三期低NOx燃烧器改造讲课
600MW锅炉低NO_x燃烧器改造后汽温调整

411 锅炉设备概述台山电厂2号机组600MW亚临界锅炉系上海锅炉厂有限公司设计制造,配用中速磨煤机正压直吹式制粉系统,单炉膛Π型露天布置,全钢悬吊结构,采用四角切向燃烧方式,出渣设备为机械除渣。
锅炉燃烧器采用四角布置,共24只切向燃烧摆动式,分6层布置,每层设置4只燃烧器。
在顶部燃烧器上方各设一层燃尽风和辅助风喷口。
煤粉喷口、二次风喷口、燃尽风喷口均可上下摆动,用以调节再热汽温。
一组燃烧器共有14个喷嘴,其中6个煤粉喷嘴和7个二次风喷嘴间隔布置,最上面有1个燃尽风喷嘴作为控制NO x 生成的主要措施。
为了更好地组织燃烧和保护煤粉喷嘴,二次风中的一部分作为煤粉喷嘴的周界风,其余由各二次风喷口送入炉膛。
燃烧器自下而上布置依次为:FF、F、EF、E、DE、D、CD、C、BC、B、AB、A、AA、OFA。
2 改造后燃烧器概述厂家采用高级复合式空气分级低NO x 燃烧技术的改造方案。
保持原制粉系统与煤粉管道布置不变,现有的4个主燃烧器(含水冷套)进行整体更换。
主风箱设有6层WR煤粉喷嘴,在煤粉喷嘴四周布置有燃料风。
在每相邻2层煤粉喷嘴之间布置有3层辅助风喷嘴,其中包括上下2只偏置的辅助风喷嘴(CFS)和1只直吹风喷嘴。
在主风箱顶端设有2层紧凑燃尽风喷嘴(COFA),在主风箱底端设有2层二次风喷嘴。
在主风箱上部布置有两级高位燃尽风(SOFA)燃烧器,每级包括3层可水平摆动的高位燃尽风(SOFA)喷嘴。
3 改造后产生的问题燃烧器改造后,2号炉存在再热汽温明显偏低的问题,尤其是在变负荷过程中再热汽温下降较快。
原设计ECR工况下再热蒸汽出口温度可达541℃(改造前能够达到设计值)。
改造后,ECR工况下,高侧再热蒸汽出口温度仅525℃,低侧不到510℃。
不但左右两侧形成了更加明显的偏差,而且严重影响了机组的综合效率。
4 燃烧调整试验4.1 试验调整手段在通过燃烧器摆角调整,找出摆角与汽温的特性关系;在吹灰频率减少时,观察炉膛沾污系数变化对再热汽温的影响;在吹灰频率减少时,观察炉膛沾污系数变化对排烟温度的影响;不同磨煤机组合方式运行对再热汽温的影响;氧量与再热汽温的关系;通过对改造的CFS、COFA、SOFA二次风门调整,找出辅助风与汽温的特性关系。
低氮燃烧技术

低氮燃烧技术1 水泥窑炉系统NO X形成机理大致介绍2 现有低氮燃烧技术大致介绍3 低氮燃烧技术的效果4 改变燃料物化性能5 提高生料易烧性6、新型干法水泥应对脱硝的相应措施1、水泥窑炉系统NO X形成机理大致介绍1.1NO X的生成机理窑炉内产生的NO X主要有三种形式,高温下N2与O2反应生成的热力型NO X、燃料中的固定氮生成的燃料型NO X、低温火焰下由于含碳自由基的存在生成的瞬时型NO X.1.2热力型NO X:由于是燃烧反应的高温使得空气中的N2与O2直接反应而产生的,以煤为主要燃料的系统中,热力型NO X为辅。
➢一般燃烧过程中N2的含量变化不大,根据泽里多维奇机理,影响热力型NOX 生成量的主要因素有温度、氧含量、和反应时间。
➢热力型NOX产生过程是强的吸热反应,温度成为热力型NOX生成最显著影响因素。
研究显示,温度在1500K以下时,NO生成速度很小,几乎不生成热力型NO,1800K以下时,NO生成量极少,大于1800K时,NO生成速度每100K约增加6-7倍。
➢温度在1500K以上时,NO2会快速分解为NO,在小于1500K时,NO将转变为NO2,一般废气中NO2占NO X的5-10%,排入大气中NO最终生成NO2,所以在计算环境影响量时,还是以NO2来计算。
可以说,窑炉内的温度及燃烧火焰的最高温度是影响热力型NO X生成量的一个重要指标,也最终决定了热力型NO X的最大生成量。
因此,在窑炉设计中,尽量降低窑炉内的温度并减少可能产生的高温区域,特别是流场变化等原因而产生的局部高温区。
燃烧器设计中,要具备相对均匀的燃烧区域来保证燃料的燃烧,降低火焰的最高温度。
这些都是有效降低热力型NO X的有效办法。
➢热力型NOX生成量与氧浓度的平方根成正比,氧含量也是影响热力型NO X 生成量的重要指标。
随O2浓度增加和空气预热温度的增加,NO X生成量上升,但会有一个最大值。
O2浓度过高时,过量氧对火焰有冷却作用。
锅炉低氮燃烧器改造

