普通物理学(第六版)定律全套整合
程守洙《普通物理学》第六版第五章

05
电磁学基础
电场与电场强度
电场
电荷和电流在空间中激发的场,对其中运动的电荷施 加力。
电场强度
描述电场对电荷作用力的物理量,与电场中某点电荷 所受的力成正比,与该电荷的电量成正比。
电场线
表示电场中电场强度的方向和大小的假想线,始于正 电荷或无穷远,终止于负电荷或无穷远。
电势与电势差
电势
描述电场中某点电荷具有 的势能,与该点电荷的电 量和电场强度有关。
偏振片
偏振片是利用二向色性制成的光学元件,可以使自然光通过后成 为偏振光。
偏振光的产生
自然光通过偏振片后,只有与偏振片透振方向一致的光波分量才 能通过,其余分量被吸收或反射。
07
总结与展望
本章总结
主要内容回顾
1
2
介绍了波动光学的基本概念,包括光的干涉、衍 射和偏振。
3
详细讨论了干涉和衍射的原理及实验应用。
• 详细描述:熵是描述系统混乱度的物理量。在一个孤立系统中,自发过程总是 向着熵增加的方向进行,即系统的熵不会自发地减少。这是因为自发过程中, 分子运动的无序程度会增加,导致系统的熵增加。
热力学第三定律
总结词
热力学第三定律指出,绝对零度是不可能达到的,因此绝对零度也是物质的一个极限状态。
详细描述
热力学第三定律指出,绝对零度是不可能达到的。这是因为物质的微观粒子始终处于运动状态,即使 在绝对零度附近,粒子的运动速度也非常接近于零。因此,绝对零度是一个理想状态,物质只能无限 接近于这个状态而无法达到。
时间和空间不再是绝对的,而是相对的。
光速不变原理
在任何惯性参考系中,真空中的光速都是不 变的。
洛伦兹变换
描述不同惯性参考系之间的物理量之间的关 系。
普通物理学(第六版)上册第二章第一节课件

§2.2
动量定理和动量守恒定律
(力与运动的过程关系研究)
一、动量定理
dp 由牛顿第二定律: F = Fdt = dp dt 1、冲量 1)微分形式: dI Fdt Fdt 表示力的时间累积,叫时间 d t 内合外力 F 的冲量。
2)积分形式: I
牛顿运动定律适用的参考系称为惯性参考系。 一切惯性系,对于描述机械运动的力学规律来说是完全 等价的。 在一个惯性系内部所作的任何力学实验都不能够确定这 一惯性系本身是在静止状态,还是在做匀速直线运动。这 个原理叫做力学的相对性原理,或伽利略相对性原理。
二、经典(牛顿)力学时空观
据伽利略变换,可得到经典时空观 同时的绝对性
牛顿力学
时间的测量 长度的测量
与惯性系无关
-----牛顿力学的绝对时空观
三、惯性参考系与非惯性参考系
乙 甲
F
m l0
a
观察者甲: 有力 F 和加速度 a 即
F ma
牛顿定律在该参照系中适用 — 惯性系
观察者乙:有力 F 但没有加速度 a 即 m a 0, F 0
P Mvc P mv dp dp F F dt dt F ma F Mac
质点
质点系
例3 一质量m1=50kg的人站在一条质量为m2=200kg, 长度l=4m的船头上,开始时船静止。求当人走到船尾 时船移动的距离。水的阻力不计。
f 惯的方向与非惯性系的加 速度反向。
注意
惯性力不是真实力,无施力物体,无反作用力。
2、非惯性系中的力学规律
a ' 为物体相对非惯性系的加速度
F f 惯 ma '
程守洙《普通物理学》(第6版)(上册)(课后习题详解 恒定电流的磁场)

8.2 课后习题详解一、复习思考题§8-1 恒定电流8-1-1 电流是电荷的流动,在电流密度j≠0的地方,电荷的体密度ρ是否可能等于零?答:是,原因如下:电流密度j是指单位时间内单位面积上有多少电荷量流过;电荷的体密度ρ是指单位体积内有多少净电荷.对一段均匀金属导体,其内部有大量的自由电子,可分以下两种情况讨论:(1)无电流时宏观层面,任一体积元内其正负电荷数量是相等的,净电荷数为零,那么导体内的电荷体密度ρ等于零;(2)有电流时电流密度j≠0,根据电流的连续性原理,对任一段导体都有流进与流出的电流相等,金属导体内没有正电荷的移动,即单位时间内流入的和流出的负电子数相等,因此该段导体内的正负电荷数量仍然相等,净电荷数为零,导体内的电荷体密度ρ等于零.8-1-2 一金属板(如图8-1-1(a))上A、B两点如与直流电源连接,电流是否仅在AB直线上存在?为什么?试说明金属板上电流分布的大致情况.答:(1)否.因为当A、B两点接在直流电源的正负极上后,就存在电势差.该金属板上连接A、B两点的任一直线或弧线都可以看作是一条电阻线,用图8-1-1(b)所示的模型来描述,即在A 、B 之间的金属板可以分割为无数条电阻线,这些电阻并联且两端有相同的电势差,因此理论上在整个金属板上都存在电流线,只是电流主要集中在靠近A 、B 两点的线段上,远离A 、B 两点的地方电流很小.(2)金属板上电流分布的大致情况为:连接A 、B 两点的直线段对应于电阻R 1,那么流过该直线段的电流就最大(电阻最小);连接A 、B 两点的弧线段对应于电阻R 2、R 3、…、R n ,弧线越长,电阻越大,电流越小.因此可得如图8-1-1(c )所示的电流线分布图:图8-1-1金属板上的电流线分析图8-1-3 两截面不同的铜杆串接在一起(如图8-1-2),两端加有电压U ,问通过两杆的电流是否相同?两杆的电流密度是否相同?两杆内的电场强度是否相同?如两杆的长度相等,两杆上的电压是否相同?图8-1-2图8-1-3 粗细不均匀的导线中的电流线答:(1)电流是.原因为:如图8-1-3,在粗细不均匀的导线中,电流线在不同截面处没有突然断失或长出,是连续的,即电流在这种导线中处处相同.