路面结构设计影响因素分析

路面结构设计影响因素分析
路面结构设计影响因素分析

基层模量和厚度对路面性能的影响分析

摘要:在路面结构设计中,考虑沥青路面基层两个参数——模量和厚度对路面性能的影响,利用数理统计方法将基层模量和厚度与其它因素进行正交试验与方差分析,直观上得出基层参数的影响程度大小,再根据直观分析的结果,应用方差分析讨论两个参数之间的交互作用。最后选择两个重要的路面性能指标进行详细对比讨论,提出合理的参数组合依据。

关键词:路面性能数理统计基层模量基层厚度

0引言

路面性能泛指路面的各种技术行为,影响路面使用性能的直接路面特征有路面平整度、车辙、摩擦系数、翻浆等等,不过路面使用性能只是路面性能的外在反映,造成路面使用性能变化的因素包括路面材料特征,组合特征和力学特征。在诸多因素中,路面结构的合理设计才是保障路面性能的关键。我国沥青路面结构设计的指导思想是“强基薄面”,如何合理的设计基层是保障路面性能良好的一个非常重要的方面。本文从这点出发讨论基层两个参数对路面性能的影响,提出合理的组合依据,保障路面使用性能和经济性的平衡。

1计算工具选择

现行的路面结构计算软件主要有BISAR、ELSYM、CIRCIT等,由于各国的规范不一,这里我们选用HPDS2003公路路面设计程序系统,该系统是东南大学交通学院王凯教授与毛世怀副教授根据现行《公路沥青路面设计规范》JTJ014-97和《公路水泥混凝土路面设计规范》JTG D40-2002的有关内容编制的。

2正交试验

2.1因子选取

考虑现行沥青路面设计方法,确定考查因子为基层厚度、基层模量、面层厚度和土基模量。

2.2因子水平的确定

根据已有的经验确定一个范围,选择该范围的上下界和一个中间值或者选择某些特殊意义值作为因子水平,使其具有代表性、客观性。对于基层模量值选取1000MPa、2000 MPa、3000 MPa;基层厚度选择10cm、20cm、30cm;面层厚度选取9cm(上层4cm,下层5cm)、15cm(上层4cm,中层5cm,下层6cm)、18cm(上层5cm,中层6cm,下层7cm);土基取25 MPa、50 MPa、100 MPa三个水平。

2.3考核指标

路面的使用性能从力学角度可以通过路面弯沉、面层底部拉应力、基层底部拉应力和垫层底部拉应力来评价。它们也是公路路面设计中重要的验算指标。

2.4路面结构参数

2.5正交试验

本试验中,因子为4个,因子水平都为3个,可以选用L9(34)正交表,按此正交表的试验方案见表二[2]。

表二正交分析分析表(“—”表示受压)

计算其某一因子水平下某一个考核指标的总和,然后求其平均值的极差可得如下结果。

(1)对路面弯沉的影响大小排序为:土基模量、基层厚度、基层模量、面层厚度。

(2)对面层底部应力的影响程度大小排序为:基层模量、面层厚度、基层厚度、土基模量。

(3)对基层底部应力的影响程度大小排序为:基层模量、基层厚度、土基模量、面层厚度。

(4)因子对垫层底部应力的影响程度大小排序为:基层厚度、土基模量、面层厚度、基层模量。

3方差分析

由以上结果可知,基层模量和基层厚度对

关于基层的几点讨论

我国沥青路面结构的指导思想是“强基薄面”,当前的表现形式是“清一色”的半刚性基层沥青路面[3]。基层是路面荷载的主要承重层,其两个关键因素——厚度和模量在路面设计中具有非常重要的作用。正交试验只能直观地分析其对设计的影响,下面对基层模量进行

3.1

取基层厚度为20cm,基层模量值300、500、800、1000、1200、1300、1500、2000、3000MPa,利用HPDS2003系统中的HMPC程序计算面层底部拉应力和基层底部拉应力。

从图一中我们可以看出,随着基层模量的增加,面层底面受力从受拉变成了受压状态,即基层模量很好的改善了面层底部的受力状态。在上述的结构参数下,当基层模量增加到1200~1300MPa时,面层底面转为受压状态,但是过大的基层模量对面层底部起不到作用。

