弹塑性力学本构关系
弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1
化
o A 1
o
1
C
D
随
弹性
动
f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0
。
如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如
果
f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl
弹塑性力学第5章—塑性本构关系

3 2
sij
−
Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J
′
2
=
2 9
⎡ ⎢⎣
ε1p
−
ε
p 2
2+
ε
p 2
−
ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G
)
( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ
′
0
,
σ
弹塑性力学第四章弹性本构关系资料

产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
弹塑性本构关系简介

2) 势能原理的数学表达
应变能
总势能
Ve=Vε+VP =1/2∫VσijεijdV 外力势能
-∫VFbiuidV- ∫SσFsiuidS = min
2 虚力原理
1)虚力原理的表述
给定位移状态协调的充分必要条件为:对 一切自平衡的虚应力,恒有如下虚功方程成 立(矩阵)
∫V[ε]Tδ[σ]dV=∫Su([L]δ[σ])T [u ]0dS
收敛准则
1、位移模式必须包含单元的刚体位移
2、位移模式必须能包含单元的常应变
3、位移模式在单元内要连续、并使相邻单元间的位移必须协调
满足条件1、2的单元为完备单元
满足条件3的单元为协调单元 多项式位移模式阶次的选择——按照帕斯卡三角形选
几何各向同性:位移模式应与局部坐标系的方位无关
多项式应有偏惠的坐标方向,多项式项数等于单元边界结点的自由度总
变间关系为 octσoct
GKtt
oct 3K s oct oct Gs oct
并有
Gs G
1
a
oct
B c
m
KGss
εoct
oct
K G e s
s (c oct ) p
KG
其中G、K分别为初始切线剪切和体积模量,
B c
为混凝土单轴抗压强度,a、m、c和p为由试验
确定的常数。
POCT
弹性张量Dijkl
ij
Dijkl kl
( 2G 1 2
ij kl
2Giklj ) kl
i 1, j 2, k 1,l 2
12
D1212 12
( 2G 1 2
1212
2G1122 )12
11 1 12 0 22 1
弹塑性力学-弹塑性本构关系

与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0
弹塑性力学-弹塑性本构关系

3 2
( S ij c ij )( S ij c ij ) s ( c 可 据 简 单 拉 伸 试 验 确 定 )
p p
3.2.3 混合强化模型
运动硬化和等向硬化的组合,可以构成更一般的 硬化模型,称为混合强化模型
( ij , H ) F ( ij c ij ) K 0
( ij , H ) F ( ij ij ) 0 F ( ij ) 0 为 初 始 屈 服 面
t r e s c a 、 vo n m ises 、 M - C
移动张量
常 用 线 形 随 动 强 化 ij c ij
p
m is e s :
0 ij
ij
0 ij
d
ij
0
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件: ①ij0在塑性势面与屈服面 之内时,德鲁克公设成立; ②ij0在塑性势面与屈服面 之间时,德鲁克公设不成立;
势面线
屈服面
(5)金属材料的塑性势面与 屈服面基本一致。 附加应力功为非负的条件
在应变空间,流动规则可用下式表示:
d ij d
p
ij
d
和
d
都为非负的比例系数。
3.2 硬化规律
塑性模型三要素
屈服条件 流动法则 硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
• 硬化规律:加载面在应力空间中的位置、大小和 形状的变化规律。(确定加载面依据哪些具体的 硬化参量而产生硬化的规律称为硬化定律) • 硬化模型:实际土体硬化规律+简化假设(如采用 等值面硬化理论,主应力方向不旋转,加载面形 状不变等)
07 塑性本构关系

3 / 66
07 塑性本构关系
几种简化模型
哈工大 土木工程学院
4 / 66
07 塑性本构关系
第1节 弹性本构关系
当应力状态处于屈服曲面内部时,材料处于弹性状态, 当应力状态处于屈服曲面内部时,材料处于弹性状态,本 构关系就是广义虎克(Hooke)定律 构关系就是广义虎克 定律 在直角坐标系里,对各向同性材料, 在直角坐标系里,对各向同性材料,有:
e xx e yy ezz e xy e yz e zx 1 = = = = = = s xx s yy szz s xy s yz szx 2G
εx εy ε y εz γ xy γ yz εz εx γ zx 1 = = = = = = σ x σ y σ y σ z σ z σ x 2τ xy 2τ yz 2τ zx 2G
1 ′ 2G I 2
2
哈工大 土木工程学院
8 / 66
07 塑性本构关系
也可通过偏张量关系式代入第二不变量得到该关系式
1 ′ I 2 = (σ 1 σ 2 )2 + (σ 2 σ 3 )2 + (σ 3 σ 1 )2 6 2 1 = ( 2G ) [(ε 1 ε 2 )2 + (ε 2 ε 3 )2 + (ε 3 ε 1 )2 ] 6
1 ε x = [σ x v (σ y + σ z )] E 1 ε y = [σ y v (σ z + σ x )] E 1 ε z = [σ z v (σ x + σ y )] E
γ xy = γ yz = γ zx =
τ xy
G
E:弹性模量 :
τ yz
G
ν:泊松比
弹塑性本构关系的认识及其在钢筋混凝土中的应用浅谈_塑

