向电势“升中有降” 2.闭合电路中的能量转化 3.闭合电路欧姆定律 (1)内容:闭合电路中的电流跟 电源的电动势成正比,跟内、外电路的 电阻之和成反比。 (2)公式: r R E I + = (3)适用条件:纯电阻电路 4.路端电压与负载的关系 R增大时,I减小,U路增大 R减小时,I增大,U路减小 当外电阻R减小时,数据记录

高中物理闭合电路的欧姆定律常见题型及答题技巧及练习题(含答案)

高中物理闭合电路的欧姆定律常见题型及答题技巧及练习题(含答案) 一、高考物理精讲专题闭合电路的欧姆定律 1.如图(1)所示 ,线圈匝数n =200匝,直径d 1=40cm ,电阻r =2Ω,线圈与阻值R =6Ω的电阻相连.在线圈的中心有一个直径d 2=20cm 的有界圆形匀强磁场,磁感应强度按图(2)所示规律变化,试求:(保留两位有效数字) (1)通过电阻R 的电流方向和大小; (2)电压表的示数. 【答案】(1)电流的方向为B A →;7.9A ; (2)47V 【解析】 【分析】 【详解】 (1)由楞次定律得电流的方向为B A → 由法拉第电磁感应定律得 B E n n S t t ?Φ?==??磁场面积22()2d S π=而0.30.2/1/0.20.1 B T s T s t ?-==?- 根据闭合电路的欧姆定律7.9E I A R r = =+ (2)电阻R 两端的电压为U=IR=47V 2.手电筒里的两节干电池(串联)用久了,灯泡发出的光会变暗,这时我们会以为电池没电了。但有人为了“节约”,在手电筒里装一节新电池和一节旧电池搭配使用。设一节新电池的电动势E 1=1.5V ,内阻r 1=0.3Ω;一节旧电池的电动势E 2=1.2V ,内阻r 2=4.3Ω。手电筒使用的小灯泡的电阻R =4.4Ω。求: (1)当使用两节新电池时,灯泡两端的电压; (2)当使用新、旧电池混装时,灯泡两端的电压及旧电池的内阻r 2上的电压; (3)根据上面的计算结果,分析将新、旧电池搭配使用是否妥当。 【答案】(1)2.64V ;(2)1.29V ;(3)不妥当。因为旧电池内阻消耗的电压U r 大于其电动势E 2(或其消耗的电压大于其提供的电压),灯泡的电压变小

全电路欧姆定律题型归类解析

全电路欧姆定律题型归类解析 卢小柱 全电路欧姆定律是恒定电流中的核心内容,也是电学中的重点和高考的热点。关于全电路欧姆定律的题型,可以归纳为下面几种,供同学们参考。 1、动态分析题 当闭合电路中某个用电器的阻值发生变化时,将引起电路中的电流、路端电压、电源的输出功率等其它物理量的变化。这时,可根据全电路欧姆定律进行定性讨论判断。 例1 如图1所示的电路中,电源的电动势为ε、内阻为r 。当可变电阻的滑动片P 向b 点移动时,电压表V 1读数的U 1与电压表V 2的读数U 2的变化情况是:(94年全国) (A)U 1变大,U 2变小 (B)U 1变大,U 2变大 (C)U 1变小,U 2变小 (D)U 1变小,U 2变大 解析:由图可知,当滑片P 向b 点移动时,电路总电阻增大,根据欧姆定律I= r R +ε得电路总电流减小,电源内电压U=Ir 减小,路端电压U=ε-Ir 增 大,故电压表V 1 的读数增大,电压表V 2的读数U 2=IR 2 减小,故选项A 正确。 小结:这类题通常可用如下思路来解决:某个电阻变化?电路总电阻变化?电路总电流变化?内电压变化?路端电压变化?…。 2、电路计算题 例 2 一台电炉在额定电压下的功率为P 0=400W,电源在不接负载时的路端电压与电炉的额定电压相同。当电炉接到电源上时,电炉实际消耗的功率为P 1=324W.若将两个这样的电炉并联到电源上,两电炉实际消耗的总功率是多少?(91年上海) 解析:设电炉的额定电压为U 0,电阻为R,电源的电动势为ε=U 0,内阻为r ,根据P=U 2/R=I 2R 得: P 0=R U 2 0 …① P 1=I 12 R=R r R U 20)(+=220)/1(1R r R U + …② P 2=I 22R/2=2/)2/( 2 0R r R U += 22 0)21(21R r R U + …③ 由①②式可得: 9 1 10=-=P P R r …④ 将①式和④式代入③得,两电炉的实际功率为: P 2= 2)9 121(2400 +=535.5W 。 小结:关于电路计算题,先要通过认真的审题,寻找“突破口”,例如本题中的“电源在不接负载时的路端电压与电炉的额定电压相同”即告诉了电源电动势为U 0,然后利用欧姆定律和功率等有关公式求解。 3、电容器关联题 电容器的作用是贮藏电量,电量大小与其两端电压有关,当加在电容器两端的电压发生变化时,电容器中的电量就要发生变化,因此在交流电路中,电容器中的电量是不断变化的。而在直流电路中, 图1

