变速恒频双馈风力发电机的主要优点及基本原理.doc
变速恒频双馈风力发电机组控制技术

随着传统能源的逐渐枯竭和环境问题的日益严重,开发可再生能源已
成为全球的迫切需求。风能作为一种清洁、可再生的能源,具有巨大
的开发潜力。
02
风力发电技术发展
随着风电技术的不断进步,风力发电机组的功率和效率得到了显著提
高。变速恒频双馈风力发电机组作为其中的一种重要技术,具有较高
的能量捕获能力和稳定性,得到了广泛关注。
变速恒频双馈风力 发电机组控制技术
2023-11-06
目录
• 引言 • 变速恒频双馈风力发电机组概述 • 变速恒频控制技术 • 双馈风力发电机组的矢量控制技术 • 双馈风力发电机组的直接功率控制技术 • 双馈风力发电机组控制技术的改进与优化建议 • 结论与展望
01
引言
研究背景与意义
01
能源危机和环境污染
直接功率控制策略的实验验证
实验平台
为了验证DPC策略的有效性, 需要建立实验平台,包括双馈 风力发电机组、电力电子设备
、测量仪器等。
实验过程
在实验平台上对DPC策略进行 验证,通过对励磁电流、转子 侧变换器电压等参数的调整, 观察双馈风力发电机的运行状
态和性能指标。
实验结果分析
通过对实验数据的分析,可以 评估DPC策略的控制效果和经 济效益。同时还可以对不同控 制策略进行比较和分析,以选
04
双馈风力发电机组的矢量控制 技术
基于矢量控制的双馈风力发电机组控制
01
02
03
矢量控制原理
基于矢量图的分析方法, 通过控制直交坐标系上的 两个分量来实现对电磁转 矩的控制。
矢量控制策略
通过控制励磁电流和转子 电流的幅值和相位,实现 对双馈风力发电机组的有 效控制。
变速恒频双馈风力发电机励磁控制技术研究

变速恒频双馈风力发电机励磁控制技术研究变速恒频双馈风力发电机是一种目前被广泛应用的风力发电机型号之一、它的励磁控制技术的研究对于提高风力发电机的发电效率和稳定性具有重要意义。
本文将从变速恒频双馈风力发电机的原理入手,介绍其励磁控制技术的研究现状和存在问题,并展望未来的发展方向。
变速恒频双馈风力发电机是一种采用双馈变速发电机作为发电机的风力发电系统。
其工作原理为:风能通过风轮驱动发电机转子旋转,产生电能。
其中,双馈发电机在转子和定子之间通过两个转换器将电能传递到电网中。
变速恒频控制技术的目的是根据风能的变化调整电机的转速,从而使发电机输出的电压频率保持稳定不变,并将其与电网的频率保持一致。
目前,变速恒频双馈风力发电机的励磁控制技术主要有三种类型:恒功率控制、恒风速控制和变频控制。
恒功率控制方法通过调节齿比传动装置来使得风力发电机输出的功率恒定。
恒风速控制方法通过调整转子的转速来使得风轮的转速保持恒定,从而达到一定的风速条件下输出恒定的功率。
变频控制方法通过控制发电机的频率来实现电网的频率同步。
然而,该技术在实际应用中还存在一些问题。
首先,励磁调节繁琐,难以实现精确控制。
其次,由于风力的不稳定性,变速恒频双馈风力发电机的输出功率会产生一定的波动,从而对电网的安全性和稳定性产生影响。
此外,传统的变速恒频控制方法对于风力发电机在不同气候条件下的风速响应能力较差。
未来的发展方向是改进现有的励磁控制技术,提高风力发电机的发电效率和稳定性。
一方面,可以研究开发更加精确的励磁控制算法,提高励磁系统的响应速度和控制精度。
另一方面,可以采用先进的传感器技术来实时监测和调节风力发电机的工作状态,以提高其对风力变化的响应能力。
此外,还可以结合机器学习等新兴技术,通过模型预测和预测控制来减小风力发电机输出功率的波动性。
综上所述,变速恒频双馈风力发电机励磁控制技术的研究对于提高风力发电机的发电效率和稳定性具有重要意义。
通过改进励磁控制算法和采用先进的传感器技术,可以提高风力发电机的响应能力和控制精度,减小输出功率的波动性。
(完整word版)双馈风力发电机工作原理

第 5 章双馈风力发电机工作原理我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。
双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。
同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。