同时若把粗细不等的两段导线视为两个阻值不同的电阻串联在一起,加上电压U后,串联电路的电流是处处相同的,即通过两杆的电流相同.(2)电流密度否.原因为:两杆的截面不相同,流过杆的电流密度j则不相同,因此电流密度在细的一段较大,在粗的一段较小.(3)电场强度否.原因为:欧姆定理的微分形式j=γE说明,电流密度与电场强度成正比.因此细杆内的电流密度大,电场强;粗杆内的电流密度小,电场弱.(4)长度相等时,两杆的电压否.原因为:若同样的材质和长度,根据欧姆定律U=IR,当二者串联时有相同的电流,电阻大的细杆两端电压较高,电阻小的粗杆两端电压较低.8-1-4 电源中存在的电场和静电场有何不同?答:电源中同时存在两种电场:非静电性电场和恒定电场.(1)非静电性电场与静电场的不同点①作用力不同:a.非静电性电场对电荷的作用力是非静电力,如化学力、核力等,因此非静电性电场的大小是指单位正电荷所受到的非静电性力;b.静电场是由静止电荷激发产生的,静电场的大小是指单位正电荷所受到的静电力.②方向不同:a.非静电性电场的方向:在电源内部从电源的负极(低电势)指向电源的正极(高电势),在电源外部没有没有非静电性电场;b.静电场的的方向:由高电势指向低电势.③性质不同:a.非静电性电场是非保守力场;b.静电场是保守力场.(2)恒定电场与静电场的不同点静电场是由静止电荷激发产生;而恒定电场是由运动电荷产生,而其电场分布是恒定的.但是二者均为保守力场,均由不随时间变化的电荷或电荷分布所激发产生.8-1-5 一铜线外涂以银层,两端加上电压后在铜线和银层中通过的电流是否相同?电流密度是否相同?电场强度是否相同?答:(1)电流否,原因为:将铜线外涂以银层的电线结构视为两阻值不同的电阻并联而成,尽管二者长度相同,但电阻率不同,截面积也不同,因此铜线和银层的电阻不同.在电压相同的情况下,并联电阻通过的电流随阻值不同而不同,所以通过铜心和银层的电流不相同.(2)电流密度否,原因如下:设铜和银的电阻率分别为ρ1和ρ2,铜心和银层的截面积分别为S1和S2,它们的长度都是l ,那么它们的电阻分别为电流分别为电流密度分别为由此可见,电流密度与电阻率成反比,而与导线的截面积无关.由于铜的电阻率ρ1比银的电阻率ρ2大,所以铜心的电流密度比银层的电流密度小.(3)电场强度是,原因如下:根据欧姆定律的微分形式J =γE ,可求出铜心与银层中的电场强度大小分别是:可见铜心与银层中的电场强度是相同的,与铜心和银层的截面积、电阻率都无关.上式描述的是电场强度与电势梯度的关系,由于铜心和银层两端的电压和自身的长度相同,因此内部的电势梯度相同,电场强度也相同.§8-2 磁感应强度8-2-1 一正电荷在磁场中运动,已知其速度v 沿着Ox 轴方向,若它在磁场中所受力有下列几种情况,试指出各种情况下磁感应强度B 的方向.(1)电荷不受力;(2)F 的方向沿Oz 轴方向,且此时磁力的值最大;(3)F 的方向沿Oz 轴负方向,且此时磁力的值是最大值的一半.答:运动电荷在磁场中受到的洛伦兹力,F =q v ×B ,洛伦兹力的大小为F =qvBsinθ,θ为v 与B 之间的夹角,因此:(1)电荷不受力时此时洛伦兹力F =qvBsinθ=0,即磁感应强度B 的方向与电荷的运动方向一致(θ=0),或者相反(θ=π);(见图8-1-4(a ))(2)磁力的值最大时此时磁感应强度B 的方向与运动电荷的运动方向垂直其方向可由矢积F max ×v 的方向确定,因此沿y 轴方向;(见图8-1-4(b ))(3)磁力的值是最大值的一半时此时磁感应强度B 的方向与运动电荷运动方向之间的夹角由于F 的方向总是与B 与v 所在的平面垂直,而F 的方向沿O z 轴负方向,因此B 的方向在xy 平面内,且与x 轴之间的夹角(见图8-1-4(c ))图8-1-4 不同情况下磁感应强度B 的方向8-2-2 (1)一带电的质点以已知速度通过某磁场的空间,只用一次测量能否确定磁。
程守洙《普通物理学》(第6版)(上册)(课后习题详解 相对论基础)【圣才出品】

4.2 课后习题详解一、复习思考题§4-1 狭义相对论基本原理洛伦兹变换4-1-1 爱因斯坦的相对性原理与经典力学的相对性原理有何不同?答:(1)经典力学的相对性原理:运动关系的相对性表明,物质之间存在着相对运动的关系而非彼此孤立.相对运动的形式丰富多样,由相对运动产生的相互作用力也形式不一.(2)爱因斯坦的相对性原理:在所有惯性系中,物理定律的形式相同,或者说,所有惯性系对于描述物理现象都是等价的.(3)二者的分析比较:①经典力学的相对性原理说明一切惯性系对力学规律的等价性,而爱因斯坦的相对性原理将此种等价性推广到一切自然规律上去,包括力学定律和电磁学定律.②爱因斯坦的相对性原理的等价性推广意义深刻.我们可借助于电学或光学实验确定出本系统的“绝对运动”来,绝对静止的参考系是存在的,然而这与实验事实相矛盾.③爱因斯坦基于对客观规律的根本认识以及对实验事实的总结,才提出这个相对性原理的.相对论是研究相对运动和相互作用的科学.它使研究物质、能量及其相互作用的物理学发展到更高更深的层次.4-1-2 洛伦兹变换与伽利略变换的本质差别是什么?如何理解洛伦兹变换的物理意义?答:(1)洛伦兹变换与伽利略变换的本质差别:①洛伦兹变换是相对论时空观的具体表述;②伽利略变换是经典力学绝对时空观的具体表述.(2)洛伦兹变换的物理意义①洛伦兹变换集中地反映了相对论关于时间、空间和物质运动三者紧密联系的观念.