全电路欧姆定律教案人教版

全电路欧姆定律教案人 教版 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第十节闭合电路欧姆定律 教学目的:1.导出闭合电路的欧姆定律I=ε/(R+r) 2.研究路端电压的变化规律,掌握闭合电路中的U-R关系,U-I关系. 3.学会运用闭合电路的欧姆定律解决简单电路的问题. 教学过程: 复习引入: 1.问:电动势的物理意义是什么它在数值上等于什么 (表明在闭合电路中通过1C电量时,电源把多少其它形式的能转化为电能,因而是动势表征电源把其它形式的能转化为电能的特性的物理量;在数值上等于电源没有接入电路时两极间的电压.) 2.问:写出(部分电路)欧姆定律的公式,并指出定律的研究对象. (表达式:I=U/R或U=IR,欧姆定律研究同一段电路上的I U R的关系.) 3.设问:上述欧姆定律只是研究一段纯电阻电路上的问题,如果研究对象是包括电源 在内的闭合电路,那么电路中的电流强度又跟什么有关关系如何呢 这些问题就要由闭合电路的欧姆定律来解决了.本节课就要学习这一定律,并运用它解决一些具体问题. 讲授新课:

1.推导闭合电路的欧姆定律的数学表达式,并说明其物理意义. 给出条件: 闭合电路中,电源电动势为ε,内电阻为r,外电阻为R,电路中的电流强度为I. 提出要求: 寻找I ε R r的关系. 推导: 上式表明:闭合电路里的电流强度,跟电源的电动势成正比,跟整个电路的电阻成反比.这就是闭合电路的欧姆定律. 注意: 式中的I是闭合电路中的总电流强度,如果外电路还有其它并联支路,则I是整个电路的干路电流强度,式中的R是整个外电路的总电阻,R+r就 是整个闭合电路的总电阻. (学生练习《高二物理》P55(1)的第1问) 2.研究路端电压变化规律: ①研究路端电压随外电阻的变化规律: 提出问题:如果把P55(1)题的外电路电阻的数值改变了,可以肯定路端电压是会变化的。在ε和r不变的情况下,路端电压随外电阻变化的规律究竟是 怎样的呢 分析:

全电路欧姆定律与部分电路欧姆定律

全电路欧姆定律与部分电路欧姆定律解析 一、部分电路欧姆定律与闭合电路欧姆定律的内容 部分电路欧姆定律也就是初中学过的欧姆定律,内容表述为:导体中的电流跟导体两端的电压U 成正比,跟导体的电阻R 成反比。用公式表述为:R U I =,上式可变形I U R =或IR U =,电路图如图1中的虚线部分所示。 闭合电路欧姆定律也叫全电路欧姆定律,其内容表述为:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。用公式表述为:r R E I +=,上式可变形为Ir IR E +=或写成外内U U E +=,电路图如图2所示。 二、部分电路欧姆定律与闭合电路欧姆定律的比较 1.相同点 二者的相同点:两表达式中的R 一般指纯电阻(线性电阻),都既可应用于直流电路又可应用于交流电路。 2.不同点 二者的不同点:(1)、部分电路欧姆定律中不涉及电源,而闭合电路欧姆定律应用于内、外电路组成的闭合回路,必有电源(电动势); (2)、部分电路欧姆定律常用于计算电路中某元件的电阻、电流与电压间的关系,而闭合电路欧姆定律则注重的是整个闭合电路的电阻、电流与电动势的关系; (3)部分电路欧姆定律常表示某一个金属导体在温度没有显著变化的前提 U 图1 图2

图3 图4 下,电阻是不变的,可用U I -图象(导体的伏安特性曲线)表示,如图3。而闭合电路欧姆定律r R E I +=可变式为Ir IR E +=,即Ir E U -=,也可用I U -图象表示,如图4,这条向下倾斜的直线为电源的外特性曲线;当外电路断开时,也就是0=I ,Ir 也变为零,则E U =,这就是说,断路时的路端电压等于电源电动势;当电源两端短路时,外电阻0=R ,而r E I = 0,根据图象可求电源的内阻。 跟踪练习 1.下列说法中正确的是( ) A .由I U R =知道,一段导体的电阻跟它两端的电压成正比,跟通过它的电流成反比 B .比值I U 反映了导体阻碍电流的性质,即I U R = C .导体电流越大,电阻越小 D .由R U I =知道,通过一段导体的电流跟加在它两端的电压成正比 2、根据部分电路欧姆定律,下列判断中正确的是( ) A .对欧姆定律适用的导体或器件,电流与电压不成正比,伏安特性曲线不