从图一中我们可以看出,随着基层模量的增加,基层底面的受力从受压变成了受拉状态,即基层模量的增加对基层底面的受力是不利的。在上述结构参数下,当基层模量为

300~400MPa 时,基层底面开始转为受拉状态。但是基层模量过大会超过容许拉应力,对路面结构反而不利。

基层模量MPa

应力值M P a

图一 基层模量对面层底部和基层底部应力影响对比图

3.2 基层模量与土基模量对路面弯沉影响的对比

分别取基层厚度为20cm ,基层模量值300、500、800、1000、1200、1300、1500、2000、3000MPa 和土基模量值30、50、80MPa ,用HMPC 程序计算路面弯沉,可以得出如下对比折线图。

路面弯沉(0.01m m )

基层模量(MPa )

图二 土基模量和基层模量对路面弯沉影响对比图

通过对比,我们可以知道,基层模量的提高可以有效的减少路面弯沉,但是随着模量的增加弯沉的减少幅度变小,所以一般不以提高基层模量来获得减少弯沉的效果,对于沥青路面而言,50%~80%的弯沉由土基模量提供[4]。所以,高速公路应该把保证土基的强度作为第一任务。

4 结论

通过以上正交试验的直观分析和对基层模量的定量分析,可以得到如下结论。

(1)基层模量对路面的力学特征有着较为复杂的影响,一方面,提高基层模量可以有

效地减少面层底部拉应力和减少路面弯沉,从而可以减薄面层的厚度,带来可观的经济效益。另一方面,较高的模量导致基层底面的应力太大,基层抗疲劳性能下降。本文通过对基层模量的讨论认为,基层模量取值宜在800~1300MPa之间。

(2)土基模量对路面弯沉影响最大,在实际工程中,应该重视对土基状况的改善,可以获得路面性能的改善。在考虑到经济因素时,土基模量的取值宜在50~100MPa之间。

(3)基层模量和基层厚度对基层底部拉应力影响最大,从经济角度考虑,半刚性基层的厚度达到20cm时,已经能够充分发挥作用,当无法满足要求时,可以通过合理改善基层的模量值来达到设计目的。

进行路面结构设计时,应该结合具体条件,充分考虑各个因素的影响,合理组合路面层结构,才能获得较好的路面使用性能和经济效益。

参考文献:

[1]孙立军等.沥青路面结构行为理论.[M]上海:同济大学出版社,2003.

[2]汪荣鑫.数理统计.[M]西安:西安交通大学出版社,2000.

[3]王哲人.沥青路面工程.[M]北京:人民交通出版社,2005.

[4]邓学钧.路基路面工程.[M]北京:人民交通出版社,2000.

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

沥青路面结构设计

第四章 路面结构设计 1、1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24、5米,全长5km ,结合近几年济南经济增长及人口增长得情况,根据近期得交通量预测该路段得年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13、8℃,无霜期178天,最高月均温27、2℃(7月),最低月均温-3、2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1、3;因此该 路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ 区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5、1、4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1、2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载得计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 得各级轴载Pi 得作用次数Ni 按下式换算成标准轴载P 得当量作用次数N 得计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算得车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型得各级轴载(kN ); C1——被换算车型得各级轴载系数,当其间距大于3m 时,按单独得一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1、2(m-1); C2——被换算车型得各级轴载轮组系数,单轮组为6、4,双轮组为1、0, 四轮组为0、38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709、00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18、5,双轮组为1、0,四轮组为0、09。 注:轴载小于50KN 得特轻轴重对结构得影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

路面结构组合设计

路面结构组合设计 1.1设计说明 1.1.1工程概况 (1)工程所在地:湖南省境内 (2)公路自然区划:区,由地下水位资料可知该路基为潮湿状态; (3)公路等级:一级公路(双向四车道、设中央分隔带); (4)路线总长度:1223.061m。 1.1.2设计内容 沥青混凝土路面 (1)拟定路面结构组合方案,进行方案比较。 (2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。 (3)确定路基路面结构层设计参数。 (4)各结构层材料组成设计。 1.1.3设计成果 (1)设计说明书; (2)沥青路面结构设计图。 1.2 主要技术经济指标 1.2.1交通组成 经调查预测,本路竣工后第一年双向平均日交通量下表(辆/d)

预测交通组成表表2 备注:依据规范,轴重小于25KN的车辆不计入计算; 使用期内交通量平均增长率为4.7%,沥青混凝土路面设计使用年限15年。 2. 沥青混凝土路面结构设计 2.1轴载换算 路面设计以双轮组单轴载100KN为标准轴载,小客车不考虑轴载。 2.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次,昼夜交通量(辆/日)为双向车道年平均日通行车辆数。 ①轴载换算 轴载换算采用如下的计算公式: 式中:轴数系数 轮组系数 其中: 计算结果如下表(表3)所示:

