球铁性能与基体组织
球 墨 铸 铁

1.2 球墨铸铁的热处理
球墨铸铁的热处理工艺:
主要有退火、正火、调质、等温淬火
1.2 球墨铸铁的热处理
退火的目的在于获得铁素体基体。球化剂增大 铸件的白口化倾向,当铸件薄壁处出现渗碳体时,为 了获得塑性好的铁素体基体,并改善切削性能,消除 铸造应力,根据铸铁的铸造组织,可采用两种退火工 艺。
正火的目的在于温度,又分高温正火(完全奥氏 体化正火)和低温正火(不完全奥氏体化正火)两种。
1.1 球墨铸铁的成分、组织、
性能和用途
应用:
由于球铁具有优异的力学性能,因此可用 于负荷较大、受力较复杂的零件,甚至能代替碳 钢制造某些零件。
如珠光体基体的球铁,常用于制造柴油机曲 轴、连杆、齿轮、机床主轴、蜗轮、蜗杆,轧 钢机的轧辊,水压机的工作缸、缸套、活塞等。 而铁素体的球铁,可用于制造受压阀门、机 器底座、汽车后桥壳等。
工 程 材 料 及 热 处 理
球墨铸铁
石墨成球状的铸铁称为球墨铸铁,是 在灰口铸铁的铁液中加入球化剂(稀土镁合 金等)和变质剂(硅铁)进行球化变质处理 后得到的。
铸造性能好 成本低廉 生产方便
1.1 球墨铸铁的成分、组织、 性能和用途
与灰铸铁相比,它的硫含量较低,而 碳含量较高,一般为过共晶成分,以利于石 墨球化。
但是调质处理一般只适用于小尺寸的铸件,当 尺寸过大时,铸件内部淬不透,处理效果不好。
1.2 球墨铸铁的热处理
淬火等温淬火时,将零件加热到奥氏体区,保温一定时 间后,在300℃左右的等温盐浴中冷却并保温,使基体 在此温度下转变为下贝氏体。球墨铸铁经等温淬火后不 仅可以获得较高的强度,同时还具有良好的塑性和韧性。
1.2 球墨铸铁的热处理
完全奥氏体正火工艺曲线图
球墨铸铁常用的热处理方法

球墨铸铁常用的热处理方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】球墨铸铁常用的热处理方法有几种?球墨铸铁组织中,石墨呈球状,对基体的削弱和破坏作用比片状石墨弱。
球铁性能主要取决于基体组织,石墨的影响居次要地位。
以各种热处理方式改善球铁的基体组织,即可程度不同地提高其力学性能。
由于化学成分、冷却速度、球化剂等因素的影响,在铸态组织中,尤其是铸件薄壁处常出现铁素体+珠光体+渗碳体+石墨的混合组织。
热处理的目的就在于获得所需要的组织,从而改善力学性能。
球墨铸铁常用的热处理方法如下。
(1)低温石墨化退火加热温度720~760℃。
随炉冷却至500℃以下出炉空冷。
使共析渗碳体分解,获得铁素体基体的球铁,以提高韧性。
(2)高温石墨化退火 880~930℃,转至720~760℃保温,随炉冷却至500℃以下出炉空冷。
消除白口组织,获得铁素体基体的球铁,提高塑性,降低硬度,增加韧性。
(3)完全奥氏体化正火 880~930℃,冷却方式:雾冷、风冷或空冷,为减少应力,增加回火工序:500~600℃,获得珠光体+少量铁素体+球状石墨,提高强度、增加硬度和耐磨性。
(4)不完全奥氏体化正火 820~860℃加热,冷却方式:雾冷、风冷或空冷,为减少应力,增加回火工序:500~600℃,获得珠光体+少量分散的铁素体组织,得到较好的综合力学性能。
(5)调质处理 840~880℃加热,冷却方式:油或水冷,淬火之后的回火温度:550~600℃,获得回火索氏体组织,提高综合力学性能。
(6)等温淬火 840~880℃加热,在250~350℃盐浴中淬火,获得综合力学性能,尤其能提高强度、韧性与耐磨性。
热处理加热时,铸件入炉温度一般小于350℃,加热速度视铸件尺寸与复杂程度而定,在30~120℃/h之间选择。
尺寸大、复杂件的入炉温度要低,升温速度要慢。
加热温度则取决于基体组织和化学成分。
关于球铁件的检验