②洛伦兹变换是建立相对论力学的基础.a.运用洛伦兹变换,评判一条物理规律是否符合相对论的要求,凡是通过洛伦兹变换能保持不变式的物理规律都是相对论性的规律.b.在v<<c时,洛伦兹变换将转换为伽利略变换,从这个角度出发,相对论力学就是经典牛顿力学的继承、批判和发展.4-1-3 设某种粒子在恒力作用下运动,根据牛顿力学,粒子的速率能否超过光速?答:(1)牛顿力学认为粒子的质量不会改变,粒子的加速度正比于所受外力.外力越大,粒子所得的加速度也越大.因此,粒子速度是没有极限的,粒子的速率可以超过光速.(2)相对论力学认为,粒子的质量随速度的增大而增大,粒子的加速度并非与所受外力成简单正比关系,加速度的大小有限制,使得粒子的速率不会超过光速.§4-3 狭义相对论的时空观4-3-1 长度的量度和同时性有什么关系?为什么长度的量度和参考系有关系?答:(1)长度的量度:测量一物体的长度就是在本身所处的参考系中测量物体两端点位置之间的距离.(2)同时性分析:①当待测物体相对于观测者静止时,在不同的时刻测量两端点的位置,其距离总是物体的长度;②当待测物体相对于观测者运动时,物体的长度就必须同时测定物体两端点的位置.若非同时测定,测量了一端的位置时,另一端已移动到新的位置,其坐标差值不再是物体的长度了.(3)由于同时性的相对性,所以长度的量度与同时性紧密相连,从而与测量的参考系有关.(4)下面举例说明:假设有一细棒静止在K′系的x′轴上,而K′系相对惯性系K 以速度v沿O x 轴运动.如把记录细棒左端坐标为事件1,记录细棒右端坐标为事件2,则两事件在两参考系中相应的时空坐标为由于细棒静止在K '系,所以△x'=x '2-x '1就是细棒的固有长度,根据洛伦兹变换在K 系测量两端坐标必须同时进行,即△t=0,故有所以在K 系中测得物体的长度为这就是长度收缩效应现象.4-3-2 下面两种论断是否正确?(1)在某一惯性系中同时、同地发生的事件,在所有其他惯性系中也一定是同时、同地发生的.(2)在某一惯性系中有两个事件,同时发生在不同地点,而在对该系有相对运动的其他惯性系中,这两个事件却一定不同时.答:(1)正确.在一个惯性系中同时、同地发生的事件,实质上就是一个事件.因而,可得:△x=0,△t=0根据洛伦兹变换:△x'=0,△t'=0因此,在所有其他惯性系中也一定是同时、同地发生的.(2)正确.对惯性系K 中同时发生在不同地点的两个事件,可得△t=0.△x≠0在相对运动的其他惯性系K '中,有在惯性系K '中这两个事件一定不同时.因此,同时性是相对的.4-3-3 两只相对运动的标准时钟A 和B ,从A 所在惯性系观察,哪个钟走得更快?从B 所在惯性系观察,又是如何呢?答:(1)从A 所在惯性系观察,根据“时间膨胀”或“原时最短”的结论,相对静止的时钟A 所指示的时间间隔是原时,它走得“快”些;而时钟B 给出的时间间隔是运动时,因“时间膨胀”而走得“慢”些.(2)同理,从B所在惯性系观察时,则相反,时钟B走得“快”些,而时钟A走得“慢”些.4-3-4 相对论中运动物体长度缩短与物体线度的热胀冷缩是否是一回事?答:不是一回事.(1)“热胀冷缩”①是涉及分子微观热运动的基本热学现象;②这与物体的温度有关,与其宏观运动速度无关.(2)“长度收缩”①是由狭义相对论所得到的重要结论,指在相对物体运动的惯性系中测量物体沿运动方向的长度时,测得的长度总是小于固有长度或静长这一现象;②这与物体的运动速度有关,与物体的组成和结构无关,是普遍的时空性质的反映.4-3-5 有一枚以接近于光速相对于地球飞行的宇宙火箭,在地球上的观察者将测得火箭上的物体长度缩短,过程的时间延长,有人因此得出结论说:火箭上观察者将测得地球上的物体比火箭上同类物体更长,而同一过程的时间缩短.这个结论对吗?答:此结论不正确.(1)狭义相对论认为,“长度收缩”和“时间膨胀”都是相对的.(2)若以火箭和地球为相对运动的惯性参考系,则火箭上的观察者也会观测到“长度收缩”和“时间膨胀”的现象.4-3-6 比较狭义相对论的时空观与经典力学时空观有何不同?有何联系?答:(1)两种时空观的不同:①狭义相对论时空观:a.狭义相对论中关于不同惯性系之间物理事件的时空坐标变换的基本关系式是洛伦兹变换.在洛伦兹变换关系中,长度和时间都是相对的,反映了相对论的时空观.b.狭义相对论时空观认为:第一,空间和时间不可分割,与物质运动密切相关;第二,时间是相对的,时间间隔因惯性系不同则会有差别;第三,空间是相对的,在不同的惯性系中,相同两点的空间间隔会有差别.②经典力学时空观:a.经典力学中关于不同惯性系之间物理事件的时空坐标变换的关系式是伽利略变换.在伽利略变换关系中,长度和时间都是绝对的,反映了经典力学的绝对时空观.b.经典力学时空观认为:时间、空间是彼此独立的,都是绝对的,与物质运动无关.(2)两种时空观的联系:①洛伦兹变换式通过狭义相对论的两个基本原理推导得出,并由此得出反映相对论时空观的几个重要结论,比如同时性的相对性、长度收缩、时间膨胀等;②当v<<c时,洛伦兹变换可以过渡到伽利略变换,即经典力学是相对论力学的低速近似.§4-4 狭义相对论动力学基础4-4-1 化学家经常说:“在化学反应中,反应前的质量等于反应后的质量.”以2g 氢与16g氧燃烧成水为例,注意到在这个反应过程中大约放出了25J的热量,如果考虑到相对论效应,则上面的说法有无修正的必要?。
程守洙《普通物理学》(第6版)(上册)笔记和课后习题(含考研真题)详解(8-9章)【圣才出品】

单位为
,电流密度描述的是导体中电流的分布.