轴载换算结果表 表3 注:轴载小于25KN 不计 ②累计当量轴次 根据设计规范,一级公路沥青路面的设计年限15年,四车道的车道系数取0.45。 累计当量轴次: 式中:第一年双向日平均当量轴次(次/日) 设计年限内交通量的平均增长率(%) 设计车道的车轮轮迹横向分布系数 2.1.2 验算半刚性基层底拉应力中的累计当量轴次

沥青路面结构设计示例

7.2路面结构设计 7.2.1路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书和路面等级及面层类型,计算设计年限内一个车道的累计当量轴次和设计弯沉值。 (2) 按路基土类型和干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验和规范推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层和半刚性基层材料的基层、底基层,应验算拉应力是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1标准轴载计算参数 表7-2起始年交通量表

1)以设计弯沉为指标及验算沥青层层底拉应力 ① 轴载换算 各级轴载换算采用如下计算公式: 4.35 1121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN ; P i —被换算车辆的各级轴载,kN ; k —被换算车辆类型; C 1—轴数系数,C 1=1+1.2(m -1),m 是轴数。当轴间距大于3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉) 注:轴载小于25kN 的轴载作用不计。 ② 累计当量轴次为:

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。

轴载换算结果如表所示: 注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示: 表7.3

注:轴载小于50KN 的轴载作用不计。 [] γ η γ'13651)1(N N t e ??-+= ? [] 次3397845% 042.040 .0313.13473651%) 042.01(15 =???-+= 7.2 结构组合与材料选取 由上面的计算得到设计年限一个行车道上的累计标准轴次约为700万次左右,根据规推荐结构,路面结构层采用沥青混凝土(15cm )、基层采用石灰粉煤灰碎石(厚度待定)、底基层采用石灰土(30cm )。 规规定高速公路一级公路的面层由二至三层组成,查规,采用三层沥青面层,表面层采用细粒式密级配沥青混凝土(厚4cm ),中间层采用中粒式密级配沥青混凝土(厚5cm ),下面层采用粗粒式密级配沥青混凝土(厚6cm )。 7.3 各层材料的抗压模量与劈裂强度 查有关资料的表格得各层材料抗压模量(20℃)与劈裂强度

低温地区沥青路面结构设计分析

低温地区沥青路面结构设计分析 发表时间:2019-05-23T11:01:43.723Z 来源:《防护工程》2019年第1期作者:潘攀 [导读] 因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 中铁四局集团有限公司设计研究院 230000 摘要:本文就低温地区沥青路面结构破坏类型及低温影响效果进行简单分析,并从沥青混合料、基层结构、联结层结构及表面层结构四个方面展开设计研究,旨在为低温地区沥青路面结构设计提供参考建议。 关键词:低温地区;沥青路面;结构设计 沥青路面具有平坦整洁、环保美观、舒适安全、维修养护简单等特点,因此逐渐成为世界道路桥梁建设工程首要选择,调查发现沥青路面在我国道路建设项目所占比重也呈现逐渐增加的趋势。因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 一、低温地区沥青路面结构破坏研究 1、沥青路面结构破坏类型 通过对部分沥青道路调研发现,虽然道路结构、材料配比及使用年限存在较大差异,但道路路面呈现的结构破坏类型及特点却大致相同,具体表现在于:低温地区大多存在周期性冻土现象,道路基层在冻胀融缩的物理作用下容易出现结构变异,破坏道路结构引起不同程度的路面开裂问题。图1展示的就是低温地区常见的沥青路面结构破坏类型。 (a)路面剪裂(b)温缩开裂(c)反射开裂 图1 沥青论结构破坏类型 2、低温对沥青路面结构影响 道路建设需要应用到多种建筑材料,这些材料若长期处于低温状态会出现不同程度的收缩现象,由此产生较大拉应力,若拉应力超过材料拉伸强度将会导致材料结构被破坏进而出现开裂问题。道路路面纵向长度远大于横向长度,因此低温收缩引起的裂缝往往呈现为横向间隔,严重时才会出现纵向裂缝。种类各异的沥青基层对应特定的温度拉应力,因此结合实际情况选择合适的沥青材料显得尤为重要。 二、低温地区沥青路面结构设计研究 对低温地区沥青路面进行结构设计研究的时候需要针对基层耐受性、面层抗车辙、表面层抗裂性进行综合考量,因此需要对沥青混合料配比、基层温差、联结层荷载、表面层开裂等内容进行重点分析,以便确保结构设计的科学合理。 图2 沥青路面基本结构图 1、基于感温性能的沥青混合料设计 进行沥青混合料配比设计时需要综合考虑混合料所在位置及耐受特点,进而实现最优设计。图2展示的是沥青路面基本结构,分析可知表面层及联结层处于主要压力承载的高压应力区域,在进行建筑设计时需要选择抗磨损、高模量的沥青混合料,联结层处于表面层与基层的过度位置,最好选择传导效果优异的沥青材料,以便做好路面压力疏导工作。基层结构承受较大的拉应变,就整个路面而言担负着路面压力的重任,因此就沥青道路基层而言结构设计需要围绕荷载疲劳展开,研究发现沥青占比高的混合基层能够承受更大的荷载压力,有效避免了疲劳裂缝的出现。对于处于低温地区的沥青路面设计还需要着重考虑混合料感温性能,不同类型的沥青混合料其感温性能存在差异,在此基础上计算获得代表其粘弹性的劲度抗压指标,进而明确沥青混合料在特定温度时的物理特性。 2、基于大温差作用的沥青基层设计 沥青路面各结构在低温大温差的作用下会沿着路面横向出现不均衡温度场,此时的沥青路面这一受约整体在温度场作用下将产生温度