球墨铸铁件验收标准及缺陷分析一.验收引用标准GB1348 球墨铸铁件GB9441 球墨铸铁金相检验GB228 金属拉伸试验方法GB229 金属冲击试验方法GB231 金属布氏硬度试验方法GB6060.1 表面粗糙度比较样块铸造表面GB2828 逐批检查计数抽样程序及抽样表二.材质要求1.机械性能球铁件的牌号应符合GB1348和图纸要求的规定。
1.1球铁件的机械性能应符合表1到表4的规定1.2球铁件的机械性能以抗拉强度和延伸率两个指标为验收依据。
1.3须做屈服强度、冲击韧性和硬度试验时,应在图样上或在有关的技术文件中注明。
其数值应符合本标准的规定。
2. 金相组织2.1 金相组织标准按GB9441-88《球墨铸铁金相检验》2.2球化分级 (jia )铸件毛坯本体的球化率在70%以上,球化级别80%为1-3级,最差部位原则上不低于4级2.3.石墨等级原则上球径为5-7级。
2.4 基体组织(参考)3 .化学成分原则上化学成分不作为验收依据,客户明确要求的除外。
球铁体的化学成分、金相组织及热处理工艺应符合图样或技术文件中的注明。
三.几何形状与尺寸球铁件的几何形状与尺寸应符合图样中的规定要求。
1.尺寸公差1.1本标准规定的尺寸公差,是指球铁件在正常生产情况下应达到的公差。
1.2球铁件的尺寸公差数值应符合表5的规定;公差等级按表6的规定选取。
现我公司球铁件主要用户的公差等级一般为CT9级2.其他尺寸要求铸件应符合相应的毛坯图尺寸规定。
铸件错型≤1.0mm,砂芯歪斜量≤1.5mm。
四..表面质量1 .铸件毛坯表面应无粘砂、氧化皮等缺陷,铸件毛坯表面的浇冒口、出气孔、多肉、飞边、毛刺等清除干净。
加工面浇冒口残余不大于1mm。
其余原则上不大于2 mm2. 铸件毛坯不允许有裂纹、缩孔、疏松、冷隔等影响使用性能的铸造缺陷。
3铸造毛坯非加工表面粗糙度Ra≤100粗糙度评定按GB6060.1-85的规定进行。
4 铸造毛坯不允许有锈蚀。
球墨铸铁、蠕墨铸铁

调质处理是将铸件加热到860~920℃,保温后油冷,然后在550~620℃高温回火2~6h,获得回火索氏体和球状石墨组织的热处理方法。从而获得高的综合力学性能
球墨铸铁还可以采用表面强化处理,如渗氮、离子渗氮、渗硼等。
蠕墨铸铁
石墨呈蠕虫状的铸铁,是20世纪60年代中期研制成功的。它的石墨形态介于片状石墨和球状石墨之间,所以力学性能也介于普通灰口铸铁和球墨铸铁之间
3、性能
蠕墨铸铁的性能优良,1)力学性能介于灰铸铁和球墨铸铁之间,如抗拉强度、伸长率、弯曲疲劳强度优于灰铸铁,而接近于铁素体球墨铸铁。2)导热性和耐热疲劳性比球墨铸铁高得多,抗生长性和抗氧化性均较其它铸铁都高。3)减振性能比球墨铸铁高,而不如灰铸铁。4)良好的工艺性能。切削加工性优于球墨铸铁,铸造性能接近灰铸铁,其缩孔、缩松倾向小于球墨铸铁,故铸造工艺比较简单。
高温正火低温正火并细化晶粒提高球墨铸铁的强无渗碳体时的正火工艺有渗碳体时的正火工艺3等温淬火等温淬火是将铸件加热至860920奥氏体区适当保温热透迅速0515h的等温处理然后取出空冷使过放入250350的盐浴炉中进行4调质处理调质处理是将铸件加热到合力学性能球墨铸铁还可以采用表面强化处理如渗氮离子渗氮渗硼等
教学过程
附记
二、球墨铸铁的牌号及用途
球墨铸铁的牌号由“QT+数字-数字”组成。其中“QT”是“球铁”二字汉语拼音字首,其后的第一组数字表示最低抗拉强度(MPa),第二组数字表示最小断后伸长率(%)。
三、球墨铸铁的热处理
1、退火:为了得到铁素体球墨铸铁,提高塑性和韧性,改善企鹅削加工性能,消除参与内应力。
组织:铁素体、铁素体+珠光体、珠光体和下贝氏体四种。
性能;同其它铸铁相比,球墨铸铁强度、塑性、韧性高,屈服强度也很高。球墨铸铁的屈强比比钢约高一倍,疲劳强度可接近一般中碳钢,耐磨性优于非合金钢,铸造性能优于铸钢,加工性能几乎可与灰铸铁媲美。