2.电源的电动势
(1)电源
1 / 166ຫໍສະໝຸດ 圣才电子书 十万种考研考证电子书、题库视频学习平台
电源是指能提供性质与静电力很不相同的“非静电力”,把正电荷从电势低的 B 移向 电势高的 A 的装置.
(2)电动势 电动势等于电源把单位正电荷从负极经电源内移动到正极所作的功,即
二、磁感应强度 1.基本磁现象 在自然界中不存在独立的 N 极和 S 极. 运动电荷或电流之间通过磁场作用的关系可以表达为:
2.磁感应强度 它是描述磁场性质的基本物理量,大小为试探电荷所受到的最大磁力与电荷的电量和运 动速度间的比值,即
磁感应强度为矢量,磁感应强度的方向定义为当试探电荷 q 沿着某方向不受力时,定 义为磁感应强度 B 的方向;单位为 T(特),在高斯单位制下,有
2.安培环路定理 在磁场中,沿任何闭合曲线 B 矢量的线积分等于真空的磁导率乘以穿过以该闭合曲线 为边界所张任意曲面的各恒定电流的代数和,即
对安培环路定理的几点说明:
(1)磁场 B 的环流
只与穿过环路的电流有关,而与未穿过环路的电流无关;
(2)环路上任一点的磁感应强度 B 是所有电流(无论是否穿过环路)所激发的场在该
3.磁感应线和磁通量 (1)磁感应线 在任何磁场中,每一条磁感应线都是和闭合电流相互套链的无头无尾的闭合线,而且磁 感应线的环绕方向和电流流向形成右手螺旋的关系. (2)磁通量 通过一曲面的总磁感应线数,即
3 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台
磁通量为标量,有正负之分,定义穿入曲面的磁通量为负,穿出为正.单位为 W. (3)磁通量密度 磁场中某处磁感应强度 B 的大小为该处的磁通量密度,磁感应强度也称磁通量密度.
程守洙《普通物理学》(第6版)(上册)(课后习题详解 运动的守恒量和守恒定律)

2.2 课后习题详解一、复习思考题§2-1 质点系的内力和外力质心质心运动定理2-1-1 一物体能否有质心而无重心?试说明之.答:一物体可能有质心而无重心.(1)质心是表征物体系统质量分布的一个几何点,任何物体都有其质量分布,因此物体都有质心.(2)重心是地球对物体重力的作用点.在失重环境中,物体不受重力作用,重心就没有意义.2-1-2 人体的质心是否固定在体内?能否从体内移到体外?答:(1)质心是从平均意义上来表示物体的质量分布中心.它的位置由物体的质量分布来决定.所以,当物体质量改变时,质心的位置可以不固定.(2)质心可以由体内移到体外.人体在直立时,质心在体内,如果人体弯曲,就可把质心从体内移到体外.2-1-3 有人说:“质心是质量集中之处,因此在质心处必定要有质量”.这话对吗?答:(1)说法不对.(2)质心是描述物体系统质量分布的一个几何点,并非质量集中之处,质心所在处不一定有质量分布.如:质量均匀分布的空心球,其质心在球心,但质量却均匀分布于球面上.§2-2 动量定理动量守恒定律2-2-1 能否利用装在小船上的风扇扇动空气使小船前进?答:这是可以的.(1)假定风扇固定在小船上.当风扇不断地向船尾扇动空气时,风扇同时也受到了空气的反作用力.(2)该反作用力是向着船头的、并通过风扇作用于船身.根据动量定理,该力持续作用时会使船向前运动的动量获得增量.(3)当该作用力大于船向前运动时所受的阻力时,小船就可向前运动了.2-2-2 在地面的上空停着一气球,气球下面吊着软梯,梯上站着一个人.当这人沿软梯往上爬时,气球是否运动?答:选择人、气球和软梯组成的系统为研究对象.(1)当人相对软梯静止时,系统所受合力等于零.系统的动量在垂直方向上等于零并守恒,系统的质心将保持原有的静止状态不变.(2)当人沿软梯往上爬时,人与软梯间的相互作用力是内力,系统所受合外力仍为零,总动量恒定不变.系统的质心位置仍保持不变.根据动量守恒定律可知,当人沿软梯往上爬时,气球和软梯将向下运动.2-2-3 对于变质量系统,能否应用?为什么?答:(1)变质量系统的问题属于质点系的动力学问题,牛顿第二定律依然适用,但式中mν应理解为质点系的总动量.(2)这类问题的代表是发射中的火箭、下落中的雨滴等问题,其研究对象一般是主体的运动规律,对于运动过程中所吸附或排出的那一部分质量,在变化前后与运动主体有不同的运动速度,所以用来处理主体的运动是不正确的.(3)一般从质点系的动量定理的角度入手,由系统的动量定理可得式中m 为运动主体的质量,为附加物在吸附或排出后相对于运动主体的速度.