低NOx燃烧器
低氮燃烧器工作原理

低氮燃烧器工作原理
低氮燃烧器是一种能够有效控制燃烧过程中氮氧化物排放的设备,它在工业生
产和环保领域中具有重要的应用价值。
低氮燃烧器的工作原理是通过优化燃烧过程,降低燃烧温度和氧化剂的使用量,从而减少氮氧化物的生成。
本文将深入探讨低氮燃烧器的工作原理,帮助读者更好地理解这一关键设备。
首先,低氮燃烧器通过优化燃烧过程来降低燃烧温度。
在传统燃烧过程中,燃
料在高温条件下与空气中的氮气发生反应,生成大量的氮氧化物。
而低氮燃烧器采用先进的燃烧控制技术,通过控制燃烧温度,使燃料在较低的温度下燃烧,从而减少氮氧化物的生成。
其次,低氮燃烧器通过减少氧化剂的使用量来降低氮氧化物的排放。
在传统燃
烧过程中,为了确保燃料完全燃烧,通常需要大量的氧化剂参与燃烧反应。
然而,过多的氧化剂会导致燃烧温度升高,从而增加氮氧化物的生成。
低氮燃烧器通过精确控制氧化剂的供应量,使燃料在适当的氧化剂条件下燃烧,从而减少氮氧化物的生成。
此外,低氮燃烧器还通过优化燃烧过程中的燃料和空气混合来降低氮氧化物的
排放。
传统燃烧过程中,燃料和空气的混合不均匀会导致局部燃烧温度过高,增加氮氧化物的生成。
低氮燃烧器采用先进的混合技术,确保燃料和空气充分混合,从而减少局部燃烧温度,降低氮氧化物的排放。
综上所述,低氮燃烧器通过优化燃烧过程、降低燃烧温度和减少氧化剂的使用
量来降低氮氧化物的排放。
它在工业生产和环保领域中具有重要的应用价值,对减少大气污染、改善空气质量具有积极的意义。
希望本文能够帮助读者更好地理解低氮燃烧器的工作原理,促进相关技术的推广和应用。
锅炉低氮燃烧器改造

锅炉低氮燃烧器改造作者:李伟刘帅点击:1399浅论HG-1020/18.58-YM型自然循环锅炉低氮燃烧器改造1 概述大唐鲁北发电有限责任公司 2×330MW机组分别与2009年9月、2009年12月投产运行,锅炉采用哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的HG-1020/18.58-YM23型自然循环锅炉。
锅炉燃烧系统采用水平浓淡煤粉燃烧技术,烟气中氮氧化物含量在600mg/Nm³左右。
随着国家对火电厂节能减排高度重视,环保标准将越来越高。
根据《火电大气污染排放标准》要求,2014年1月1日起现有发电厂锅炉NOx排放浓度限值不大于100mg/Nm3。
本着对社会负责,对企业负责的态度,大唐鲁北发电有限责任公司决定对本工程配套建设脱硝装置,脱硝装置投产后机组NOx排放浓度将降至排放标准以下。
按照脱硝工程设计要求,需对我公司燃烧器系统进行改造,将锅炉出口NOx排放浓度降低至200 mg/Nm3以下。
本文列举了大唐鲁北发电有限责任公司针对以上问题做出的相对应改造以及取得的效果。
2 设备简介2.1工作原理大唐鲁北发电有限责任公司2×330MW机组锅炉是哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的,配330MW汽轮发电机组的亚临界、一次中间再热、燃煤自然循环汽包锅炉,型号为HG-1020/18.58-YM23。
1号机组2009年9月投产,2号机组2009年12月投产。
锅炉燃烧系统采用摆动式燃烧器,燃烧器为四角布置,共5层分别对应5台磨煤机(由下往上依次是A、B、C、D、E)燃烧器四周通有周界风,在AB、BC、DE层布置由三层机械雾化油枪,燃用#0轻柴油,按锅炉30%BMCR负荷设计,单支最大用油量1.68t/h。
本燃烧器采用水平浓淡煤粉燃烧技术,以提高锅炉低负荷运行的能力,燃烧器可以上下摆动,其中一次风喷嘴可上下摆动20度,二次风喷嘴可上下摆动30度,顶部燃尽风喷嘴可向上摆动30度,向下摆动5度。
低氮燃烧介绍