交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。
这说明交流励磁电机比同步电机多了两个可调量。
通过改变励磁频率,可改变发电机的转速,达到调速的目的。
这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。
改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。
这说明电机的功率角也可以进行调节。
所以交流励磁不仅可调节无功功率,还可以调节有功功率。
交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。
但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。
一、双馈电机的基本工作原理设双馈电机的定转子绕组均为对称绕组,电机的极对数为p ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速n1称为同步转速,它与电网频率f1及电机的极对数p 的关系如下:n1 60 f 1(3-1)p同样在转子三相对称绕组上通入频率为 f 2的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:n2 60 f 2(3-2)p由式 3-2 可知,改变频率 f 2,即可改变 n2,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。
变速恒频双馈异步发电机运行原理讲义

变速恒频双馈风力发电机运行原理张 波风力发电以其无污染和可再生性,日益受到世界各国的广泛重视,近年来得到迅速发展。
采用双馈电机的变速恒频风力发电系统与传统的恒速恒频风力发电系统相比具有显著的优势,如风能利用系数高,能吸收由风速突变所产生的能量波动以避免主轴及传动机构承受过大的扭矩和应力,以及可以改善系统的功率因数等。
双馈电机变速恒频(VSCF )风力发电系统,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制。
它的核心技术是基于电力电子和计算机控制的交流励磁控制技术。
1 工作原理1.1 双馈电机的VSCF 控制原理VSCF 风力发电系统主要由风力机、增速箱、双馈发电机、双向变频器和控制器组成。
双馈发电机可在不同的转速下运行,其转速随风速的变化可作适当的调整,使风力机的运行始终处于最佳状态,以提高风能的利用率。
当电机的负载和转速变化时,通过调节馈入转子绕组的电流,不仅能保持定子输出的电压和频率不变,而且还能调节发电机的功率因数。
双馈异步发电机的结构类似绕组感应发电机,其定子绕组直接接入电网,转子绕组由一台频率、电压可调的低频电源(一般采用交-交变频器或交-直-交变频器)供给三相低频电流,图1给出这种系统的原理框图。
当转子绕组通过三相低频电流时,在转子中形成一个低速旋转磁场,这个磁场的旋转速度(n 2)与转子的机械转速(n )相叠加,使其等于定子的同步转速(n 1),即21n n n ±=从而在发电机定子绕组中感应出相应与同步转速的工频电压。
由上面转速关系可以推出风力发电机转速与定、转子绕组电流频率的关系,即式中 f 1、f 2、n 和p 分别为定子电流频率、转子电流频率、发电机的转速和极对数。
当风速变化时,转速随之而变化。
由式(1)可知,当转速n 发生变化时,若调节f 221()f sf =±相应变化,可使f 1保持恒定不变,即与电网频率保持一致,实现风力发电机的VSCF 控制。
变速恒频双馈风力发电机

Rs 0 0 0 0 0
0 Rs 0 0 0 0
0 0 Rs 0 0 0
0 0 0 Rr 0 0
0 0 0 0 Rr 0
0 iA ψ A ψ 0 iB B ψ C 0 iC +D 0 ia ψ a ψ b 0 ib Rr ic ψ c
1 − Lms 2 1 − Lms 2 Lms + Lls 1 − Lmr 2 1 − Lmr 2 Lmr + Llr
cos θ r cos(θ r − 120 ) cos(θ r − 120 ) Lsr = LT Lms cos(θ r − 120 ) cos θ r cos(θ r − 120 ) rs = cos(θ r − 120 ) cos(θ r − 120 ) cos θ r