上式变形得:该式是指主体的动量变化率等于主体所受的外力与单位时间内附加物变化的动量的矢量和.2-2-4 物体m 被放在斜面m'上,如把m 与m'看成一个系统,问在下列何种情形下,系统的水平方向分动量是守恒的?(1)m 与m'间无摩擦,而m'与地面间有摩擦;(2)m 与m'间有摩擦,而m'与地面间无摩擦;(3)两处都没有摩擦;(4)两处都有摩擦.图2-1-1答:如图2-1-1所示,物体与斜面视为一个系统,对系统进行受力分析:物体与斜面受到重力作用,地面对斜面有支持力,地面与斜面之间存在摩擦力.其中物体与斜面间的摩擦力和支持力均是系统的内力.当系统在水平方向的合外力为零时,系统的水平方向分动量守恒.讨论如下:(1)m'与地面间有摩擦时,系统在水平方向的合外力不为零,故水平方向的分动量不守恒.(2)m'与地面间无摩擦时,系统的水平方向的分动量守恒.(3)与(2)结论一致,系统的水平方向的分动量守恒.(4)与(1)结论一致,系统的水平方向的分动量不守恒.2-2-5 用锤压钉,很难把钉压入木块,如用锤击钉,钉就很容易进入木块,这是为什么?答:钉子打入木块,主要是钉子与木块之间的摩擦力小于钉子所受的作用力.(1)锤压钉子的压力一般不大,当钉子所受的摩擦力大于锤对钉子的压力时,钉子就无法进入木块,,因此难以把钉压入木块.(2)锤击钉子时,具有一定的动量,打击到钉子后,动量变成零.根据动量定理和牛顿第三定律,由于打击时间很短,钉子受到平均冲力很大,因此很容易克服木块的阻力而进入木块.2-2-6 如图2-1-2所示,用细线把球挂起来,球下系一同样的细线.拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断?为什么?图2-1-2答:任何细线只能承受一定张力,当给予细线的拉力超过它所能承受的极限张力,线就会断掉.如图示的情况:(1)当逐渐加大力量拉球下线时:在任一时刻,线中的张力与拉力达到平衡,而球上面线中的张力等于拉力和球的重力.因此,在渐渐增大拉力的过程中,球上面的线中的张力首先超过其极限张力会先断.(2)当用较大的力量突然拉球下线时:由动量定理可知,作用在线上的拉力就是冲力,由于力的作用时间较短,冲力还未传到球上面的线前,球下面的线就已经断了.2-2-7 有两只船与堤岸的距离相同,为什么从小船跳上岸比较难,而从大船跳上岸却比较容易?答:(1)选择人和船作为一个系统,并将人和船视为质点,忽略水的阻力.人以水平速度跳出时,系统在水平方向的动量分量守恒,即(2)由上式可知,大船没有小船后退厉害,人与小船的作用时间比较短了,在作用力相等时,所得的冲量就比较小了.因此人用同样大的力自小船上前跳的速度比自大船上前跳时的小,所以从小船跳上岸比从大船要困难.§2-3 功 动能 动能定理2-3-1 物体可否只具有机械能而无动量?一物体可否只有动量而无机械能?试举例说明.答:一个物体的动能和动量与相对于某参考系的速度有关;而物体的势能则与势能零点的选取有关.机械能是动能和势能的代数和.(1)一物体可能只具有机械能而无动量.如:①静止在离地面h 处的物体,它的动能和动量均为零.不将势能零点选在离地面高h 处时,物体就具有势能.因此,物体具有机械能而无动量.②弹簧振子在水平面内振动,在位移最大处,速度等于零,动能和动量也等于零.如将弹簧的原长处作为弹性势能的零点,那么此时弹簧振子具有弹性势能,其机械能不为零而动量为零.(2)一物体也可能只有动量而无机械能.如:物体离地面h 处自由下落至地面时,物体速度不为零,那么物体具有动量和动能.如将重力势能的零点选定在物体下落处,则到达地面时具有重力势能-mgh .由于开。
程守洙《普通物理学》(第6版)(上册)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

第1章力和运动1.1复习笔记一、质点运动的描述机械运动是指一个物体相对于另一个物体的位置,或者一个物体的某些部分相对于其他部分的位置,随着时间而变化的过程.1.质点(1)质点是指具有一定质量且大小和形状可以忽略的理想物体;(2)质点的简化具有相对性.2.参考系和坐标系(1)参考系①参考系是指在描述物体运动时,被选作参考的物体或物体系;②参考系的选择具有任意性.(2)坐标系①选取在参考系上选定一点作为坐标系的原点O,取通过原点并标有长度的线作为坐标轴.②常用坐标系笛卡尔坐标系、平面极坐标系和球坐标系等.(3)参考系和坐标系的关系坐标系用来定量地描述一个物体在各时刻相对于参考系的位置.3.