全电路欧姆定律

第三节 全电路欧姆定律 一、基础知识 1、一个概念:电动势——表征电源把其它形式的能转化为电能本领的物理量,它是由电源本身的性质决定,与外电路无关。其在数值上等于电路中通过1C 电量时电源所提供的电能。 2、两种图象:U ——I 图象,P 出——R 图象,灵活应用这两种图象,对解题很有帮助。 3、三个表达式:内 外r R E I += ,或U 端=E-Ir ,或E=U 端+U 内 4、四种功率:①电源总功率:P 总=EI ②输出功率P 出=U 端I ③电源损耗功率P 内=I 2 r ,线 路损耗功率P 损=I 2 R 线 在闭合电路中,当外电路是纯电阻电路时,功率P 总=EI=r R E +2 ,输出功率P 出=U 端 I=R r R E ?+2 2)(,效率r R R P P +=总出。最大功率P 总m=r E 2,此时有η→0,全部能量消耗在电源内部,属于严重短路,实际上是不允许的。输出功率P 出=()r r R R E R r R E 42 222+-=?+)(,当R=r 时,最大输出功率P 出m r E 42 =,即当内外电阻相等时, 电源输出最大功率,此时η=50%,当η→∞时,η→100%,但此时P →0,故无实际意义。 P 出与外电阻R 的函数关系可用如图所示的图像定性地表示。由图像还可知,对应于电源的非最大输出功率P 可以有两个不同的外电阻R 1和R 2,且21R R r = 。当Rr 时,若R 增加,则P 出减小。 应注意:对于内外电路上的固定电阻,其消耗的功率仅取决于电路中电流强度的大小。 二、典型举例: 例1:如图1所示,R 1=10Ω,R 2=3.2Ω,滑动变阻器的总电阻R=6Ω,当滑动触头由a 端滑向b 端的过程中: (A) 安培表示数一直减小,伏特表示数一直增大 (B) 安培表示数一直增大,伏特表示数一直减小 (C) 安培表示数先增后减,伏特表示数先减后增 (D)安培表示数先减后增,伏特表示数先增后减 解析:设Rbp=x ,则Rpa=R-x RAB= 显然,当R1+x=R2+R-x 时,RAB 有极大值,此时X= 若等号不成立,则两数相差越大,积越小;相差越小,积越大。由于R1>R2+R ,所以在从a 滑向b 的过程中,不可能出现两条支路电阻相等的点,上述推导中的等号不能成立。从a 滑向b 过程中,两数相差越来越小,故其积逐渐增大;即总电阻一直增大,总电流一直减 A B P R 外 R=r 1 R 2 P m P 0

高考物理闭合电路的欧姆定律真题汇编(含答案)

高考物理闭合电路的欧姆定律真题汇编(含答案) 一、高考物理精讲专题闭合电路的欧姆定律 1.如图所示电路中,19ΩR =,230ΩR =,开关S 闭合时电压表示数为11.4V ,电流表示数为0.2A ,开关S 断开时电流表示数为0.3A ,求: (1)电阻3R 的值. (2)电源电动势和内电阻. 【答案】(1)15Ω (2)12V 1Ω 【解析】 【详解】 (1)由图可知,当开关S 闭合时,两电阻并联,根据欧姆定律则有: 21123 ()IR U I R IR R =+ + 解得: 315ΩR = (2) 由图可知,当开关S 闭合时,两电阻并联,根据闭合电路的欧姆定律则有: 213 ()11.40.6IR E U I r r R =++=+ S 断开时,根据闭合电路的欧姆定律则有: 212()0.3(39)E I R R r r =++=?+ 联立解得: 12V E = 1Ωr = 2.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。汽车的电源、电流表、车灯、电动机连接的简化电路如图所示,已知汽车电源电动势为12.5V ,电源与电流表的内阻之和为0.05Ω。车灯接通电动机未起动时,电流表示数为10A ;电动机启动的瞬间,电流表示数达到70A 。求: (1)电动机未启动时车灯的功率。 (2)电动机启动瞬间车灯的功率并说明其功率减小的原因。(忽略电动机启动瞬间灯泡的

电阻变化) 【答案】(1)120W ;(2)67.5W 【解析】 【分析】 【详解】 (1) 电动机未启动时 12V U E Ir =-= 120W P UI == (2)电动机启动瞬间车灯两端电压 '9 V U E I r =-'= 车灯的电阻 ' 1.2U R I ==Ω 2 67.5W R U P ''== 电源电动势不变,电动机启动瞬间由于外电路等效总电阻减小,回路电流增大,内电路分得电压增大,外电路电压减小,所以车灯电功率减小。 3.如图所示,电源的电动势110V E =,电阻121R =Ω,电动机绕组的电阻0.5R =Ω,开关1S 始终闭合.当开关2S 断开时,电阻1R 的电功率是525W ;当开关2S 闭合时,电阻1R 的电功率是336W ,求: (1)电源的内电阻r ; (2)开关2S 闭合时电动机的效率。 【答案】(1)1Ω;(2)86.9%。 【解析】 【详解】