处于亚同步状态,电网通过双馈变流器向发电机转子回路提供转差功率;当 统处于超同步状态,发电机转子侧通过双馈变流器向电网馈送能量;当
ωr = ω1 时,系统处
于同步状态,双馈变流器给电机转子提供直流励磁。根据不同运行情况,双馈发电机与电网 通过双馈变流器实现能能量的双向流动。 转子旋转磁场相对于转子的旋转角速度为 频率,即有:
112211212122mslsmsmsssmsmslsmsmsmsmslslllllllllllll????????????????????????????112211212122mrlrmrmrrrmrmrlrmrmrmrmrlrlllllllllllll????????????????????????????coscos120cos120cos120coscos120cos120cos120cosrrrtrssrmsrrrrrrlll?????????????????????????????????其中msl与定子绕组交链的最大互感磁通所对应的定子互感
变速恒频风力发电机的原理及控制研究

变速恒频风力发电机的原理及控制研究一、变速恒频风力发电机原理(一)系统介绍交流励磁发电机定子绕组接入工频电网,转子绕组经一个频率、幅值、相位都可以调节的三相变频电源供电。
该系统,允许原动机在某范围内变速运行,简化了调制装置,减少了调速时的机械应力,提高了机组运行效率;调节励磁电流幅值,可调节发出的无功功率;调节励磁电流相位,可调节发出的有功功率;应用矢量控制可实现有功、无功功率的独立调节。
(二)频率分析双馈变速恒频风力发电系统如图一,由交流异步发电机的基本原理可得:f 1=np 60±f 2 (1) (1)式中f 1为定子电流频率,n 为转子转速,p 为电机的极对数,f 2为转子励磁电流的频率。
当发电机的转速n 小于定子旋转磁场的同步转速 n 1时,处于亚同步运行状态,转子旋转磁场相对于转子的旋转方向与转子机械旋转方向相同,式中f 2取正号,此时变频器向发电机转子提供交流励磁,定子发出电能给电网。
当n 大于n 1时,处于超同步运行状态,转子旋转磁场相对于转子的旋转方向与转子机械旋转方向相反,式中f 2取负号,此时发电机同时由定子和转子发出电能给电网,变频器的能量逆向流动。
当n 等于n 1时,处于同步运行状态,此时发电机作为同步电机运行,f 2=0,变频器向转子提供直流励磁。
(三)能量流动分析对发电机来说,从转子输入的机械能,克服气隙磁场中导体所受的电磁力而做功,使导体不断地感应电势,从而源源不断地发出电能,实现机械能到电能的转换。
机电能量转换过程应该满足能量守恒定律,则得出定子侧的电磁功率方程为:P m =P cu 1+P 1 (2)(1)式中P m 为电磁功率,P cu 1为定子绕组的铜耗,P 1为定子输出的电功率。
同理,经气隙传递的电磁功率从转子侧可以表示为:P2=P cu2+P e2(3)(2)式中P2为转子侧输入(或输出)的电功率,P cu2为转子绕组的铜耗,Pε2为转子绕组转换或传递的电功率。
变速恒频双馈风力发电机主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究变速恒频发电技术变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。
这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。
其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最正确叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。
上述方式目前被公认为最优化的调节方式,也是未来风电技术开展的主要方向。
其主要优点是可大范围调节转速,使风能利用系数保持在最正确值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。
尽管变速系统与恒速系统相比,风电转换装置中的电力电子局部比较复杂和昂贵,但本钱在大型风力发电机组中所占比例并不大,因而大力开展变速恒频技术将是今后风力发电的必然趋势。
目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。