路基路面课程设计沥青路面结构设计

《路基路面工程》 课程设计 沥青路面结构设计 姓名 班级土木121 指导教师 完成日期 课设成绩□优秀□良好□中等□及格□不及格大连交通大学土木与安全工程学院铁道教研室

《路基路面工程》课程设计考核体系及评分参考标准 评价指标 优秀良好中等及格不及格100~90分89~80分79~70分69~60分60分以下 一 平时表现①学习态度 遵守纪律,认 真设计 遵守纪律, 认真设计 纪律较好, 较认真 纪律一般, 不太重视 纪律松散经常 缺席 ②主动性 积极思考,独 立完成 积极讨论, 完成任务 参与讨论, 完成主要 工作 应付,有时 参与讨论 很少参与讨论③工作量 完成全部设 计工作 完成89% ~80%的设 计工作 完成79% ~70%的设 计工作 完成79% ~60%的设 计工作 完成少于60% 的设计工作 二 设计说明书①基本概念概念清晰概念清楚 概念比较 清楚 了解设计 过程 概念不清 ②理论计算计算准确计算正确 计算比较 正确 计算无原 则性错误 计算错误多 ③说明书 结构层次分 明,文字精 炼,书写认 真,撰写格式 符合规范化 要求 结构层次 较分明,文 字通顺,书 写认真,撰 写格式符 合规范化 要求 问题叙述 基本清楚, 书写比较 认真,书写 认真,撰写 格式基本 符合规范 化要求 能够说明 问题,书写 尚可,撰写 格式基本 符合规范 化要求 条理不清思路 混乱书写潦草 雷同,撰写格式 不符合规范化 要求 三 答辩情况①自述 叙述条理清 晰 叙述表达 清楚 叙述表达 比较清楚 表达基本 清楚 思路混乱表达 不清楚 ②回答问题完整、准确 较完整、正 确 大多数问 题比较完 整 少数问题, 无大错误 回答错误