弹塑性本构关系的认识及其在钢筋混凝土结构中的应用浅谈摘要:本文首先对弹塑性本构关系和钢筋混凝土材料的本构模型作了简要概述,然后结合上课所学知识和自己阅读的几篇文章,从材料的屈服准则、流动准则、硬化准则和加载卸载准则等四个方面详细阐述了弹塑性本构关系。
最后,结合上述准则简要论述了混凝土这一常用材料在地震作用下的弹塑性本构关系。
关键词:弹塑性本构关系,钢筋混凝土,地震Understanding of Elastoplastic Constitutive Relation and a Brife Talk of Its Aapplication to Reinforced Concrete StructureAbstract:This paper firstly makes a brief overview about elastoplastic constitutive relation and reinforced concrete constitutive model. Then,elaborating the elastoplastic constitutive relation from the four aspects of material yield criterion,flow rule,hardening rule,loading and unloading criterion based on what I have learned in class and reading from a few articles. Lastly,a simply introduction on the elastoplastic constitutive of reinforced concrete under earthquake is demonstrated.Keywords:elastoplastic constitutive relation; reinforced concrete structure; earthquake1 引言钢筋混凝土结构材料的本构关系对钢筋混凝土结构有限元分析结果有重大的影响,如果选用的本构关系不能很好地反映材料的各项力学性能,那么其它计算再精确也无法反映结构的实际受力特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横观各向异性材料,其独立的弹性常数为13个;正应变会 产生切应力,切应变也会产生正应力 工程上,单斜晶体(如正长石)可简化为横观各向异性弹 性体。
二. 正交各向异性材料
z
具有三个相互垂直弹性对 称面的材料称为正交各向异性 材料。 设三个弹性对称面分别为 Oxy、Oyz和Ozx平面,材料沿 x、 y、 z 三方向弹性性质各异。
c12 c12
c13 c13
c14 c1415 c16 0
横观各向异性材料的广义胡克定律可表示为
x c11 c12 c13 c22 c23 y z c33 xy 对 yz 称 zx c14 c24 c34 c44 0 0 0 0 c55 x y z 0 xy c56 yz c66 zx 0 0 0
三. 横观各向同性材料
设体内每一点存在一轴(z轴),在 与此轴垂直的平面(Oxy)内,所有射线 方向的弹性性质均相同。 称该平面为各 向同性面。
z z
y
y
x x
具有各向同性面,且各各向同性 面相互平行(或具有弹性对称轴)的 物体,称为横观各向同性材料。
O
在正交各向异性的基础上,按相似分析步骤, 设 xy 平面 旋转前后应力应变关系不变,比较其 绕 z 轴旋转任意角度 , 弹性常数可得
yz yz
zx zx
T
T
C
C C
c15 c16 c25 c26 c35 c36 c45 c46 0
例如比较 [C] 和 [C] 中的第一行
c1n c11 c1n c11
y c21 x c22 y c23 z c24 xy c25 yz c26 zx z c31 x c32 y c33 z c34 xy c35 yz c36 zx xy c41 x c42 y c43 z c44 xy c45 yz c46 zx yz c51 x c52 y c53 z c54 xy c55 yz c56 zx zx c61 x c62 y c63 z c64 xy c65 yz c66 zx
正交各向异性材料,其独立的弹性常数为9个;正应变仅 产生正应力,切应变仅产生切应力。 工程上一般用三个弹性模量(Ex、 Ey 、 Ez ),三个泊松 比(Poisson)(xy、 yz、 zx)和三个切变模量(Gxy、 Gyz、 Gzx)表示。 煤、木材、增强纤维复合材料等可简化为正交各向异性弹 性体。
m、n ij、kl 1 11 2 22 3 33 4 12 5 23 6 31
如,c22 c2222 , c56 c2331 广义胡克定律的一般形式最广泛地描述了材料的线弹性性 质,但未能描述物体外部环境条件和内部物理特征。
§4-2 线弹性体的本构关系
如果材料在变形过程中处于等温绝热过程。 根据热力学第一定律和相应数学推导, ij f ij 有势, 其势函数U0(ij) 为物体单位体积的变形能(应变能)。
一. 横观各向异性材料
仅具有一个弹性对称面的材料称为横观各向异性材料。 设Oxy平面为材料的弹性对称面,z轴为弹性主轴。 体内一点P(x, y, z)的应力和应变 为{ } 和{ }。则 C 其中[C]为各向异性的弹性矩阵 现将z轴反向,考 察其本构关系