主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。
其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。
基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的开展趋势。
变速恒频双馈风力发电机根本原理双馈电机的结构类似于绕线式异步电机,旋转电机的定子和转子均安放对称三相绕组,其定子与普通交流电机定子相似,定子绕组由具有固定频率的对称三相电源鼓励。
双馈型风力发电变流器及其控制

双馈型风力发电变流器及其控制随着环保意识的日益增强和可再生能源的广泛应用,风力发电技术得到了快速发展。
双馈型风力发电变流器作为风力发电系统中的关键设备之一,在提高风能利用率和电能质量方面具有重要作用。
本文将介绍双馈型风力发电变流器的工作原理、特点优势及其控制方式。
双馈型风力发电变流器是一种交直流变换设备,可将风力发电机发出的交流电转换为直流电,再供给电力系统使用。
其工作原理是采用双馈(交流和直流)线路,通过电力电子器件(如IGBT、SGCT等)的开关动作,控制交流和直流电流的双向流动,实现能量的交直流转换。
高效性:双馈型风力发电变流器具有较高的能量转换效率,可实现风能的最大化利用。
灵活性:双馈型风力发电变流器可通过控制开关器件的占空比,调节输出电流的幅值、频率和相位,满足不同风速和负荷条件下的运行需求。
稳定性:双馈型风力发电变流器可有效平抑风速波动带来的影响,提高电力系统的稳定性。
维护性:双馈型风力发电变流器采用模块化设计,便于维护和检修,降低了运维成本。
矢量控制:通过控制交流侧电流的幅值和相位,实现有功功率和无功功率的解耦控制,提高电力系统的稳定性。
直接功率控制:采用瞬时功率采样,通过控制逆变侧电流的幅值和相位,直接控制有功功率和无功功率,具有快速的动态响应。
神经网络控制:利用神经网络技术,建立风力发电变流器数学模型,实现自适应控制和优化运行。
模糊控制:基于模糊逻辑理论,通过模糊控制器对变流器进行非线性控制,具有良好的鲁棒性和适应性。
双馈型风力发电变流器作为风力发电系统的关键设备之一,具有高效、灵活、稳定和维护简便等特点及优势。
其控制方式多种多样,包括矢量控制、直接功率控制、神经网络控制和模糊控制等,可根据实际应用场景选择合适的控制方式以实现最优运行。
随着风电技术的不断发展,双馈型风力发电变流器在未来将发挥更加重要的作用,为可再生能源的广泛应用和绿色能源转型提供强有力的支持。
随着环境保护和可持续发展的日益重视,风力发电作为一种清洁、可再生的能源,越来越受到人们的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变速恒频双馈风力发电机的原理和优点研究变速恒频发电技术变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。
这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。
其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。
上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。
其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。
尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。
目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。
主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。
其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。
基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。
变速恒频双馈风力发电机基本原理双馈电机的结构类似于绕线式异步电机,旋转电机的定子和转子均安放对称三相绕组,其定子与普通交流电机定子相似,定子绕组由具有固定频率的对称三相电源激励。