锅炉低氮燃烧器改造作者:李伟刘帅点击:1399浅论HG-1020/18.58-YM型自然循环锅炉低氮燃烧器改造1 概述大唐鲁北发电有限责任公司 2×330MW机组分别与2009年9月、2009年12月投产运行,锅炉采用哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的HG-1020/18.58-YM23型自然循环锅炉。
锅炉燃烧系统采用水平浓淡煤粉燃烧技术,烟气中氮氧化物含量在600mg/Nm³左右。
随着国家对火电厂节能减排高度重视,环保标准将越来越高。
根据《火电大气污染排放标准》要求,2014年1月1日起现有发电厂锅炉NOx排放浓度限值不大于100mg/Nm3。
本着对社会负责,对企业负责的态度,大唐鲁北发电有限责任公司决定对本工程配套建设脱硝装置,脱硝装置投产后机组NOx排放浓度将降至排放标准以下。
按照脱硝工程设计要求,需对我公司燃烧器系统进行改造,将锅炉出口NOx排放浓度降低至200 mg/Nm3以下。
本文列举了大唐鲁北发电有限责任公司针对以上问题做出的相对应改造以及取得的效果。
2 设备简介2.1工作原理大唐鲁北发电有限责任公司2×330MW机组锅炉是哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的,配330MW汽轮发电机组的亚临界、一次中间再热、燃煤自然循环汽包锅炉,型号为HG-1020/18.58-YM23。
1号机组2009年9月投产,2号机组2009年12月投产。
锅炉燃烧系统采用摆动式燃烧器,燃烧器为四角布置,共5层分别对应5台磨煤机(由下往上依次是A、B、C、D、E)燃烧器四周通有周界风,在AB、BC、DE层布置由三层机械雾化油枪,燃用#0轻柴油,按锅炉30%BMCR负荷设计,单支最大用油量1.68t/h。
本燃烧器采用水平浓淡煤粉燃烧技术,以提高锅炉低负荷运行的能力,燃烧器可以上下摆动,其中一次风喷嘴可上下摆动20度,二次风喷嘴可上下摆动30度,顶部燃尽风喷嘴可向上摆动30度,向下摆动5度。
燃气锅炉低氮改造方案

燃气锅炉低氮改造方案为了应对环境污染的挑战和改善空气质量,燃气锅炉低氮改造成为了必要的举措。
在本文中,我们将讨论燃气锅炉低氮改造的方案,以期提供有效的解决方案。
一、方案概述燃气锅炉低氮改造的目标是降低氮氧化物(NOx)的排放量。
通过优化燃烧系统和引入额外的氮氧化物控制措施,可以实现降低NOx排放的效果。
具体而言,方案包括以下几个关键步骤:1. 优化燃烧系统:通过更换锅炉燃烧设备,改善燃烧效率,减少NOx的生成。
新一代低氮燃烧器采用先进的燃烧技术,能够更好地控制燃烧反应过程,降低NOx排放。
2. 引入尾气再循环技术:通过将一部分燃烧产生的废气回收再利用,将其混合到新鲜空气中重新参与燃烧,降低燃烧温度,减少NOx的生成。
3. 安装低氮燃烧系统:安装燃气锅炉专用的低氮燃烧系统,包括调节阀、排烟系统等。
这些系统在燃烧过程中能够减少NOx生成的同时,保持燃烧的稳定性和热效率。
二、方案优势1. 环保效益:通过燃气锅炉低氮改造,能够显著减少NOx的排放量,改善空气质量,保护环境。
减少大气污染物的排放对于人类健康和生态平衡都具有积极的影响。
2. 经济效益:低氮改造后的燃气锅炉在燃料利用率和热效率方面表现出色,能够节约能源和运行成本。
长期来看,低氮改造可以为企业带来可观的经济收益。
3. 质量保证:低氮燃烧系统的使用能够确保锅炉稳定运行和燃烧效果的优化。
燃烧过程的控制和调节能够提高锅炉的可靠性和耐久性,延长锅炉的使用寿命。
三、方案实施1. 技术评估:在实施燃气锅炉低氮改造之前,需要进行现有锅炉系统的技术评估。
通过现场勘测和数据分析,确定适合该锅炉的低氮改造方案。
2. 设备选型:根据实际需求和技术评估结果,选择合适的低氮燃烧器和相关设备。
确保设备的质量和性能能够满足要求。
3. 施工安装:根据设计方案,进行施工和设备安装。
确保施工过程中符合安全和质量要求,以及相关环保法规。
4. 调试验收:在施工完成后,进行系统调试和性能测试。
低NOx燃烧技术及典型低NOx燃烧器的结构原理