专题-闭合电路欧姆定律(电路的动态分析问题)教学内容

专题-闭合电路欧姆定律(电路的动态分析问 题)

专题:闭合欧姆定律(电路的动态分析问题) 知识回顾: 直流电路的有关规律 (1)欧姆定律I =U R (2)闭合电路欧姆定律E I R r E U Ir E U U =+=+=+外内 (3)电阻定律R =ρl S (4)电功率:P =UI P =I 2 R =U 2 R (5)焦耳定律:Q =I 2Rt (6)串并联电路规律: 11 2221 12 U R U R I R I R ==串联分压:并联分流: 1.闭合电路动态变化的原因 (1)当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小). (2)若电键的通断使串联的用电器增多,总电阻增大;若电键的通断使并联的支路增多,总电阻减小. (3)两个电阻并联,总电阻12 12 R R R R R = +.如果12R R C +=(恒量),则当12=R R 时,并联电 阻最大;两电阻差值越大,总电阻越小. 2.闭合电路动态分析的方法 基本思路是“局部→整体→局部” 流程图: 3.电路动态分析的一般步骤 (1)明确局部电路变化时所引起的局部电路电阻的变化. (2)根据局部电路电阻的变化,确定电路的外电阻R 外总如何变化.

(3)根据闭合电路欧姆定律I 总= E R 外总+ r,确定电路的总电流如何变化. (4)由U 内= I总r确定电源的内电压如何变化. (5)由U=E-U 内确定路端电压如何变化. (6)确定支路两端的电压及通过各支路的电流如何变化. 经典例题: 1.如图所示的电路,L是小灯泡,C是极板水平放置的平行板电容器.有一带电油滴悬浮在两极板间静止不动.若滑动变阻器的滑片向下滑动,则() A.L变暗 B.L变亮 C.油滴向上运动 D.油滴不动 2.在如图所示的电路中,E 为电源电动势,r 为电源内 阻,R1和 R3均为定值电阻,R2为滑动变阻器.当 R2的滑动 触点在 a 端时合上开关 S,此时三个电表 A1、A2和 V 的 示数分别为 I1、I2和 U.现将 R2的滑动触点向 b 端移动, 则三个电表示数的变化情况是() A.I 1增大,I 2 不变,U 增大 B.I 1增大,I 2 减小,U 增大 C.I 1减小,I 2 增大,U 减小 D.I 1减小,I 2 不变,U 减小 3.图中A为理想电流表,V 1和V 2 为理想电压表,R 1 为定值电阻, R 2 为可变电阻,电池E内阻不计,则() A.R 2电阻减小时,V 2 示数增大

专题 闭合电路欧姆定律(电路的动态分析问题)

专题:闭合欧姆定律(电路的动态分析问题) 知识回顾: 直流电路的有关规律 (1)欧姆定律I =U R (2)闭合电路欧姆定律E I R r E U Ir E U U =+=+=+外内 (3)电阻定律R =ρl S (4)电功率:P =UI P =I 2R =U 2R (5)焦耳定律:Q =I 2Rt (6)串并联电路规律:11 2221 12 U R U R I R I R ==串联分压:并联分流: 1.闭合电路动态变化的原因 (1)当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小). (2)若电键的通断使串联的用电器增多,总电阻增大;若电键的通断使并联的支路增多,总电阻减小. (3)两个电阻并联,总电阻12 12 R R R R R = +.如果12R R C +=(恒量),则当12=R R 时,并联电阻最大; 两电阻差值越大,总电阻越小. 2.闭合电路动态分析的方法 基本思路是“局部→整体→局部” 流程图: 3.电路动态分析的一般步骤 (1)明确局部电路变化时所引起的局部电路电阻的变化. (2)根据局部电路电阻的变化,确定电路的外电阻R 外总如何变化. (3)根据闭合电路欧姆定律I 总= E R 外总+r ,确定电路的总电流如何变化. (4)由U 内=I 总r 确定电源的内电压如何变化. (5)由U =E -U 内确定路端电压如何变化. (6)确定支路两端的电压及通过各支路的电流如何变化. 经典例题: 1.如图所示的电路,L 是小灯泡,C 是极板水平放置的平行板电容器.有一带电油滴悬浮在两极板间静止不动.若滑动变阻器的滑片向下滑动,则( ) A .L 变暗 B .L 变亮 C .油滴向上运动 D .油滴不动