电机定转子极数相同。
转子绕组由具有可调节频率的对称三相电源激励。
电机的转速由定转子之间的转差频率确定。
电机的定转子磁场是同步旋转的,因此它又具有类似同步电机的特性。
当电机定子对称三相绕组由频率f1的电网供电时,气隙中基波旋转磁场的同步转速为 n1,满足 f1n p n1 / 60 。
转子由原动机带动以转速n r旋转,而在转子对称三相绕组中施以频率为sf1(s为转差率)的变频电源,在转子中产生三相对称电流,它们产生的基波旋转磁势 F 2相对于转子而言以转差速度sn1旋转,相对于定子以同步转速旋转。
转子磁势在气隙中建立的基波旋转磁场,在定子绕组中产生感应电势(频率为 f 1),该电势与外加至定子绕组中的电源电压共同作用形成三相对称电流,由此产生的定子基波磁势 F 1同样以同步转速旋转。
定转子磁势相对静止,在气隙中形成合成磁势 F m,该磁势在气隙中产生合成磁场m ,分别与定转子绕组交链,在绕组中分别感应电势E1、E2 (频率为sf1)。
实质上,双馈电机与普通异步电机的工作原理是一致的。
二者的区别在于普通异步电机转子电流的频率取决于电机的转速,由转子短路条感应电势的频率决定,与转差率有关,转子电流本身的频率不能自主地、人为地调整。
而双馈电机转子绕组的频率由外加交流励磁电源供电,其频率可以随之变化调节。
因此,双馈电机既具有异步电机的工作原理,又具有同步电机的工作特性,是一种具有同步特性的特殊的异步电机。
双馈电机定转子均为三相对称绕组,它均匀分布在电机圆周内,气隙均匀,电路、磁路呈对称分布。
现作如下假定: (1)只考虑定转子电流的基波分量,忽略谐波分量。
(2)只考虑定转子空间磁势基波分量。
(3)忽略磁滞、涡流损耗和铁耗。
(4)变频电源可为转子提供能满足幅值、频率及功率因数要求的电源,不计其阻抗与损耗。
定子方正方向按发电机惯例定义,转子方正方向按电动机惯例定义。
与分析感应电机的方法类似, 根据磁势与电势平衡原则, 将转子方各物理量折算至定子方,可得基本方程式如下:V 1 E 1 I 1 ( r 1 jx 1 ) V 2 E 2 I 2 ( r2 jx 2 ) ss I 2 I 1 I m E 1E 2E 1 jI m x m式中, V 1 为定子电压, I 1 为定子电流, r 1 为定子电阻, x 1为定子漏抗, V 2 为 折算后的转子电压, I 2 为折算后的转子电流, r 2 为折算后的转子电阻, x 2 为折 算后的转子漏抗,I m 为激磁电流, r m 为激磁电阻, x m 为激磁电抗, s 为转差率,E 1 、 E 2 为感应电势。
另外,由于 r mx m ,故忽略 r m 。
对于发电机,若轴上输入的机械功率为P m ,根据能量守恒原理,有:PmsPemP em于是P m (1 s) P emP m 3(1s)xm2 (V 2 2r 1 V 1 2r2)3(1 s)V 1V 2x m[cos ( r 2( x 1 x m ) r 1 (x 2 x m ))]Ds 2 s sD s3(1 s) V 1V 2 x m [sin( r 1r 2 x 1 x 2 x m ( x 1 x 2 ))]sDs则电磁转矩可表示为:Tem P emP mT m1式中, 为转子机械角速度,1 (1 s) 。
由机械功率表达式可导出电磁转矩表达式,它由三个分量组成,即:T em T 1 T 2T 3式中,T1 3 x m2 V12r 21DsT2 3 x m2 V22 r11 D s2T3V1V2 x m r2( x1 x m ) r1 (x2r1 r2x1x2 x m ( x1 x2 ))] 3 [cos ( x m ))] sin (1 sD s s可见,1为一感应转矩。
当 s 一定时,1 由定子电压的幅值大小确定。
0 s 1T T时,T1 0 为拖动转矩;s 0时,T1 0 为制动转矩,也就是说其转矩性质视s 的正负而定。
T2恒为制动转矩。
当s 一定时, T2由转子电源电压的幅值大小确定。
T3是由定转子磁场相互作用产生的,可看作同步转矩,其值可正可负。
因此,在一般情况下,双馈电机的电磁功率和电磁转矩不但与转差率s 有关,还与定转子电压幅值以及它们之间的相位差角有关,这是从双馈电机整个外部特性来考虑问题的,将其看作只受定转子方两个外加电压源作用。