空间和时间(1)空间反映物质的广延性,与物体的体积和物体位置的变化相联系;(2)时间反映物理事件的顺序性和持续性.4.运动学方程在选定的参考系中,运动质点的位置P(x,y,z)是t 的函数,即x=x(t),y=y(t),z=z(t)5.位矢(1)位矢是用来确定某时刻质点位置的矢量,用r 表示.(2)特点①矢量性;②瞬时性;③相对性.6.位移位移表示质点在一段时间内位置改变的矢量,用r表示.7.速度(1)平均速度:(2)瞬时速度(速度):8.加速度(1)质点的平均加速度(2)瞬时加速度加速度是矢量:①a与v成锐角,速率增加;②a与v成钝角,速率减小;③a与v成直角,速率不变.二、圆周运动和一般曲线运动1.切向加速度和法向加速度自然坐标系下的加速度式中,切向加速度a t和法向加速度a n分别为:2.圆周运动的角量描述(1)圆周运动的瞬时角速度(角速度)式中,△θ为角位移,单位为rad;ω的单位为1/s或rad/s.(2)圆周运动的瞬时角加速度(角加速度)式中,α的单位为1/s2或rad/s2.(3)角量和线量的关系22 d d t n R a R t a R R υωυαυω⎧⎫⎪=⎪⎪⎪⎪⎪==⎨⎬⎪⎪⎪⎪==⎪⎪⎭⎩线量角量3.抛体运动的矢量描述(1)速度分量:(2)速度矢量:(3)加速度:(4)位矢:(5)轨迹方程:三、相对运动常见力和基本力1.相对运动(1)伽利略坐标变换(2)速度变换与加速度变换质点P 在K’系的速度/加速度与它在K 系的速度/加速度的关系质点在两个相对作匀速直线运动的参考系中的加速度是相同的.2.常见力(1)重力重力是指地球表面附近的物体受到地球的吸引作用而使物体受到的力.(2)弹力弹力是指形变物体恢复原状时与它接触的物体产生的力.弹力的三种表现形式:①两物体间的相互挤压两物体间相互挤压所产生的弹力又称正压力或支承力.该力大小取决于相互挤压的程度,方向总是垂直于接触面并指向对方.②绳线对物体的拉力该力大小取决于绳线收紧的程度,方向总是沿着绳线并指向绳线收紧的方向.③弹簧的弹力弹簧的弹力总是力图使弹簧恢复原状,又称恢复力.F=-kx(胡克定律)式中:k为弹簧的劲度系数或劲度,负号表示弹力和位移方向相反.(3)摩擦力摩擦力是指两个相互接触的物体在沿接触面相对运动或有相对运动的趋势时,在接触面间产生的一对阻止相对运动的力.(4)万有引力万有引力是存在于任何两个物体之间的吸引力.式中:G为引力常量,.3.基本力(1)电磁力电磁力是指存在于静止电荷之间的电性力以及存在于运动电荷之间的电性力和磁性力.(2)强力强力是指存在于核子、介子和超子之间的强相互作用.(3)弱力弱力是指在亚原子领域中存在的短程相互作用.四、牛顿运动定律1.牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到作用在它上面的力迫使它改变这种状态为止,又称惯性定律.相关说明:(1)惯性是物体所具有的保持其原有运动状态不变的特性.(2)力是引起运动状态改变的原因.(3)牛顿定律只适用于惯性系.2.牛顿第二定律物体受到外力作用时,它所获得的加速度的大小与外力的大小成正比,并与物体的质量成反比,加速度方向与外力方向相同.dtv d m a m F ==力是物体产生加速度的原因,并非物体有速度的原因.3.牛顿第三定律两个物体之间的作用力和反作用力,在同一直线上,大小相等方向相反.BAAB F F -=。
程守洙《普通物理学》(第6版)(下册)笔记和课后习题(含考研真题)详解-第10章 机械振动和电磁振荡

(3)振动频率 振动频率是指单位时间内物体所作的完全振动的次数,用 v 或 f 表示,单位为赫[兹], 符号是 Hz.
(4)角频率 角频率是指物体在 2π 秒时间内所作的完全振动次数,也称圆频率,用 ω 表示,单位 是 rad/s.
对于弹簧振子,
,所以弹簧振子的周期和频率为
3 / 68
圣才电子书
.
角谐振动表达式
θ=θmcos(ωt+φ0)
式中,θm 是最大角位移,即角振幅,φ0 为初相位,它们均由初始条件决定.
(2)复摆
图 10-1-5 复摆 ①复摆是指一个可绕固定轴 O 摆动的刚体,又称物理摆. ②设复摆绕 O 轴的转动惯量为 J,摆角很小时,根据转动定律得
周期为
6 / 68
圣才电子书
其中,矢量 的长度即振动的振幅 A,矢量旋转的角速度 ω 为振动的角频率,矢量与 Ox 轴的夹角 φ 为振动的相位,而 t=0 时矢量与 x 轴的夹角 φ0 为初相位.