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

路基路面设计说明

路基路面设计说明 第一部分:路基设计说明 一、设计依据 路基设计按JTJ 011-94 公路路线设计规范 JTG D30-2004 公路路基设计规范 JTJ 015-91 公路加筋土工程设计规范 JTJ 016-93 公路粉煤灰路堤设计与施工技术规范 JTJ 017-96 公路软土地基路堤设计与施工技术规范 JTJ 018-96 公路排水设计规范 JTJ/T 019-98 公路土工合成材料应用技术规范 JTG D40-2003 公路水泥混凝土路面设计规范 JTJ 014-97 公路沥青路面设计规范 道路类别:四级公路 路幅全宽: 6.5m; 设计车速:20km/h; 荷载:公路-II级。 二、路基横断面布置、加宽及超高方式 本项目为四级公路,采用双向2车道设计。路幅全宽为6.5m。其中,行车道6m,土路肩 0.5m。 行车道横坡为2%(双侧排水),土路肩横坡为3.0%。 本道路所有曲线地段,路基面均设置加宽加宽详见加宽表。 三、路基压实标准 路基必须密实、均匀、稳定。路槽底面土基设计回弹模量值宜大于或等于20MPa。特殊情况不得小于15MPa。 四、路基排水及加固防护工程 本路段路基排水采用道路外侧边沟排水。 在挖填方路段设置截水沟等措施 五、路基施工 路基施工时,应清除地表松土,路堤边坡高小于8m时按1:1.5填筑,大于8m时应留2.0m 宽平台后按1:1.75坡率填筑。路堑开挖坡率应参照既有边坡施工,但弱膨胀土土质边坡不得陡于1:1.5,软质岩层边坡不应陡于1:0.75。 对稻田、水塘地段,应视具体情况采用排水疏干、挖淤、回填素土,再进行路基压实施工。 路基施工应按《公路路基施工技术规范》要求办理。未尽事宜按相关规范规定办理。 六、用地 本路段路基用地按边沟或截水沟外缘以外1.0m征地。 第二部分:路面设计说明 一、设计原则及依据 1、设计原则 本路段路面采用沥青混凝土路面。路面设计根据使用要求以及气候、水文、地质等自然条件,并遵循因地制宜、合理选材、方便施工、利于养护、节约投资的原则,进行路面结构的设计。 2、设计规范、规程JTJ 015-91 公路加筋土工程设计规范 JTJ 016-93 公路粉煤灰路堤设计与施工技术规范 JTJ 017-96 公路软土地基路堤设计与施工技术规范 JTJ 018-96 公路排水设计规范 JTJ/T 019-98 公路土工合成材料应用技术规范 JTG D40-2003 公路水泥混凝土路面设计规范 3、设计标准 1)道路等级:四级公路; 2)设计车速: 20km/h; 3)设计标准轴载: 4)路面结构类型:混凝土路面 5)设计使用年限:20年 6)自然区划:中华人民共和国自然区划V 2 区,即四川盆地中湿区。

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 =i i i 1 21

②累计当量轴次 根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) =i i i 1 21

②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

沥青路面设计范例

路基路面课程设计(沥青路面设计)范例 1.1 道路等级确定 根据调查资料,基年交通量组成如下: 表3.1 基年交通量组成 由于路线为县级公路,因此道路等级为一级公路以下,则由预测年限规定:具有集散功能的一级公路及二、三级公路的规划交通量应按15年预测,则由公式: N d =N (1+8%)n-1 (式1-1) 其中:N d —规划年交通量(辆/日) N —基年平均日交通量(辆/日) —年平均增长率(%) n—预测年限(年) 即:规划年交通量为: Nd=[(150+80+100+120)×1.5+150×2.0+(120+110)×3.0]×(1+8%)15-1 =[345+150+300+180+360+330] ×(1+8%)15-1 =4890辆/日 由《公路工程技术标准》(JTG B01—2003)(以下简称《标准》),双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量为2000~6000辆,综合考虑选定道路等级为三级。

1.2 结构设计 6.2.1轴载分析 路面设计以双轮组单轴轴载100kN为标准轴载。 6.2.1.2.1轴载换算(基本参数见表6.1) 轴载换算公式如下: N= 35 .4 i i k 1 i 2 1p p N C C?? ? ? ? ? ∑ = (式6-1) 式中:N—标准轴载的当量轴次,(次/日); N i —被换算车辆的各级轴载,(KN); P—标准轴载,(KN); P i —被换算车辆的各级轴载,(KN); K—被换算车型的轴载级别; C 1—轴载系数,C 1 =1+1.2×(m-1),m是轴数。当轴间距大于3m时,按单独 的一个轴载计算,当轴轴间距小于3m时,应考虑轴数系数;C 2 —轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 表6-1 标准轴载计算参数 表6-2 预测交通量组成

路面结构计算书

一、主要技术标准、技术指标 (1)道路等级:小区内道路(路面结构按公路四级标准计算)。 (2)设计行车速度:20km/h,特殊路段5~15km/h。 (4)路面结构类型:水泥混凝土路面。 (5)设计基准期:20年。 (6)交通等级:轻级。 (7)结构物荷载等级:公路Ⅱ级。 (8)路面结构计算荷载:BZZ-100。 (9)抗震设防:沿线地区动峰值加速度系数小于0.05g,抗震设防烈度为6度,简易设防。 二、设计依据 (1)、《关于印发农村公路建设指导意见的通知》(交公路发〖2004〗372号) (2)、《公路路基设计规范》(JTG D30-2004) (3)、《公路水泥混凝土路面设计规范》(JTG D40—2002) (4)、路面结构计算软件:HPDS2006。 三、路面结构厚度计算 设计内容: 新建单层水泥混凝土路面设计 公路等级: 四级公路 变异水平的等级: 中级 可靠度系数: 1.05 面层类型: 普通混凝土面层 序路面行驶单轴单轮轴载单轴双轮轴载双轴双轮轴载三轴双轮轴载交通量号车辆名称组的个数总重组的个数总重组的个数总重组的个数总重 (kN) (kN) (kN) (kN) 1 标准轴载0 0 1 100 0 0 0 0 6 行驶方向分配系数.59 车道分配系数.85 轮迹横向分布系数.62 交通量年平均增长率 4.5 % 混凝土弯拉强度 4.5 MPa 混凝土弯拉模量29000 MPa 混凝土面层板长度 5 m 地区公路自然区划Ⅳ