低氮燃烧介绍氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。
低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。
浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。
根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。
简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
关键字:燃烧条件NOx NOx燃烧技术低NOx燃烧器用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
目前主要有以下几种:1.低过量空气燃烧使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。
这是一种最简单的降低NOx 排放的方法。
一般可降低NOx排放15-20%。
但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。
因此在锅炉设计和运行时,应选取最合理的过量空气系数。
2.空气分级燃烧基本原理是将燃料的燃烧过程分阶段完成。
在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。
此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。
利雅路 RS E ULX 系列 超低 NOx 燃气燃烧器 产品手册说明书

整体式超低 N O x 燃气燃烧器RS/E ULX 系列产品概览A Carrier Company RS/E ULX 系列 | 整体式超低 NOx 燃烧器氮氧化物排放能够低于40mg/Nm 3 @ 3,5% O 2(无 FGR, 需要合适的炉膛尺寸)对于一些应用,NO x 排放可以达到 30mg/Nm 3 @ 3.5% O 2 以下,但需要利雅路工程师确认。
超低 NOX整体式燃气燃烧器RS 68 - 510/E ULX 系列2RS 68/E ULXRS 120/E ULXRS 200/E ULXRS 310/E ULXRS 510/E ULX3RS/E ULX 系列 | 整体式超低 NOx 燃烧器为了满足日益增长的对极低 NOx 排放的要求,利雅路基于创新的 ULX 燃烧技术,开发了整体式的新系列燃烧器。
ULX 燃烧技术可以控制燃烧过程中产生的烟气量,从而达到最严格的排放限制。
在无需FGR装置以及从烟囱到燃烧器管道的情况下,ULX 燃烧技术可以使得氮氧化物排放低于40mg/Nm3 @3.5% O2 (无FGR,需要合适的炉膛尺寸)。
对于一些应用,NOx排放可以达到30mg/Nm3 @ 3.5% O2 以下,但需要利雅路工程师确认。
近年来,由于污染大幅度增加,全球各地特别是所有高度工业化国家,都对产品的性能、能效和排放物的减排更加关注。
ULX 燃烧技术—环境可持续发展的新里程碑新型 ULX 燃烧头采用燃气分级燃烧和废气内部再循环技术,极大地降低了 NOx 排放。
这种新型燃烧头体现了利雅路产品一贯的坚固性和可靠性。
集成的燃烧器数字控制系统,通过独立的伺服马达,可以控制每个出力点的空气和燃料比例,以达到非常低的 NOx 排放,同时使燃烧器保持极高的运行可靠性和安全性。
4>使用 ULX 燃烧技术后,无需再安装 FGR 系统通常所需要的管道系统,因此燃烧器的安装也更加方便。
>无需在锅炉房中安装管道,可以节省空间、时间和安装成本。
低氮燃烧器 尾气指标

低氮燃烧器尾气指标
低氮燃烧器是一种专门设计用于降低燃烧过程中产生的氮氧化物(NOx)排放的燃烧设备。
尾气指标是评估燃烧器性能的重要参数之一,通常包括氮氧化物(NOx)、一氧化碳(CO)、颗粒物(PM)等排放物的含量。
低氮燃烧器的尾气指标主要受到燃料类型、燃烧器设计、操作方式等因素的影响。
首先,低氮燃烧器的设计和优化是降低NOx排放的关键。
通过优化燃烧器内部空气和燃料的混合,控制燃烧温度和时间,可以有效降低NOx的生成。
其次,燃料的选择也会影响尾气指标。
一些低氮燃烧器专门设计用于特定类型的燃料,例如天然气、液化石油气等,这些燃料在燃烧过程中可以减少NOx的生成。
此外,燃烧器的操作方式也对尾气指标有影响。
例如,通过优化燃烧器的点火和燃烧控制系统,可以实现燃烧过程的稳定性,从而降低NOx排放。
除了NOx之外,低氮燃烧器也通常能够降低CO和PM的排放。
CO是不完全燃烧产生的有害气体,而PM是指空气中的固体颗粒物,它们的排放也是尾气指标的重要组成部分。
综上所述,低氮燃烧器的尾气指标受多种因素影响,包括燃烧
器设计、燃料类型和操作方式等。
通过优化这些因素,可以实现降
低NOx、CO、PM等排放物的目标,从而达到环保和节能的效果。
低氮燃烧技术