球 墨 铸 铁

图1-11 球墨铸铁高温正火工艺曲线
2)低温正火
球墨铸铁
一般将铸件加热到820 ℃~860 ℃,保温1~4 h, 然后出炉空冷,获得珠光体 和分散铁素体的球墨铸铁。 低温正火后的铸件的塑性和 韧性提高了,但强度比高温 正火略低,其工艺曲线如图 1-12所示。
图1-12 球墨铸铁低温正火工艺曲线
球墨铸铁
球墨铸铁
图1-9 球墨铸铁低温石墨化退火工艺曲线
球墨铸铁
3)高温石墨化退火
由于球墨铸铁白口倾向较大,因而铸态组织中往往 出现自由渗碳体,为了获得铁素体球墨铸铁,需要进行 高温石墨化退火。
高温石墨化退火工艺是将铸件加热到900 ℃~950 ℃,保温2~4 h,使自由渗碳体石墨化,然后炉冷至 600 ℃,再出炉空冷,其工艺曲线如图1-10所示。
球墨铸铁
2)低温石墨化退火
当铸态基体组织为珠光体+铁素体而无自由渗 碳体存在时,为了获得塑性、韧性较高的铁素体球 墨铸铁,可进行低温石墨化退火。
低温石墨化退火工艺是将铸件加热到共析温度 范围附近,即720 ℃~760 ℃,保温2~8 h,使铸 件发生第三阶段石墨化,然后炉冷至600 ℃,再出 炉空冷,其工艺曲线如图1-9所示。
球墨铸铁的化学成分为ωC=3.6%~3.9%,ωSi=2.0% ~2.8%,ωMn=0.6%~0.8%,ωS<0.04%,ωP<0.1%, ωMg=0.03%~0.05%。与灰铸铁相比,球墨铸铁的碳、硅 含量较高,有利于石墨球化。
球墨铸铁
2. 球墨铸铁的显微组织
球墨铸铁按其基体组 织不同,可分为铁素体球 墨铸铁、铁素体+珠光体 球墨铸铁和珠光体球墨铸 铁三种,它们的显微组织 如图1-8所示。
球墨铸铁除了能采用上述热处理工艺外,还可以采用表面强化处 理,如表面淬火和渗氮等。
第三节 球墨铸铁知识

第三节球墨铸铁一、组织和性能经过球化处理的铸铁液,浇注后石墨结晶球状,获得球墨铸铁,从而提高了铸铁的力学性能。
[组织]:基体+球状石墨,基体的组织有多种,常见的如图所示。
[性能]:球墨铸铁的强度、塑性与韧性都大大优于灰铸铁,力学性能可与相应组织的铸钢相媲美。
缺点是凝固收缩较大,容易出现缩松与缩孔,熔铸工艺要求高,铁液成分要求严格。
二、热处理铸态下的球墨铸铁基体组织一般为铁素体与珠光体,采用热处理方法来改变球墨铸铁基体组织,可有效地提高力学性能。
常用的热处理方法如下:[退火]:球墨铸铁的退火分为去应力退火、低温退火和高温退火。
去应力退火工艺与灰铸铁相同。
低温退火和高温退火的目的是使组织中的渗碳体分解,获得铁素体球墨铸铁,提高塑性与韧性,改善切削加工性能。
[正火]:球墨铸铁正火的目的是增加基体中珠光体的数量,或获得全部珠光体的基体,起细化晶粒,提高铸件的强度和耐磨性能的作用。
正火分为低温正火和高温正火。
[调质处理]:将铸件加热到860~920℃,保温2~4小时后油中淬火,然后在550~600℃回火2~4小时,得到回火索氏体加球状石墨的组织,具有良好的综合力学性能,用于受力复杂和综合力学性能要求高的重要铸件,如曲轴与连杆等。
[等温淬火]:将铸件加热到850~900℃,保温后迅速放入250~350℃的盐浴中等温60~90分钟,然后出炉空冷,获得下贝氏体基体加球状石墨的组织,使综合力学性能良好,用于形状复杂,热处理易变形开裂,要求强度高、塑性和韧性好、截面尺寸不大的零件。
三、球墨铸铁的牌号及用途[牌号表示]:是由“QT”(“球铁”两字汉语拼音字首)后附最低抗拉强度σb值(MPa)和最低断后伸长率的百分数表示。
例如牌号QT700—2表示最低抗拉强度为600MPa、最低断后伸长率δ为2%的球墨铸铁。
[应用场合]:球墨铸铁的力学性能优于灰铸铁,与钢相近,可用它代替铸钢和锻钢制造各种载荷较大、受力较复杂和耐磨损的零件。
球墨铸铁力学性能.