闭合电路欧姆定律五类典型题全解

(1)——简单应用专题 1.如图为两个不同闭合电路中两个不同电源的I —U 图象,则下述说法正确的是( ) A.电动势E 1=E 2,发生短路时的电流强度I 1>I 2 B.电动势E 1=E 2,内阻r 1>r 2 C.电动势E 1=E 2,内阻r 1<r 2 D.当两个电源工作电流变化量相同时,电源2的路端电压变化较大 2.关于电源和直流电路的性质,下列说法正确的是( ) A.电流总是由高电势流向低电势 B.电源短路时,电路电流为无穷大,路端电压为零 C.外电路断路时,路端电压为最大,外电阻为零 D.外电路总电阻值增大时,路端电压也增大 3、用如图B-3所示的电路测电池组的电动势和内阻.其中V 为电压表(其阻值足够大),定值电阻R=7.0Ω.在开关未接通时,V 的读数为6.0V ;接通开关后,V 的读数变为5.6V .那么,电池组的电动势和内阻分别等于() A.6.0V 0.5Ω B.6.0V 1.25Ω C.5.6V 1.25Ω D.5.6V 0.5Ω 4.如图所示,直线A 和B 分别为电源a 、b 的路端电压和电流的关系图像,设两个电源的内阻分别为r a 和r b ,若将一定值电阻R 0分别接到a 、b 两电源上,通过R 0的电流分别为I a 、I b ,则( ) A.r a =r b , I a =I b B.r a >r b , I a >I b C.r a >r b , I a =I b D.r a >r b , I a <I b 5、用电动势ε=6V 、内电阻r=4Ω的直流电源依次分别对下列四个电珠供电,最亮的电珠是( ). (A)“6V ,12W ” (B)“6V ,9W ” (C)“6V ,4W ” (D)“6V ,3W ” 6、下列有关电源电动势的说法,错误的是( ) A .电源的电动势数值上等于不接用电器时电源正负两极间的电压 B .电源的电动势反映了电源将其它形式能转化为电能的本领大小 C .电源的电动势就是电压 D .电源的电动势等于电路中内、外电压之和 7、许多人造卫星都用太阳能电池供电,太阳能电池由许多片电池板组成,某电池板的开路电压是600mV ,短路电流是30mA ,这块电池板的内电阻是( ). (A)60Ω (B)40Ω (C)20Ω (D)10Ω 8、 电源的电动势为4.5V ,内电阻为0.50Ω,外电路接一个4.0Ω的电阻,这时电源两端的电压为( ). (A)5.0V (B)4.5V (C)4.0V (D)3.5V 9、电源电动势为ε,内阻为r ,向可变电阻R 供电.关于路端电压,下列说法中正确的是( ). (A)因为电源电动势不变,所以路端电压也不变 (B)因为U=IR ,所以当R 增大时,路端电压也增大 (C)因为U=IR ,所以当I 增大时,路端电压也增大 (D)因为U=ε-Ir ,所以当I 增大时,路端电压下降 10、若用E 表示总电动势,U 表示外电压,U ’表示内电压,R 表示外电路总电阻,r 表示内电阻,I 表示总电流强度,考察下列各关系式:⑴U ’ = IR ⑵U ’ = E -U ⑶E = U+Ir ⑷I =E / (R+r) ⑸U = ER / (R+r) ⑹U = E+Ir ,上述关系式中成立的是:( ) A 、⑴⑵⑶⑷ B 、⑵⑶⑷⑸ C 、⑶⑷⑸⑹ D 、⑴⑶⑸⑹ 11、蓄电池的电动势是2V ,说明电池内非静电力每移动1C 的电荷做功 ,其电势能(填“增加”或“减小”),是 能转化为 能的过程。 A B 0

全电路欧姆定律设计思想

全电路欧姆定律设计思想 1、本节是高中电学“恒定电流”这一章很重要一节课,具有承上启下的作用。在设计本节课时,我分注重对学生科学素质的培养。在教学中实施素质教育的核心是培养学生的创新精神和实践能力。对于中学生来说,创新精神主要体现在学生应具有创新的意识,其直接的表现就是善于观察现象、发现问题,进行猜想、实验验证、得出结论、讨论交流、评估归纳。因此我在课堂上把主要精力放在引导学生发现问题并寻找解决问题的途径上。本节课的教学流程,旨在通过学生的亲身实践和体验,实现掌握知识、培养能力、体验成功的最终目标。最后留一段时间给学生,让他们自己来提问题、讨论、解答、这是出于培养创新意识的需要。 2、通过实验探究来发现和掌握规律,“观察现象、发现问题,进行猜想、实验验证、得出结论、讨论交流、评估归纳”教学思路是贯穿整个课堂的一条主线。本节课一开始,利用学生的日常生活经验与演示实验的矛盾巧设“悬念”,使他们的心理经历了一次主观意识与现实规律的强烈碰撞,迅速点燃求知欲望的火焰,自然而然地进入主动学习的“角色”。通过一个个演示实验、学生实验不断地开启学生思维的“大门”,他们时而全神贯注,时而心领神会,在一系列“观察现象、发现问题,进行猜