低NOx燃烧技术简介一概述:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
二低NOx燃烧技术方法:1、空气分级燃烧空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。
在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。
2、燃料分级燃烧燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。
把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。
3、烟气再循环燃烧烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx 的排放。
将部分低温烟气直接送入炉内或与空气一次风或与二次风混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx。
三低NOx燃烧器根据上述低NOx燃烧技术,我公司引进开发出以下型号的低NOx燃烧器:1、HDRB型低NOx燃烧器;2、HHT-NR型低NOx燃烧器;3、HXCL型低NOx燃烧器;4、HWS型低NOx燃烧器;5、HDS型低NOx燃烧器;6、HSM型低NOx燃烧器;7、 HPM型低NOx燃烧器。
低氮燃烧器原理

低氮燃烧器原理
低氮燃烧器是一种用于减少燃烧过程中氮氧化物(NOx)生成的装置。
它的工作原理基于以下几个方面:
1. 预混合燃烧:低氮燃烧器采用的是预混合燃烧技术,即在燃烧前将燃料和空气混合均匀。
通过提前混合燃料和空气,可以使燃料完全燃烧,减少未燃烧的燃料残留,从而降低NOx的
生成。
2. 燃烧温度控制:低氮燃烧器通过控制燃烧过程中的温度来减少NOx的生成。
燃烧温度过高会导致氮气和氧气反应生成NOx,因此低氮燃烧器通过调整燃烧室内的温度,使其在一个较低的范围内保持稳定,从而降低NOx的生成。
3. 氧化还原反应控制:低氮燃烧器通过控制燃烧过程中的氧化还原反应来减少NOx的生成。
氮和氧气在高温下发生反应生
成NOx,而在适当的氧化还原条件下,NOx可以被还原成氮气。
低氮燃烧器通过优化燃烧条件,使氮氧化物发生还原反应,从而减少NOx的生成。
4. 排放控制技术:低氮燃烧器还采用一系列排放控制技术来进一步减少NOx的排放。
这些技术包括增加燃烧室内的空气供应,使用催化剂来催化NOx的还原等。
综上所述,低氮燃烧器通过预混合燃烧、燃烧温度控制、氧化还原反应控制以及排放控制技术等手段,有效地减少燃烧过程中NOx的生成,降低对环境的影响。
百得燃烧器低氮样本