4 / 68
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 10-1-3 用旋转矢量表示两个谐振动的相位差 4.几种常见的谐振动 (1)单摆
图 10-1-1 谐振动中的位移、速度、加速度与时间的关系
2 / 68
圣才电子书
十万种考研考证电子书、题库视频学习平
台
④若在振动的起始时刻,即在 t=0 时,物体的初位移为 x0、初速度为 υ0,则可求得
振动物体在 t=0 时的位移 x0 和速度 υ0 称为振动的初始条件. 2.描述谐振动的特征量 (1)振幅 振幅是指作谐振动的物体离开平衡位置的最大位移的绝对值 A. (2)周期 周期是指完成一次完整振动所经历的时间,用 T 来表示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、力和运动1.1 质点运动的描述!1.质点2.参考系和坐标系3.空间和时间4.运动学方程轨迹方程5.位矢6.位移7.速度(瞬时)速度:(瞬时)速率:8.加速度(瞬时)加速度:1.2 圆周运动和一般曲线运动!1.切向加速度和法向加速度自然坐标系;法向加速度处处指向曲率中心。
2.圆周运动的角量描述角速度:角加速度:3 .抛体运动的矢量描述1.3 相对运动常见力和基本力1.相对运动(伽利略)速度变换式:2.常见力重力、弹力、摩擦力、万有引力3.基本力万有引力、电磁力、强力、弱力1.4 牛顿运动定律!1.牛顿第一定律(惯性定律)2.牛顿第二定律3.牛顿第三定律(作用力和反作用定律)4.牛顿运动定律应用举例1)常力作用下的连接体问题2)变力作用下的单体问题1.5 伽利略相对性原理非惯性系惯性力1.伽利略相对性原理(力学的相对性原理)2.经典力学的时空观*3.非惯性系*4.惯性力二、运动的守恒量和守恒定律2.1 质点系的内力和外力质心质心运动定理!1.质点系的内力与外力2.质心对于N个质点组成的质点系:质心的位矢对于质量连续分布的物体:质心的位矢3.质心运动定理2.2 动量定理动量守恒定律!1.动量定理冲量:动量定理:动量定理是牛顿第二定律的积分形式。
*2. 变质量物体的运动方程 3.动量守恒定律*4.火箭飞行2.3 功能量动能定理!1.功的概念功:功率:2.能量3.动能定理动能:动能定理:2.4 保守力成对力的功势能!1.保守力保守力:重力、万有引力、弹性力以及静电力等。
非保守力:摩擦力、回旋力等。
2.成对力的功3.势能4.势能曲线2.5 质点系的功能原理机械能守恒定律!1.质点系的动能定理2.质点系的动能原理3.机械能守恒定律4.能量守恒定律*5.黑洞2.6 碰撞对心碰撞(正碰撞)1.碰撞过程系统动量守恒2.牛顿的碰撞定律恢复系数:完全弹性碰撞(1);非弹性碰撞;完全非弹性碰撞(0)完全弹性碰撞过程,系统的机械能(动能)也守恒。
2.7 质点的角动量和角动量守恒定律!1.角动量(动量矩)2.角动量守恒定律力矩:2.8 对称性和守恒定律1.对称性和守恒定律2.守恒量和守恒定律三、刚体和流体的运动3.1 刚体模型及其运动1.刚体2.平动和转动3.自由度质点、运动刚体、刚性细棒的自由度。
3.2 力矩转动惯量定轴转动定律!1.力矩力臂:2.角速度矢量3.定轴转动定律4.转动惯量当刚体为质量连续体时,(r 为质元dm到转轴的距离)平行轴定理:3.3 定轴转动中的功能关系!1.力矩的功2.刚体的转动动能3.定轴转动的动能定理4.刚体的重力势能3.4 定轴转动刚体的角动量定理和角动量守恒定律1.刚体的角动量2.定轴转动刚体的角动量定理微分形式:积分形式:3.定轴转动刚体的角动量守恒定律1)刚体( J 不变)的角动量守恒;2)非刚体( J 可变)的角动量守恒;3)物体系的角动量守恒。
3.5 进动(回转效应)陀螺的3.6 理想流体模型定常流动伯努利方程1.理想流体模型流体、理想流体、流体动压强2.定常流动定常流动、流线、流管3.伯努利方程3.7 牛顿力学的内在随机性混沌1.线性科学和非线性科学2.混沌和牛顿力学的内秉随机性四、相对论基础4.1 狭义相对论基本原理洛伦兹变换!1.狭义相对论基本原理迈克耳孙—莫雷实验;相对性原理;光速不变原理2.洛伦兹变换4.2 相对论速度变换!4.3 狭义相对论的时空观1.“同时”的相对性2.时间延缓固有时、运动时3.长度收缩4.相对性与绝对性4.4 狭义相对论动力学基础!1.相对论力学的基本方程2.质量与能量的关系3.动量与能量的关系4.5 广义相对论简介等效原理、广义相对论的相对性原理、引力红移、水星在近日点的进动五、气体动理论5.1 热运动的描述理想气体模型和物态方程!1.状态参量体积V、压强p、温度T2.平衡态准静态过程3.理想气体物态方程5.2 分子热运动和统计规律1.分子热运动的图像2.分子热运动的基本特征平衡态的统计假设、微观量、宏观量、统计方法3.分布函数和平均值5.3 理想气体的压强和温度公式!1.理想气体的微观模型2.理想气体压强公式的推导分子的平均平动动能:理想气体的压强:3.温度的本质和统计意义理想气体物态方程:4.气体分子的方均根速率5.4 能量均分定理理想气体的内能1.分子的自由度刚性气体分子的自由度(单3双5多6)2.能量均分定理分子平均动能:(i:自由度)3.理想气体的内能质量为m,摩尔质量为M的理想气体内能:5.5 麦克斯韦速率分布律!*1.分子速率的实验测定2.速率分布函数3.麦克斯韦速率分布律平均速率:最概然速率:方均根速率:5.6 #麦克斯韦-玻尔兹曼能量分布律重力场中粒子按高度的分布1.麦克斯韦-玻尔兹曼能量分布律2.重力场中粒子按高度的分布5.7 分子碰撞和平均自由程!1.分子碰撞的研究2.平均自由程公式平均碰撞次数:平均自由程:5.8 气体的输运现象1.黏性现象粘性力:粘度(黏性系数):2.