x z z P (x, y, -z) z)
二. 广义胡克(Hooke)定律
受材料在单向拉伸试验时弹性阶段的应力与应变呈线性关 系(胡克定律)的启发, 线弹性材料在复杂应力状态下其应力 张量与应变张量亦呈线性关系。 称为广义胡克定律的一般形式 x c11 x c12 y c13 z c14 xy c15 yz c16 zx
U 0 ij ij
—— Green公式
U 0 U 0 U 0 U 0 U 0 U 0 x , y , z , xy , yz , zx x y z xy yz zx
由
同理
x U 0 c12 y x y y U 0 c21 x x y c13 c31 c14 c41
广义胡克定律的上述形式表征的是各向异性材料的本构关系。 弹性主轴 弹 如果材料具有弹性对称面, 性 则本构关系还可简化,使弹性常 对 称 数进一步缩减。 方
弹性对称
弹性体中每一点均有一个对 称方向,在这些对称方向上弹性 性质相同,即应力应变关系不变。 称为弹性对称。
向
弹性主轴
弹性对称方向
相应的对称方向和对称面称为弹性对称方向和弹性对称面。 垂直于弹性对称面的方向称为弹性主轴。
如果材料的 ij f (ij ) 呈单值连续关系(不一定线性),则 称为柯西(Cauchy)弹性材料(一般意义上的弹性)。
呈线性单值连续关系的材料性质称为线弹性。 在柯西弹性的基础上附加等温绝热的外部环境条件,使 ij f ( ij ) 有势函数存在,则这种弹性性质又称为超弹性。 可以证明线弹性一定是超弹性。
各向同性材料独立的弹性常数只有2个
§4-3 各向同性线弹性材料的物理方程
一. 广义胡克定律的基本形式
对于各向同性材料的广义胡克定律表达式,展开
x c11 x c12 y z y c11 y c12 z x z c11 z c12 x y
c14 c24 c34 c44
c15 c25 c35 c45 c55
c16 x c26 y c36 z c46 xy c56 yz c66 zx
弹性矩阵为对 称矩阵,共有21个 独立的弹性常数
c12 c21 c15 c51
c56 c65
即
cmn cnm
x c11 c12 c22 y z xy 对 yz zx
c13 c23 c33
称
第四章
本构关系
§4-1 物体的弹性性质和广义胡克定律 §4-2 线弹性材料的本构关系 §4-3 各向同性线弹性材料的物理方程
§4-1 物体的弹性性质· 广义Hooke定律
一. 弹性的概念
一般情况下,物体的应力与应变呈某一函数关系,可表示为: ij f ij 应力与应变张量均为六个独立分量。则 x f1 x , y , z , xy , yz , zx
x
O
P (x, y, z)
y
将 x 轴反向,仿前分析步骤可得
c14 c16 c24 c26 c34 c36 c46 c56 0
将 y 轴反向,不产生新的结果。
综合之,正交各向异性材料的广义胡克定律可表示为
x c11 c12 c13 c22 c23 y z c33 xy 对 yz 称 zx 0 0 0 c44 0 0 0 0 c55 x y z 0 xy 0 yz c66 zx 0 0 0
1 c11 c12 xy 2 1 yz c11 c12 yz 2 1 zx c11 c12 zx 2
xy
令 则 张量形式
1 c12 G c11 c12 2 x 2G x xy G xy
弹性对称面
O
y
在新坐标下,由于弹性对称,应力应变关系保持不变 C 但P点坐标和应力应变分量发生变化
x y z
两坐标系三轴的方向余弦为
x
y x
1
0 0
0
1 0
0
0 -1
由坐标变换 代入上式 由 比较得
x y z xy x y z xy
1 c11 c22 , c55 c66 , c13 c23 , c44 c11 c12 2
所以,横观各向同性材料的广义胡克定律可表示为
x y z xy yz zx c11 c12 c11 c13 c13 c33 0 0 0 1 c11 c12 2
对 称
1 c22 c33 , c44 c66 , c55 c22 c23 2
0 0 0 0 1 c11 c12 2
x y z 0 xy yz 0 zx 1 c11 c12 2 0 0 0
四. 各向同性材料
在横观各向同性的基础上,将 z 轴反向,考察其反向前后 的应力应变关系可得
所以,各向同性材料的广义胡克定律可表示为
c11 x y z xy yz zx c12 c11 c12 c12 c11 0 0 0 1 c11 c12 2
即
矩阵表示形式: 其中
C
、 ——分别称为应力和应变列阵 C ——称为弹性矩阵。其元素cmn为36个
ij cijkl kl
张量表示形式:
其中 cijkl ——称为弹性常数,共81个系数,
因 ij 、 ij 各六个独立, cijkl 缩减为36个独立的常数。 cmn和cijkl 的下标对应关系:
y f 2 x , y , z , xy , yz , zx z f3 x , y , z , xy , yz , zx xy f 4 x , y , z , xy , yz , zx yz f5 x , y , z , xy , yz , zx zx f 6 x , y , z , xy , yz , zx