8~22 160~190
50~150
铸态珠光体球铁 600~800 450~530 退火铁素体球铁 450~550 320~420
2~4 10~28
217~269 110~170
15~35 110~160
正火珠光体球铁 600~900 420~600 1600~2640 2~8
240~310
20~40
铁的弯曲疲劳强度σ-1 比钢低,但用带孔带肩的试样试验时比钢高。故珠光体球墨铸铁适 合于制造各种动力机的曲轴、凸轮抽等轴类零件。
2.冲击韧度
5
球墨铸铁铸件生产技术课程
职业教育材料成型与控制技术专业教学资源库
冲击韧度仅对高韧性球墨铸铁而言,而珠光体球墨铸铁的一次性冲击韧度比 45 钢 低。因此,一些要求承受巨大冲击裁荷的零件,珠光体球墨铸铁的应用就受到了限制。 但在实际应用中的许多零件如曲轴、连杆等工作时承受的是小能量多次冲击裁荷,如图 5 是珠光体球墨铸铁和正火 45 钢的冲击吸收功 A 和冲击次数 N 曲线。
2.屈服强度
屈服强度又称屈服点,也称屈服极限。由于球墨铸铁呈连续屈服行为,通常将 0.2%
塑性变形应力σ0.2 称为 0.2%屈服强度,视为与屈服点相当。
球墨铸铁的静载荷性能的一个突出的特点是屈服点σ0.2 高,超过正火 45 钢,比强度
σ0.2/σb也高于钢(据测试:球墨铸铁的σ0.2/σb=0.7~0.8,钢的σ0.2/σb=0.3~0.57)。屈服点 是防止零件产生过量塑性变形时选取许用应力的设计依据,而屈强比则进一步反映材料
4.硬度 图 2 所示为布氏硬度与抗拉强度的关系。可见,包括铸态、退火态、热处理油冷(淬 火态)和热处理空冷(正火态)的球墨铸铁的布氏硬度和抗拉强度之间一般均呈直线关 系。
球墨铸铁的组织和性能
铁素体球墨铸铁
铁素体-珠光体球墨铸 铁
珠光体球墨铸铁
球墨铸铁的显微组织
球墨铸铁良好的机械性能是与其组织特点分不开的,在球铁中,石 墨结晶成球状,对基体的割裂作用大为减小,基体强度的利用率达(70~ 90)%,抗拉强度不仅高于铸铁,甚至还高于碳钢,σb=(400~600)MPa, σs=(300~400)MPa。屈强比σs/σb 为 0.7~0.8,比钢约高 40%左右。 塑性、韧性比灰口铸铁大大提高,δ=(1.5~10)%,经热处理最高可达
δ=(20~25)%。 球墨铸铁不仅具有远远超过灰铁的机械性能,而且同样也具有灰铁 的一系列优点。如良好的铸造性能、减摩性、切削加工性及低的缺口敏 感性等。甚至在某些性能方面可与锻钢相媲美,如疲劳强度大致与中碳 钢相似,耐磨性优于表面淬火钢等。此外,球铁还可适应各种热处理, 使其机械性能提高到更高的水平。因此。球铁一出现就得到迅速的发展。 它可代替部分钢作较重要的零件,对实现以铁代钢、以铸代锻起重要的 作用,具有较大的经济效益。例如,珠光体球铁常用于制造曲轴、连杆、 凸轮轴、机床主轴、水压机气缸、缸套、活塞等。铁素体球铁用于制造
盘铸件需进行退火处理。 2.正火
目的是增加基体组织中珠光体的含量,并使其细化,提高铸铁的强 度、硬度和耐磨性,如发动机的缸套、滑座和轴套等铸件均要进行正火。
此外,还能将铸态珠光体球铁进行调质和等温淬火,以获得高的强度和硬度,但是都只适宜 于小件。
并适合流水作业生产等优点。 因球化处理时铁水温度有所降低,为保证流动性,应使铁水的出炉
温度高些。 四、球墨铸铁的热处理 由于球铁基体组织与钢相同,球铁石墨又不易引起应力集中,因此 它具有较好的热处理工艺性能。凡是钢可以采用的热处理,在理论上对 球铁都适用。常用的热处理方法有以下几种:
球墨铸铁的石墨球数及其影响因素
球墨铸铁的石墨球数及其影响因素球墨铸铁(以下简称球铁)组织中,游离析出的石墨以球形存在和生长是改善球铁性能的重要因素。
石墨球圆整度和数量同样影响球铁的性能。
生产中.通常期望获得球形圆整、分布均匀、球径较小、数目较多的球墨。
我国标准GB9441—88中,对球化级别(球化率)、石墨大小(球径)进行了详细的分级.但没有对石墨球数进行评定。
美国铸造师学会(AFs)编写的《球墨铸铁金相图谱》(简称AFS图谱)将石墨球数从25个/mm2到300个mm2分成7个级别(递增值50个mm 2)。
在球化良好、球墨分布均匀的球铁中.石墨球数与石墨大小、球径有着如表l所示的对应关系。
从表1可见:用石墨球数来评价球铁中石墨均匀程度要比以石墨大小(或球径)作为评价参数更为准确。
目前.国内对石墨球数的研究较少.国外却始终将石墨球数作为球铁生产的一个重要影响因素进行研究。
表2列举了几个厚大断面球铁件实例的有关资料。
可以看出.国外在石墨球数和基体组织上的控制水平较好。
此表列举的铸件均为高韧性球铁件.生产该类球铁件要保证基体组织中铁素体占9O %以上以确保韧性.石墨球数的多少直接影响铁素体量。
在球铁核废料贮运容器研制中.我们认识到了石墨球数的重要性。
几年来.查阅了大量国外关于石墨球数及其影响因素的报导.择其精要做一综述,其目的在于:(1)阐明球铁生产中.石墨球数的重要性(2)更好地理解石墨球数各影响困素的作用(3)总结出生产中控制石墨球数的方法。
一、石墨球数对球铁组织和性能的影响一般认为.无任何缺陷的球铁的力学性能基本上取决于基体组织中铁素体和珠光体含量。
球光体增加.抗拉强度、屈服强度、硬度增大,延伸率下降。
球铁共晶凝固的冷却速度是影响基体组织的关键困素.石墨球数也对基体珠光体和铁素体的转变有重要影响。
球铁组织中.石墨球增多.碳在共晶时向溶体扩散的行程被缩短.铁素体量增加。
因此.铁素体基体的球铁应要求较多的石墨球数。
据报导,石墨球数增加时,抗拉强度、屈服强度降低.延伸率增加;石墨球教减少,珠光体增加.硬度变大较高的石墨球数减弱碳化物的形成趋向.但不能消除初生渗碳体。
不同添加剂对球铁组织和性能的作用比较
S , i 或者与 7%FS 混合加入 , C 5 ei 以及 加 FS 都 e,
使原 铁 液 和球 铁 的再辉 度 减 小 ;当 再辉 度 减 小 时 , 数一 般增 加 , 球 反之亦 然 。
用热分 析测量 的过冷倾 向与球铁三角试块
碳 化物数 量 的变化 有 密切 的关 系 , 例外 的 只是加
对 白 口倾 向影 响 : 入 0 %SC、 02 加 . I 或 .%混 3
S i C与 7 FS 混合物 以及加 晶体石墨的试样测 5 ei 试抗拉强度。结果显示 : S 加 i C使伸长率从 1% 6 提高到 2 %,抗拉强度从 5 1M a 3 1 P 提高到 5 2 2
MP , 服强 度 从 33MP 提 高 到 36MP 。加 a屈 3 a 4 a SC的试 样 的拉伸 性能 比较稳 定 ,标准偏 差 比参 i 考 试样 相 对 较 小 。加 入 SC与 7F S }合 添 加 i 5 ei昆
料熔化后先浇注供对 比用的试样 , 然后在炉内加 入 0 %的 S . 3 i C并浇注第二组试样。原铁液 , 处理 后的铁液 , 加入添加剂前 、 后的铁液 , 都要浇注试