想、实验验证、得出结论、讨论交流、评估归纳”的过程中,错误的前概念逐步被纠正,科学的物理规律在脑海里扎下了根。 3、伏安特性曲线是反映电源特性的重要曲线,教学中特意设计了一个探究帮助学生建立起电源的伏安特性曲线,一方面加强对闭合电路欧姆定律的理解,同时引导学生学会理论探究电路中相关的关系。教材分析闭合电路欧姆定律是本章的重点知识。闭合电路欧姆定律能够充分体现功和能的概念在物理学中的重要性,学生已经从做功的角度认识了电动势的概念,通过功能关系的分析建立闭合电路欧姆定律学生应该感到熟悉并且容易理解,如果学生能够娴熟地从功能的角度分析物理过程,对于解决物理问题是很有好处的,因此,帮助学生理解电路中的能量转化关系是基础和关键。路端电压与负载的关系是本节的难点,通过这个关系的分析能提高学生有序分析物理问题的能力。学情分析学生已经从做功的角度认识了电动势的概念,通过功能关系的分析建立闭合电路欧姆定律学生应该容易理解,但内电路电势变化有升有降学生还是应该有障碍的,教学中要能够注意,通过路端电压与负载的关系的分析引导学生学会电路的分析方法,建立起有序分析电路的思想是学生还不分具备的。教学目标 (一)知识与技能 1、经历闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,理解内、外电路的能量转化。

闭合电路欧姆定律公开课教案

第三节:闭合电路欧姆定律 教学过程 1、认识闭合电路 情境引入: 问题1:最简单的闭合电路是由哪几部分组成的? 问题2:在闭合电路中电流如何流向及电源在闭合电路中起什么作用? 根据电路图分析电流形成的原因以及电源在电路中所起的作用. 电源的工作过程类似于如图所示的抽水机的工作过程。 电源的作用不是产生电荷,而是将其他形式的能转化为电能,将堆积在负极的正电荷移到正极,在电源的两极产生并维持一个恒定的电势差(电压),从而在电路中形成恒定的电流。 分析:电荷的定向移动形成电流。 在外电路中,在静电力的作用下,正电荷由电源正极移动到负极,电流方向由正极流向负极,沿电流方向电势降低。 在电源内部(即在内电路中),通过非静电力做功使正电荷由负极移到正极,所以电流方向为负极流向正极。 内电路与外电路中的总电流是相同的。 电源:是把其他形式的能转化为电能的装置。 电动势:1)物理意义:反映电源把其他形式的能转化为电能本领的物理量。 2)电源的电动势在数值上等于不接用电器时电源正负两极间的电压。 3)符号与单位:符号:E 单位:伏特(V) 2、闭合电路欧姆定律

闭合电路欧姆定律的推导过程: 由以上分析可知:闭合电路外电路和内电路两部分,如图所示。 问题1:电源电动势与外电路电压及内电路电压有什么关系呢? 方法一:实验法 实验装置如图所示: (1)其中,电压表V 1示数为电源的外电压U 外,V 2示数为电源的内电压U 内。 (2)测量过程和方法: ①S 1闭合,S 、S 2断开时,V 1示数为电源电动势E 。 ②S 1、S 、S 2闭合,V 1示数为电源的外电压U 外,V 2示数为电源的内电压 U 内 (3)结论:改变滑动变阻器R 的阻值,多测几组电压,均满足内外U U E += 而U 外=IR ,U 内=Ir, 可得:Ir IR E += 方法二:能量转化法 问题:如图,若外电路两端的电势降落,即,即电势差为U 外;内电路中的电势降落,即电势差为U 内;电源电动势为E ;当电键闭合后,电路中的电流为I ,通电时间为t 。试回答下列问题: (1)在t 时间内,外电路中静电力做的功W 外为多少? 路路外ItU qU W == (2)在t 时间内,内电路中静电力做的功W 内为多少? 内内内ItU qU W == (3)电池化学反应层在t 时间内,非静电力做的功W 非为多少? ItE qE W ==非 (4)静电力做的功等于消耗的电能,非静电力做的功等于转化的电能,根据能量守恒你能得到什么? 内外U U E += 问题2:依据上面得到的结果,推导出闭合电路中的电流I 与电动势E 、内电阻r 、外电阻R 的关系式? 内外U U E += Ir IR E += r R E I += 闭合电路欧姆定律:上式表明,闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比,这个结论叫做闭合电路的欧姆定律。 例1、若用E 表示总电动势,U 表示外电压,U ’表示内电压,R 表示外电路总电阻,r 表示内电阻,I 表示总电流强度,考察下列各关系式:⑴U ’= IR ⑵U ’= E -U ⑶E = U+Ir ⑷I =E / (R+r) ⑸U = ER / (R+r) ⑹U = E+Ir ,上述关系式中成立的是:( )