由于转子绕组始终可以看作受两个频率都是转差频率的电压源作用,一个是转子感应电势 sE20( E2sE20, E20为转子静止时,转子开路感应电势),另一个是转子绕组外加电压V2。
因此,不妨换个角度,从电机的转子方来考虑电磁功率和电磁转矩。
定义转子绕组外加电压V2与转子感应电势sE20之间的夹角为,定转子方功率因数角分别为 1 和 2 ,则由等值电路可得:I m V1 Z1 I1Z m Z mV s[( Z Z )V1 (Z ZZ1Z2 )I ]2 m 2Z m 1 2 Z m 1V2E2V2 sE20I 2 s e j ( 2 ) e j 2Z 2 s Z 2 Z 2将上式用 Euler公式展开后取实部和虚部,并分别定义转子电流的有功分量为I 2 p、无功分量为 I 2q,则有:II2 pE 20[ V 2cos(2)s cos2]( 1)Z 2 sE 202qE20[ V 2sin(2)ssin2]( 2)Z 2 sE 20若将双馈电机看作特殊的异步电机, 则由异步电机的统一转矩公式, 可得双馈电机的电磁转矩表达式为:TemkE 20 I2 p式中, Z 1r 1 jx 1 , Z 2r 2 jx 2 , Z m jx m , k 为由电机参数所决定的常数。
s上式表明,交流励磁双馈发电机的电磁转矩与转子电流的有功分量成正比,因而通过转子电流的有功分量就可以控制双馈发电机定子端口的有功功率; 而转子电流的无功分量则可以控制双馈发电机定子端口的无功功率。
当 0 s 1 时,电机次同步运行,转差功率为 sP em 0,表示电磁功率一部分由转子方电源提供,此时原动机提供的机械功率为(1 s) P em ;当 s 0 时,电机超同步运行,转差功率为 sP em 0 ,表示转子方电源吸收由电机气隙回馈的一部分电磁功率,此时原动机提供的机械功率为 (1 s )P em ,表示定子方发出的电功率以及转子方电源吸收的电功率全部由原动机承担。
式(1)与式( 2)表明,独立调节转子方外加电压的幅值和相位角 就可以控制双馈发电机定子端口的有功功率和无功功率。
在转差率保持不变的情况下,如果转子电流有功分量发生变化, 只要适当调节的幅值和相位角 ,就可以保持转子电流无功分量不变, 或者使定子端口的有功功率和无功功率保持一定的功率因数关系。
式( 1)与式( 2)亦同时表明,若转子方外加电压的幅值和相位角取适当的值,当转差率为正值时( 0 s 1 ),转子电流的有功电流分量可以为正值,电机次同步运行,定子发出有功功率;当转差率为负值时(s 0 ),转子电流的有功电流分量可以为负值, 电机超同步运行,但定子同样发出有功功率。
通过对等值电路的分析和计算,可以将双馈发电机的控制规律看作转差率s 、转子励磁电源电压 V 2 (包括其幅值、相位和频率)以及V 1 与 V 2 之间的相位差角这三个量的函数,这三个量中任意量变化都将影响电机运行性能。
因此,若要使电机达到某种稳态,则可以利用这三个量来进行控制。
双馈发电系统作为可再生能源获取的执行部件,属于典型的分布式发电系统。
因此,分布式发电系统的通用问题,如孤岛效应等,都值得在双馈发电系统中进行研究。
双馈发电系统在和常规的大电网并联运行时,对电网电压的扰动的响应,包括不对称电网、电压跌落、电网电压谐波、电网电压相位及频率波动等,也是很有必要进行研究的。
参考文献[1]王承熙等 . 风力发电 . 北京 : 中国电力出版社 , 2003[2] 陈雷 . 大型风力发电机组技术发展趋势. 可再生能源 , 2003, 107(1) : 27~3[3]秦晓平等 . 感应电动机的双馈和串级调速 . 北京 : 机械工业出版社 , 1990[4] 叶启明 . 大型风力发电机组系统的结构与特点. 华中电力 , 2002, 15( 2) : 67~68[5]黄顺礼 , 魏晓玲 , 黄春阳 . 《第五次全国电机学术讨论会论文集》述评. 电机技术 , 2000,2:54~55[6]刘其辉 . 变速恒频风力发电系统运行与控制研究. 浙江大学博士学位论文, 2005 .[7] 戴赟 ,王志新 . 变速恒频风力机桨叶电液比例控制系统研究[J]. 机电一体化 ,2006,12(1):16 —20[8] 乐斌 ,王志新 . 兆瓦级双馈感应风力发电机变频器调制方法分析与仿真研究[J]. 昆明理工大学学报 ,2006,31(4B):21—25。