• 电离电极检பைடு நூலகம்火焰。 • 控制盘上有显示运行状态的指示灯、
启动/停止开关、一段火/两段火切换 开关和复位按钮。
• 为控制盘提供7孔和4孔联接插头。 • PCB电气联接。 • 轻质铝合金电控箱,防护等级IP55。
燃烧器型号
TBG 55 P TBG 85 P TBG 120 P TBG 150 P TBG 210 P
mbar
य़ᤳ༅
TBG 55 P
(䯔㒘+➗⚻఼) 80
✊⇨
75
MB...407
70
3/4"
65
60
25-25 HH
55
1"
50 45
MB...410 1"
40
35
MB...412 1 1/4"
30
25
MB...415 1 1/2"
20
MB...420
15
2"
10
40-40 HH
5
1 1/2"
0
kW
燃烧器型号 TBG 55
A B B1 B6 C
D
EF
mm mm mm mm mm mm mm mm
645 510 380 160 1230 175~400 161 159
功率 kW
190 ~ 550
天然气流量 m3/h
19 ~ 55
燃烧器型号 TBG 55
编号
电源
电机功率 kW
包装尺寸 L x P x H mm
天然气 备注
LPG
LPG
TBG 55 P 阀组
19990518 40-40 DH (1 1/2") 19990515 VGD 20.503 (2")
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低NOx燃烧器
1、工业用低氮燃烧器
(1)促进混合型低氮燃烧器
其结构如下图所示:
它是美国为阿波罗登月号着陆用发动机而设计的,由于燃料呈细流与空气垂直混合,故混合快而均匀,燃烧温度也均匀。
若干小火焰组成很薄的钟形火焰,很快被冷却,燃烧温度低。
火焰薄,烟气在高温区停留时间也短。
该燃烧器的特点是负荷变化50%~100%以内,火焰长度基本不变。
氮氧化物随过剩空气系数减少,降低不多。
在低过剩空气量下燃烧稳定,CO排量小。
适合中小型工业锅炉。
(2)分割火焰型低氮燃烧器
最简单的形式是在喷嘴处开数道沟槽将火焰分割成若干个小火焰,如下图所示:
由于火焰小,散热面积大,燃烧温度降低和烟气在火焰高温区的停留时间缩短,故抑制了氮氧化物的生成,一般可降低40%。
(3)烟气自身再循环型低氮燃烧器
其结构如下图所示:
利用燃气和空气的喷射作用将烟气吸入,使烟气在燃烧器内循环。
由于烟气混入,降低燃烧过程氧的浓度,降低燃烧温度,防止局部高温产生和缩短了烟气在高温区的停留时间。
(4)阶段燃烧型低氮燃烧器
最简单阶段型低氮燃烧如下图所示:
是空气进行分段供给。
也有燃料进行分段供给的,其效果比空气分段供给更好些。
(5)组合型低氮燃烧器
组合型就是将上述方式进行组合,一般结构比较复杂。
下图是SNT型低氮燃烧器:
其特征是:燃气从中心供入,空气以强旋转气流在燃气流周围供入。
在强空气旋转气流作用下,加速了燃气与空气的混合,增加了混合均匀性,促进了燃烧反应,防止局部高温的产生,使火焰具有均匀的较低的温度水平。
强烈的混合还可降低过剩空气,可在低过剩空气系数下实现完全燃烧。
空气的旋流,在火道出口产生回流区,形成烟气的自身循环,不仅起到稳定火焰和加速燃烧反应作用,同时降低燃烧区温度和氧气浓度的作用。
比较狭窄的圆柱形火道,可以防止燃气在高温火道内燃烧。
大量燃气流出火道后在火道出口处及炉膛内燃烧,火焰处于炉膛内,散热条件好,燃烧温度有所降低。
氮氧化物的生成实现了多种方法的抑制。
2.民用低氮燃烧器
随着城市燃气的普及和生活水平的提高,家用燃气具增多,排入室内的烟气量也随之增加,其中氮氧化物也随之增加。
不仅污染厨房空气,而且污染居室空气。
室内空气的质量对人体健康远比室外重要,特别是对老人、小孩。
近年来国内外对民用燃具低氮燃烧器进行大量研究,主要措施有以下。
(1)阶段燃烧
将燃烧器从中心供入的二次空气分阶段供给火焰的中部、上部,降低氧在火焰高温区的停留时间,从而抑制氮氧化物的生成,如下图所示。
(2)设置火焰冷却体
在火焰高温区安装火焰冷却体,将高温区的热量通过热导或辐射散失掉,使火焰得到冷却,从而抑制氮氧化物生成,如下图所示。
(3)烟气再循环
将部分烟气与燃烧用空气一同被燃气引射进燃烧器。
由于烟气混入燃烧过程,降低了火焰温度及氧的含量,从而抑制氮氧化物的生成,如下图所示。
(4)采用催化或完全预混辐射式燃烧
催化燃烧或全预混燃烧,过剩空气系数小,氧浓度低,同时火焰温度均匀,防止局部高温产生,氮氧化物生成少。
(5)适当选用一次空气系数,也可降低氮氧化物的生成。
理论和时间证明,在降低氮氧化物的同时,往往会导致烟气中CO含量增加
和热效率的降低。
在采取降低氮氧化物措施时,应综合考虑CO、NOx 和热效率三个方面的因素。