全电路欧姆定律教案

全电路欧姆定律 安全与法制教育: 加强学生日常的安全教育,心理疏导及其食品安全教育,课间操楼道拥挤注意事项,周末及其节假日放学不要乘坐三无车辆。 一、教材分析 课标分析:知道电源的电动势和内阻,理解闭合电路的欧姆定律 教材地位:闭合电路欧姆定律是恒定电流一章的核心内容,具有承前启后的作用。既是本章知识的高度总结,又是本章拓展的重要基础;通过学习,既能使学生从部分电路的认知上升到全电路规律的掌握,又能从静态电路的计算提高到对含电源电路的动态分析及推演。同时,闭合电路欧姆定律能够充分体现功和能的概念在物理学中的重要性,是功能关系学习的好素材。 二、学情分析 学生通过前面的学习,理解了静电力做功与电荷量、电势差的关系、了解了静电力做功与电能转化的知识,认识了如何从非静电力做功的角度描述电动势,并处理了部分电路欧姆定律的相关电路问题,已经具备了通过功能关系分析建立闭合电路欧姆定律,并应用闭合电路欧姆定律分析问题的知识与技能。 三、教学目标 (一)知识与技能 1、通过探究推导出闭合电路欧姆定律及其公式,知道电源的电动势等于内、外电路上电势降落之和。 2、理解路端电压与负载的关系,知道这种关系的公式表达,并能用来分析有关问题。 3、掌握电源断路和短路两种特殊情况下的特点。知道电源的电动势等于电源没有接入电路时两极间的电压。 4、了解路端电压与电流的U-I图像,认识E和r对U-I图像的影响。 5、熟练应用闭合电路欧姆定律进行相关的电路分析和计算 (二)过程与方法 1、经历闭合电路欧姆定律及其公式的推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力。 2、通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法。 3、了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力。 4、利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。 (三)情感态度价值观 1、通过探究物理规律培养学生的创新精神和实践能力。 2、通过实验探究,加强对学生科学素质的培养。

闭合电路欧姆定律知识点

闭合电路欧姆定律(电流表的内外接法、限流式分压式接法) 一、电流表的内接和外接 在电学实验中通常需要用电器两端的电压和通过用电器的电流,这时要利用伏安法测电阻,通常用伏安法测电阻时,可采用如图所示的两种接法: 电流表外接法电流表内接法1、分析: 【电流表外接法】用R真、R测分别表示待测电阻R x测量值,R A、R V分别表示电流表和电压表的内阻。 真 测 R I U I I U I U R x V V x V= < + = = 由此可看出,测量值小于真实值 V 1 1 1 1 1 R R R R R U I U I I I U R V V V V x V x V 真 真 真 测 + = + = + = + = 所以,当R V>>R x时,R测越接近R真,误差越小。 【电流表外接法】用R真、R测分别表示待测电阻R x测量值,R A、R V分别表示电流表和电压表的内阻。 真 测 R I U I U U I U R x x x A x= > + = = 由此可看出,测量值大于真实值

A x A x x x A x R R I U I U I U U R +=+=+=真测 所以,当R x >>R A 时,R 测越接近R 真,误差越小。 2、电流表内、外接判断方法: ⑴采用电流表内接法的条件:R x >>R A ;采用电流表外接法的条件:R v >>R x ⑵当不满足R x >>R A 和R v >>R x 关系时: 当 (即R x 大电阻)时用内接法。 当V A x R R R < (即R x 小电阻)时用外接法。 当V A x R R R =时,用内、外接法均可。 ⑶实验试探法: 若伏特表示数变化比例大,即 宜外接 若安培表示数变化比例大,即 宜内接 3、规律口诀:大内小外 含义: a:大电阻用内接法,小电阻用外接法。 b:内接法测量值偏大,外接法测量值偏小。 即 A V x R R R >2 用内接法 A V x R R R <2 用外接法. 二、滑动变阻器的限流式和分压式接法 (一)滑动变阻器在电路中的两种接法: U U I I ??

什么是欧姆定律-什么是全电路欧姆定律-

什么是欧姆定律?什么是全电路欧姆定律? 导体中的电流I和导体两端的电压U成正比,和导体的电阻R成反比,即I=U/R。这个规律叫做欧姆定律。 I=U/R、R=U/I、U=I×R 在交流电路中,欧姆定律同样成立,但电阻R应该改成阻抗Z,即I= U/Z。如果电路闭合又含有电源,则称为全电路,如图1所示,图中虚线部分为电源,称为内电路。电源外部的电路称为外电路。由于电源具有内电阻,所以电流不仅在通过外电路的时候有电压降,在通过内电路的时候也有内电压降。在全电路中,电流强度,与电源的电动势E成正比,与整个电路(包括内电路和外电路)的电阻(R+r)成反比,这就是全电路欧姆定律,用公式表示为: I=E/R+r 式中I-电路中的电流,A;E-电源电动势,V;R-外电路的电阻,Ω;r-内电路电阻,Ω。 由上面公式可得,在图1所示的电路中,E=IR+Ir=U外+U内。

式中U外=IR-外电路电压;U内=Ir-内电路电压。 需要说明的是,由于电源本身的内阻及连接导线的内阻一般都不大,计算时忽略不计得到的计算结果也基本上是正确的。但有时需要计算电源的内压降,精确计算全电路的电流就要用到全电路欧姆定律。例如图2中,若E=10V,r=0.1Ω,R=1kΩ,则: ①S接1位置时,电路处于通路状态, 电流表的读数 电压表的读数为U=IR=0.01×1000=10(V),或U=E-Ir=10-0.01×0.1≈10 (V)。 ②S接2位置时,电路处于断路状态,所以电流表的读数为0;电压表的读数U=E=10(V)。 ③S接3位置时,电路处于短路状态,电流表的读数为I=E/r=10/0.1=100(A)A;电压表读数U=0(V)。