样。
低) 之差值 , 是铸铁过冷倾向的表征。 高过冷度说
明凝 固开 始前 的时 间较 长 , 因而 显微 缩松 和表 面
为 2 .1 .1 。 1 91 8
剂时 , 伸长率和抗拉强度增加很少。加入晶体石
墨时 ,伸长率从 1%增加到 2%,抗拉强度从 9 1
5 5MP 提 高 到 5 2MP 服强 度 从 38MP 4 a 5 a 屈 4 a 提 高到 3 7M a 5 P 。
2 生产验证情 况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
236.2 142.1 60.8
17
(4)抗疲劳强度 温度(℃)
20 250 400 500
疲劳强度σ-1(MPa)
铸态珠光体
退火铁素体
223.4
183.3
203.8
183.3
176.4
132.3
170.5
132.3
编辑ppt
18
4、低温性能
随温度降低,球墨铸铁逐渐发生由韧性 向脆性的转变,尤其在脆性转变温度以下 ,冲击值急剧下降。同时,屈服强度提高 ,延伸率下降,对应力集中的敏感性明显 增加,表现为屈服以后变形量较小即断裂 。对于常温下塑韧性较好的铁素体球墨铸 铁,低温下抗拉强度提高。
石墨球径的减小,使单位面积上球墨铸铁数量增多, 可使抗疲劳强度提高,因此,细化石墨也是提高抗疲劳 强度的一个要求。
编辑ppt
7
2、3 铁素体
根据GB9441-1988球墨铸铁金相检验评 定铁素体数量。其百分比,按大多数视场 对照图片评定。一般不检查牛眼铁素体数 量,仅检查与其共存的珠光体数量
编辑ppt
10
3、球墨铸铁的力学性能
编辑ppt
11
1、净荷载性能 (1)硬度
球墨铸铁的硬度主要取决于基体组织,而且与 抗拉强度、延伸率等净荷载性能有相应的关系。 (2)强度和塑性
球墨铸铁的强度和塑性主要取决于基体组织, 热处理后的下贝氏体或回火马氏体强度最高,其 次是上贝氏体、索氏体、珠光体。
随着铁素体增多,强度下降,延伸率增加。奥 氏体或铁素体强度较低,塑性较好。
石墨大部分呈球状,余为团状和极少 量团絮状
石墨大部分呈团状,余为团絮状,允 许有极少量蠕虫状
石墨呈分散分布的蠕虫状、球状、团 状、团絮状
石墨呈聚集分布的蠕虫状、片状及球 状、团状、团絮状
编辑ppt
球化率(%) ≥95
90-95 80-90 70-80 60-70
6
2、2 石墨大小
石墨球大小分级(GB9441-1988)
8
2、4 珠光体
在球墨铸铁中,珠光体的形态一般分三 级:粗状珠光体、片状珠光体、细片状珠 光体。
随着珠光体的细化,球墨铸铁的强度和 硬度有所提高。若基体为粒状珠光体,则 球墨铸铁在保持一定强度的同时,具有更 高的塑性。
编辑ppt
9
2、5 奥氏体、贝氏体、马氏体 由奥氏体、上贝氏体或下贝氏体通过等
温淬火,加入适当元素获得。 2、6 渗碳体
渗碳体多呈针状、条状,在球墨铸铁中 易使基体变脆,故应避免其出现。 2、7 磷共晶体
磷共晶体在球墨铸铁中对性能的危害比 在灰铸铁中大得多。沿晶界分布的二元或 三元磷共晶体,强烈降低球墨铸铁的韧性 、塑性和强度,受冲击时,裂痕总是沿磷 共晶体边缘开始开裂。
编辑ppt
抗拉强度σb (MPa)
461 470 735 760 710 1170-1470 490 621 931
编辑ppt
1088
疲劳强度σ-1 (MPa)
206 245 255 269 262 304-343 210 276 338 412