o c c u p y i n g a l a r g e p r o p o r t i o n i n t h e f e e d g a s i s r e l a t e d t o t h e c o r e c o mp e t i t i v e n e s s o f t h e p r o j e c t ’ S p r o d u c t i o n a n d o p e r a t i o n
太原科技大学化学工程工艺专业 , 工程师 , 山西华兆煤化工 有限 第一 作者简 介 : 郭 斌, 男, 1 9 8 3年 4月生 , 2 0 0 8年 毕业于 责任公司 , 山西省太原市 , 0 3 0 0 2 4 .
The An a l y t i c Re s e a r c h o n t he Ut i l i z a t i o n o f t he Na t ur a l
Ga s Pr o d u c e d f r o m t h e Co k e Ov e n Ga s
GUo Bi n
AB S T RAC T : C u r r e n t l y , i n C h i n a t h e r e a r e s e v e r a l s e t s o f t e c h n i c a l p r o j e c t s o f s y n t h e t i c n a t u r a l g a s t r a n s f o r m e d f r o m t h e
c o k e o v e n g a s g o i n g i n t o o p e r a t i o n , h o we v e r , t h e p r o b l e m o f “ mo r e h y d r o g e n a n d l e s s c a r b o n i n f e e d g a s ”e x i s t s i n t h e u t i l i z a t i o n o f t h e s y n t h e t i c n a t u r a l g a s p r o d u c e d r f o m t h e c o k e o v e n g a s , a n d h o w t o ma k e e f f e c t i v e u s e o f t h e h y d r o g e n
燃气轮机NOx生成机理及降低措施

燃气轮机NOx生成机理及降低措施一燃烧过程中NOx生成机理1.热力型NOx生成机理(泽尔道维奇机理)热力型NOx是指空气中的N2在高温条件下氧化生成的氮氧化物,其主要成分是NO。
按照这一机理,空气中的N2在高温下氧化,是通过如下一组不分支的链式反应进行的,生成速率如下式所示:生成NO所需的活化能很大,通常氧原子与燃料中可燃成分之间的活化能较小,反应较快,因此,NO通常不在火焰面上生成,主要生成区域位于火焰下游高温区。
温度对热力型NOx的影响是非常明显的,当温度低于1800K时,热力型NOx生成量很少,当温度高于1800K时,反应逐渐明显,而且随着温度的升高,NOx生成量急剧升高。
从图中可以大致看出,温度在1800K左右时,温度每升高l00K,反应速度将增大6一7倍。
由于在实际燃烧过程中,燃烧室内温度分布通常是不均匀的,如果有局部的高温区域,则在这个区域会生成较多的NOx,它可能会对整个燃烧室内的NOx生成起到关键的作用。
因此,在实际的燃烧器设计过程中应尽量避免局部高温区的形成。
过量空气系数对热力型NOx的影响也是非常明显的,热力型NOx生成量与氧浓度的平方根成正比,即氧浓度增大,在较高的温度下会使氧分子分解的氧原子浓度增加,从而使热力型NOx的生成量增加。
但在实际燃烧过程中情况会更复杂一些,因为过量空气系数的增加一方面增加了氧浓度,另一方面也降低了火焰温度,从总体趋势上来看,随着过量空气系数的增加,NOx生成量先增加,到达一个极值后下降。
气体在高温区域的停留时间对热力型NOx生成也有影响,主要是因为Nox生成反应速度较慢,没有达到化学平衡所致。
在其它条件不变的情况下,气体在高温区停留时间越长,NOx生成量就越大,直到达到化学平衡浓度。
2.快速型NOx生成机理有关快速型NOx的生成机理到目前为止尚有争议,其基本现象是碳氢燃料在过量空气系数小于1的情况下,在火焰面内急剧生成大量的NOx,而CO, H2等非碳氢燃料在空气中燃烧却没有发生这种现象。
LNB低氮燃烧器