高中物理闭合电路欧姆定律

考点一 闭合电路欧姆定律 例1.如图18—13所示,电流表读数为0.75A ,电压表读数为2V ,R 3= 4Ω,若某一电阻发生断路,则两电表的读数分别变为0.8A 和3.2V .(1)是哪个电阻发生断路?(2)电池的电动势和内电阻分别为多大? [解析] (1)假设R 1发生断路,那么电流表读数应变为零而不应该为0.8A ;假设R 3发生断路,那么电压表读数应变为零而不应该为3.2V 。所以,发生断路的是R 2。(2)R 2断路前,R 2与R 3串联、然后与R 1并联;R 2断路后,电池只对R 1供电,于是有 22 R ×4+2=0.75R 1 3.2=0.8R 1 由此即可解得 R 1= 4Ω R 2=8Ω,再根据闭合电路 的欧姆定律,得r R R R R R E ++++32132)(·32132)(R R R R R +++=0.75r R E +1=0.8 可得出 E= 4V , r=1Ω [规律总结] 首先画出等效电路图,再根据电路的特点以及电路出现故障的现象进行分析,从而得出故障的种类和位置。一般的故障有两种:断路或局部短路。 考点二 闭合电路的动态分析 1、 总电流I 和路端电压U 随外电阻R 的变化规律: 当R 增大时,I 变小,又据U=E-Ir 知,U 变大.当R 增大到∞时,I=0,U=E (断路). 当R 减小时,I 变大,又据U=E-Ir 知,U 变小.当R 减小到零时,I=E r ,U=0(短路) 2、 所谓动态就是电路中某些元件(如滑动变阻器的阻值)的变化,会引起整个电路中各部分相 关电学物理量的变化。解决这类问题必须根据欧姆定律及串、并联电路的性质进行分析,同时,还要掌握一定的思维方法,如程序法,直观法,极端法,理想化法和特殊值法等等。 3、 基本思路是“部分→整体→部分”,从阻值变化的部分入手,由欧姆定律和串、并联电路特点判断整个电路的总电阻, 干路电流和路端电压的变化情况,然后再深入到部分电路中,确定各部分电路中物理量的变化情况。 例2.在如图所示的电路中,R 1、R 2、R 3、R 4皆为定值电阻,R 5为可变电阻,电源的电动势为E ,内阻为r ,设电流表A 的读数为I ,电压表V 的读数为U ,当R5的滑动触头向a 端移动时,判定正确的是( ) A .I 变大,U 变小. B .I 变大,U 变大. C .I 变小,U 变大. D .I 变小,U 变小. [解析] 当R 5向a 端移动时,其电阻变小,整个外电路的电阻也变小,总电阻也变小,根据闭合电 路的欧姆定律E I R r =+知道,回路的总电流I 变大,内电压U 内=Ir 变大,外电压U 外=E-U 内变 小,所以电压表的读数变小,外电阻R 1及R 4两端的电压U=I (R1+R 4)变大,R5两端的电压,即R 2、R 3两端的电压为U ’=U 外-U 变小,通过电流表的电流大小为U ’/(R 2+R 3)变小,答案:D [规律总结] 在某一闭合电路中,如果只有一个电阻变化,这个电阻的变化会引起电路其它部分的电流、电压、电功率的变化,它们遵循的规则是:(1).凡与该可变电阻有并关系的用电器,通过它的电流、两端的电压、它所消耗的功率都是该可变电阻的阻值变化情况相同.阻值增大,它们也增大.(2).凡与该可变电阻有串关系的用电器,通过它的电流、两端的电压、它所消耗的功率都是该可变电阻的阻值变化情况相同.阻值增大,它们也增大.所谓串、并关系是指:该电阻与可变电阻存在着串联形式或并联形式,用这个方法可以很简单地判定出各种变化特点.简单记为:并同串反 考点三 闭合电路的功率 1、电源的总功率:就是电源提供的总功率,即电源将其他形式的能转化为电能的功率,也叫电源消耗的功率 P 总 =EI. 2、电源输出功率:整个外电路上消耗的电功率.对于纯电阻电路,电源的输出功率. P 出 =I 2 R=[E/(R+r )] 2 R ,当R=r 时,电源输出功率最大,其最大输出功率为Pmax=E 2 / 4r 3、电源内耗功率:内电路上消耗的电功率 P 内 =U 内 I=I 2 r 4、电源的效率:指电源的输出功率与电源的功率之比,即 η=P 出 /P 总 =IU /IE =U /E . 1R R 2E R 3r V A

相关文档
最新文档