面层最大温度梯度86 ℃/m 接缝应力折减系数.89 基(垫)层类型----新建公路路基上修筑的基(垫)层 层位基(垫)层材料名称厚度(mm) 回弹模量(MPa) 1 级配碎砾石200 300 2 新建路基30 基层顶面当量回弹模量ET= 71.7 MPa 中间计算结果: ( 下列符号的意义请参看“程序使用说明”) HB= 170 r= .676 SPS= 2.11 SPR= 3.64 BX= .88 STM= 1.86 KT= .49 STR= .91 SCR= 4.55 GSCR= 4.78 RE= 6.22 % HB= 177 r= .703 SPS= 1.99 SPR= 3.44 BX= .83 STM= 1.84 KT= .49 STR= .9 SCR= 4.34 GSCR= 4.56 RE= 1.33 % HB= 179 r= .711 SPS= 1.96 SPR= 3.38 BX= .83 STM= 1.86 KT= .49 STR= .91 SCR= 4.29 GSCR= 4.5 RE= 0 % 设计车道使用初期标准轴载日作用次数: 3 路面的设计基准期: 20 年 设计基准期内标准轴载累计作用次数: 21298 路面承受的交通等级:轻交通等级 基层顶面当量回弹模量: 71.7 MPa 混凝土面层设计厚度: 179 mm 通过对设计层厚度取整以及设计人员对路面厚度进一步的修改, 最后得到路面结构设计结果如下: --------------------------------------- 普通混凝土面层180 mm --------------------------------------- 级配碎砾石200 mm --------------------------------------- 新建路基

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均增长率为9.5%,设计年限为15年,该路段处于Ⅳ2区。 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次

根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

路面结构设计说明

路面结构设计说明 一、采用的技术标准和计算依据 路面类型:沥青混凝土路面; 路面设计标准轴载:BZZ-100; 路面结构设计年限: 15年; 路面抗滑标准:交工检测指标值: 横向力系数SFC60≥54:构造深度TD≥0.55mm; 石料磨光值PSV≥42。 二、路面结构形式 (一)路面设计参数 道路建成后将成为沿线厂区货运车辆进出的主要道路,同时该道路也是园区开发建设的施工通道,结合实际情况,对路面结构按照重交通偏下水平进行设计,根据道路勘察资料及相关规范,路基顶部回弹模量取值E0=30MPa。 一个车道标准轴载累计作用次数:12*106 次 设计路面弯沉值:Ls= 21.5(0.01mm) (二)路面结构形式 上面层:5cm 厚 AC-16C型SBS改性沥青混凝土; 下面层:9cm厚AC-25C型粗粒式沥青混凝土; 下封层: 0.8cm厚 ES-3型稀浆封层; 上基层: 18cm厚水泥稳定级配碎石(抗压强度≥3.5 MPa); 下基层: 18cm厚水泥稳定级配碎石(抗压强度≥3.0 MPa); 底基层:18cm厚水泥稳定级配碎石(抗压强度≥2.5MPa); 垫层:15cm厚天然砂砾(抗压强度≥2.0MPa); 路基顶面回弹模量E0=30MPa 三、沥青混凝土的材料及技术要求说明 (一)材料要求 1.上面层用沥青: 上面层沥青混凝土采用SBS I-D型成品改性沥青,制造改性沥青的基质沥青应与改性剂有良好的配伍性,其质量须符合A 级道路石油沥青的技术要求。供应商在提供改性沥青的质量报告时应提供基质沥青的质量检验报告和沥青样品。且其各项性能指标均符合《公路沥青路面施工技术规范》(JTG F40-2004)的表4.6.2的要求时,方可使用,其性能指标要求见下表:

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

相关文档
最新文档