LNB低氮燃烧器摘要:低NOx燃烧器是指燃料燃烧过程中NOx排放量低的燃烧器,采用低NOx 燃烧器能够降低燃烧过程中氮氧化物的排放。
脱硝技术可分为燃烧改造和烟气脱硝2种形式。
燃烧改造是指改变炉膛内的燃烧工况,通常包括安装低氮燃烧器(lowNOxburner,LNB)、应用燃尽风(overfireair,OFA)以及应用再燃技术。
燃烧改造的优点是改造和运行成本低,所以,被美国国家环境保护局(U.S.EnvironmentalProtectionAgency,EPA)定为最佳改造技术(bestavailableretrofittechnology,BART)之一,中国也将低氮燃烧定为首要改造手段。
低NOx燃烧器是指燃料燃烧过程中NOx排放量低的燃烧器,采用低NOx燃烧器能够降低燃烧过程中氮氧化物的排放。
传统的燃烧器为富氧燃烧,化学当量比在燃烧器出口约为1.2,即有20%的剩余空气量。
炉膛出口氧量为3%~4%,在富氧燃烧的状态下,容易达到稳定和完全燃烧,因而对飞灰未燃碳和CO等可燃物的排放有所控制,但是,富氧燃烧也使煤的氮成分与氧在高温下反应生成NOx。
为了降低NOx的生成,LNB延迟煤粉与氧气的充分混合,使得在LNB出口为富燃料燃烧,由于在火焰最高温处缺氧,NOx的生成大大减少。
墙式炉LNB把高旋转的二次风分成低旋转二次风和高旋转三次风。
低旋转风可减少煤粉与风的混合量,使得化学当量比在火焰中心低于1。
GE能源公司的LNB装有火焰稳定器、空气调节阀和可调空气旋转叶片等,燃烧器设计了燃气和燃油的功能。
四角切向炉的LNB在欧美通常是通过对二次风加偏角并把部分二次风从燃烧器中移到燃烧器上部(即燃烧区下游)以延迟空气和煤粉的混合。
中国的低氮燃烧技术多为浓淡分离,即在燃烧器内部将煤粉分为外淡内浓,使炉膛中心为富燃料燃烧,炉膛壁附近为富氧燃烧。
LNB的设计关键为稳定火焰。
因为在燃烧器出口空气供应不足,火焰有可能脱离燃烧器或火焰过长,导致燃烧不完全。
空气分级低NOx燃烧技术的研究与应用

一
在 二级燃 烧 区 内 , 燃 烧 用 的空 气 的 剩余 部 将
分 以二 次 空 气 输 入 , 为 富 氧 燃 烧 区 。此 时 空 气 成 量 虽 多 , 些 中 间 产 物 被 氧 化 生 成 NO: 一
CN+ O CO+ No 一
过 程 的 控 制 。 而 空 气 分 级 燃 烧 作 为 降 低 电 站 锅 炉
气分 级燃烧 后 , 焰温 度 峰值 明显 比不采 用 空气 火
分级燃 烧 时降低 , 故热 力型 NO 降低 。 分级燃 烧 可 以分 成 两类 , 类 是 燃 烧 室 ( 一 炉 内) 中的分 级燃烧 , 另一 类是单 个燃 烧器 的分级燃
和 NO 。 NO 虽 然 毒 性 不 大 , 是 高 浓 度 的 NO 但 会 引 起 神 经 中枢 障 碍 , 且 它 很 容 易 转 化 为 剧 毒 而 的 NO 。 NO。 棕 色 气 体 , 特 殊 的 刺 激 性 臭 是 有 味 , 吸 人 肺 后 能 与 肺 部 的 水 分 结 合 成 可 溶 性 硝 被 酸 , 重 时 会 引 起 肺 气 肿 。在 大 气 中 的 氮 氧 化 合 严 物 达 到 1 O 1 0mg L 的高 浓 度 时 , 连 续 呼 吸 O ~ 5 / 人 3 ~ 6 n便 会 中 毒 。 0 0mi 我 国是 世 界 上 最 大 的 煤 炭 生 产 和 消 耗 国 , 煤
但 因火 焰 温 度 低 , NO 生 成 量 不 大 , 而 总 因
次 措施 , 即通 过各 种 技 术 手段 在 燃烧 过 程 中对 已生 成 的 NO 通过 各 种 手 段 还, 最终 空气 分级燃 烧可使
NO 生 成 量 降 低 3 ~ 4 。 0 O