热传导现象热传导系数:3.扩散现象扩散系数:杜瓦瓶(保温瓶)原理、同位素分离5.9 真实气体范德瓦耳斯方程1.真实气体等温线2.范德瓦耳斯方程3.范德瓦耳斯方程的等温线和真实气体的等温线4.临界点六、热力学基础6.1 热力学第零定律和第一定律!1.热力学第零定律2.热力学过程3.功热量内能4.热力学第一定律6.2 热力学第一定律对于理想气体平衡过程的应用!1.等体过程气体的摩尔定容热容2.等压过程气体的摩尔定压热容3.等温过程4.绝热过程5.多方过程6.3 循环过程卡诺循环!1.循环过程正循环:热机效率逆循环:制冷系数2.卡诺循环卡诺热机效率卡诺制冷机的制冷效率6.4 热力学第二定律1.热力学第二定律自发过程、开尔文表述、克劳修斯表述2.两种表述的等价性反证法证明6.5 可逆过程与不可逆过程卡诺定理1.可逆过程与不可逆过程2.卡诺定理可逆机不可逆机3.卡诺定理的证明6.6 熵玻尔兹曼关系1.熵2.自由膨胀的不可逆性3.玻尔兹曼关系!6.7 熵增加原理热力学第二定律的统计意义!1.熵增加原理封闭系统2.热力学第二定律的统计意义6.8 耗散结构信息熵1.耗散结构贝纳尔对流、化学振荡2.信息熵七、静止电荷的电场7.1 物质的电结构库伦定律!1.电荷2.电荷守恒定律3.电荷的量子化4.库伦定律7.2 静电场电场强度1.电场2.电场强度试验电荷、场强、电偶极子3.电场强度的计算1)点电荷的电场强度2)场强叠加原理和点电荷系的电场强度3)电荷连续分布带电体的电场强度4.电场线电场强度通量均匀电场中非均匀电场7.3 静电场的高斯定理!1.静电场的高斯定理2.高斯定理的应用7.4 静电场的环路定理电势!1.静电场力做功2.静电场的环流定理3.电势电势能:电势:电势差(电压):4.电势的计算1)点电荷的电势2)点电荷系的电势(电势叠加原理)3)连续分布电荷的电势4)多个带电体的总电势5.等势面7.5 电场强度与电势梯度的关系!7.6 静电场中的导体!1.导体的静电平衡静电感应现象、静电平衡状态2.静电平衡下导体上的电荷分布3.空腔导体内外的静电场与静电屏蔽7.7 电容器的电容1.孤立导体的电容2.电容器的电容平板电容器圆柱电容器球形电容器相对电容率(相对介电常量)3.电容器的串联和并联串联:并联:7.8 静电场中的电介质*1.电介质的电结构2.电介质的极化1)无极分子电介质的位移极化2)有极分子电介质的取向极化3.电极化强度对各项同性的电介质:4.电极化强度与极化电荷的关系5.介质中的静电场介质中的环路定理:电容率(介电常量):6.铁电体压电体永电体7.9 有电介质时的高斯定理电位移1.有电介质时的高斯定理电位移电位移矢量:有电介质时的高斯定理:2.D、E、P三矢量的关系7.10 静电场的能量!电容器的能量:电场能量密度:电场的能量:八、恒定电流的磁场8.1 恒定电流1.电流电流密度2.电源的电动势3.欧姆定律闭合电路的欧姆定律:8.2 磁感应强度1.基本磁现象永磁铁、磁极、分子电流2.磁感应强度3.磁感应线和磁通量通过面元dS的磁通量:通过曲面S的磁通量:8.3 毕奥-萨伐尔定律!1.毕奥-萨伐尔定律2.运动电荷的磁场3.毕奥-萨伐尔定律的应用1)直导线电流的磁场2)载流圆线圈轴线上的磁场3)螺线管电流轴上的磁场8.4 恒定磁场的高斯定理和安培环路定理!1.恒定磁场的高斯定理S2.安培环路定理3.安培环路定理的应用1)无限长载流圆柱形导体的磁场分布外:内:2)长直螺线管内的磁感应强度( I、n )3)载流螺绕环内的磁场8.5 带电粒子在电场和磁场中的运动!1.洛伦兹力2.带电粒子在电磁场中的运动和应用磁聚焦、回旋加速器、质谱仪3.霍尔效应*4.量子霍耳效应8.6 磁场对载流导线的作用!1.安培定律安培力:2.磁场对载流线圈的作用3.电流单位“安培”的定义4.磁场力的功1)磁力对运动载流导线做的功2)载流线圈在磁场中转动时磁力矩的功8.7 磁场中的磁介质1.磁介质磁化、磁介质、相对磁导率2.分子电流和分子磁矩3.抗磁质的磁化4.顺磁质的磁化8.8 有磁介质时的安培环路定理磁场强度!1.磁化强度磁化(面)电流2.有磁介质时的安培环路定理8.9 铁磁质1.磁化曲线和磁滞回线2.磁畴3.磁性材料的分类软磁材料、硬磁材料、矩磁材料、静磁屏蔽九、电磁感应电磁场理论9.1 电磁感应定律!1.电磁感应现象2.楞次定律3.法拉第电磁感应定律9.2 动生电动势!1.在磁场中运动的导线内的感应电动势2.在磁场中转动的线圈内的感应电动势交变电动势、交变电流9.3 感生电动势感生电场!1.感生电场2.电子感应加速器3.涡电流9.4 自感应和互感应!1.自感应2.互感应若空间不存在铁磁质:自感和互感的关系:9.5 磁场的能量!自感磁能:能量密度:非匀强磁场的能量:匀强磁场的密度:9.6 位移电流电磁场理论!1.位移电流位移电流位移电流密度2.麦克斯韦方程组3.电磁场的物质性9.7 电磁场的统一性和电磁场量的相对性十、机械振动和电磁振荡10.1 谐振动!1.谐振动的特征及其表达式简谐振动表达式:2.描述谐振动的特征量振幅A、周期T、频率角频率(圆频率)相位、初相同相、反相;超前、落后3.谐振动的旋转矢量图示法振幅、角频率、相位、初相位、周期4.几种常见的谐振动单摆、复摆5.谐振动的能量6.用能量法解谐振动问题10.2 阻尼振动无阻尼自由振动、阻尼振动、阻尼因子、固有频率10.3 受迫振动共振1.受迫振动2.共振位移共振速度共振10.4 电磁振荡1.LC电路的振荡电磁振荡、(无阻尼)自由振荡2.受迫振荡电共振3.力电类比10.5 一维谐振动的合成1.同一直线上两个同频率谐振动的合成482.同一直线上两个不同频率谐振动的合成拍10.6 二维谐振动的合成a.振动方向相互垂直同频率的谐振动的合成振动,其轨迹为一椭圆。