疲劳强度/ 抗拉强度
0.45 0.52 0.347 0.35 0.37 0.2-0.26 0.43 0.44 0.36
14
0.38
3、高温性能 (1)硬度
各种球墨铸铁低温下有很好的硬度,但在540℃时开始粒状化,高 于650℃ 开始分解,硬度开始下降并逐渐接近铁素体球墨铸铁的硬 度。
布氏硬度HBS
四种退火球墨铸铁的高温硬度
200
150
上贝氏体
100
下贝氏体 珠光体
50
铁素体
0 100 300 450 550 650
级别
石墨直径(100×) mm
3级 >25-50
4级 >12-25
5级 >6-12
6级 >3-6
7级
8级
>1.5-3 ≤1.5
GB9441-1998球墨铸铁金相检验标准将石墨大小分成 六级。
球墨铸铁石墨球的大小对力学性能的影响很大,减小 石墨球径,增加石墨球在单位面积的个数可以明显地提 高球墨铸铁的强度、塑性和韧性。
10
0
100 300 500 700 试验温度(摄氏度)
编辑ppt
试验温度(摄氏度)
延伸率(%) 0 50 100 200 300 400 500 600 700 800
铁素体 珠光体
铁素体 珠光体
16
(3)高温蠕变和持久强度
材料 退火铁素体 正火珠光体
常温(20℃)力学性能
抗拉强度σb 延伸率δ
J 140
120
100
80
有缺口
60
无缺口
40
20
0 -160 -120 -80 0
80 ℃
铁素体球墨铸铁试样冲击吸收功-温度曲线
编辑ppt
13
(2)疲劳强度 某些球墨铸铁具有很高的疲劳强度,相当于45号正火钢
,如珠光体球铁。
各种基体组织球墨铸铁的弯曲疲劳强度
材料
铁素体球铁 铁素体球铁 珠光体球铁 珠光体球铁 珠光体球铁 贝氏体球铁 铁素体球铁 珠光体-铁素体球铁球铁 回火马氏体球铁 上贝氏体球铁
编辑ppt
12
2、动荷载性能 (1)冲击韧度:铁素体球墨铸铁由于含硅量变化,贝氏体球墨铸铁
由于上、下贝氏体及奥氏体数量变化,冲击韧度的变化范围较大 。 新标准改为有缺口!
基体组织 铁素体
冲击韧度 (J/cm2) 50-150
珠光体
15-35
贝氏体
30-100
回火索氏体 20-60
各种基体组织球墨铸铁常温冲击韧度
球铁性能与组织
1、铁-碳相图
2、球铁的基体组织 3、球墨铸铁的力学性能
编辑ppt
1
1、铁—碳相图
编辑ppt
2
1.1铁~ 碳 合金的平衡组织
编辑ppt
3
1、2 铁—碳合金的非平衡组织
编辑ppt
4
2、球铁的基体组织
编辑ppt
5
2、1 球化分级
球化级别 1级 2级 3级 4级 5级
说明
石墨呈球状,少量团絮,允许极少量 团絮状
试验温度(摄氏度)
编辑ppt
15
(2)高温短时力学
性能
图中表明球墨 铸铁抗拉强度随温 度升高而降低。
延伸率中,铁 素体先显著降低再 急剧升高,珠光体 缓慢下降,然后显 著增加。
抗拉强度MPa
1000 900 800 700 600 500 400 300 200 100 0 0
60
50
40
30
20
433.0
22
901.6
5
试验温度℃ 高温持久强度(MPa)
100h
1000h
427
210.7
169.5
538
68.3
51.5
649
22.7
152.5
427
352.8
285.2
538
115.2
62.2
649
27.4
16.7
奥氏体
429.2
35
427
538
649
编辑ppt
277.3 176.4 81.8