三点一维搜索法报告

合集下载

机械优化设计_第三章一维搜索方法

机械优化设计_第三章一维搜索方法

机械优化设计_第三章一维搜索方法一维方法是一种常用的优化方法,适用于在一个单变量的空间中寻找最优解或近似最优解的问题。

在机械优化设计中,一维方法可以用来寻找最佳的设计参数值,以优化机械系统的性能。

一维方法包括了多种常用的算法,如二分法、黄金分割法、斐波那契法等。

下面将介绍其中的二分法和黄金分割法这两种常用的一维方法。

二分法是一种简单而常用的方法,基本思想是不断将空间划分为两部分,直到找到最优解或接近最优解的区间。

具体步骤如下:1.初始化区间[a,b],其中a和b分别是空间的下界和上界。

2.计算区间的中点x=(a+b)/23.根据目标函数的取值情况,确定最优解或接近最优解所在的子区间。

4.更新区间为[a,x]或[x,b],继续步骤2和3,直到区间足够小或找到了最优解。

二分法的优点是简单易实现,但其收敛速度相对较慢,特别是对于空间为初值范围较大的问题。

黄金分割法是一种相对高效的一维方法,其基本思想是通过黄金分割点来确定区间的缩减比例。

具体步骤如下:1.初始化区间[a,b],其中a和b分别是空间的下界和上界。

2.计算区间的两个黄金分割点,即x1=a+(1-φ)(b-a)和x2=a+φ(b-a),其中φ是黄金分割比例,其取值约为0.6183.根据目标函数的取值情况,确定最优解或接近最优解所在的子区间。

4.更新区间为[x1,b]或[a,x2],同时更新黄金分割点,继续步骤2和3,直到区间足够小或找到了最优解。

黄金分割法的优点是收敛速度相对较快,通常比二分法更有效。

然而,其实现相对复杂一些,需要额外的计算和判断步骤。

除了二分法和黄金分割法,还有其他一维方法,如斐波那契法、插值法等。

这些方法可以根据具体问题的特点选择适合的方法进行优化设计。

总结起来,一维方法是机械优化设计中常用的方法之一,用于在一个单变量的空间中寻找最优解或近似最优解的问题。

通过选择适当的方法,可以有效地优化机械系统的性能。

第三章 一维搜索法

第三章 一维搜索法
x
0
x1 x2
x3
3-1 确定初始区间的进退法
探测初始空间的进退法步骤: 探测初始空间的进退法步骤 (1)给定初始点 x0 ,初始步长 h ,令 x1 = x0 ,记: f1 = f ( x1 ) 给定初始点 初始步长 令 记 (2)产生新的探测点 x2 = x1 + h ,记 f 2 = f ( x2 ) 产生新的探测点 (3)比较函数值 f1 和 f 2 的大小 确定向前或向后探测的策略 比较函数值 的大小,确定向前或向后探测的策略 则加大步长,令 若: f1 > f 2 则加大步长 令 h = 2h ,转(4)向前探测 转 向前探测 (4)产生新的探测点 x3 = x0 + h ,令 f 3 = f ( x3 ) 产生新的探测点 令 (5)比较函数值 f 2 和 f 3 的大小 比较函数值 则调转方向,令 若: f1 < f 2 则调转方向 令 h = − h ,转(4)向后探测 转 向后探测
3-1 确定初始区间的进退法
f (x ) f ( x1 )
f ( x2 )
f ( x1 ) > f ( x2 ) > f ( x3 )
极小点在右端点的
f (x3 ) (x
x
x3 右侧
0
x1
x2 x3
3-1 确定初始区间的进退法
f (x ) f ( x1 ) f ( x2 )
f ( x3 )
f ( x1 ) < f ( x2 ) < f ( x3 )
h=-h;x2=x0+h;f2=f(x2); ; ; ; End
3-2 黄金分割法
一维搜索试探方法的基本思想: 一维搜索试探方法的基本思想:在确定了搜索区间的 前提下,不断缩小搜索区间, 前提下,不断缩小搜索区间,同时保持搜索区间内函数值 “大-小-大”的走势,直到区间的宽度小于预定的精度。 小 大 的走势,直到区间的宽度小于预定的精度。 黄金分割法基本思想: 黄金分割法基本思想 : 在搜索区间内插入两个黄金分 割点,将区间分成三段。利用函数的单谷性质,通过函数值 割点,将区间分成三段。利用函数的单谷性质, 大小的比较,删去其中一段。 大小的比较,删去其中一段。在保留下来的区间上作同样的 处置,如此往复送代,使搜索区间缩小到精度范围内, 处置,如此往复送代,使搜索区间缩小到精度范围内,得到 极小点的近似解。 极小点的近似解。

3.3 一维搜索方法 (一维优化)

3.3 一维搜索方法 (一维优化)
2 3
并令: h 2h
x3 x 2 h ,求 y3 f ( x3 )
重复上述步骤,直到函数值出现“高-低-高”为止。
4. 若在步骤2中,出现 y1 y 2 (图a虚线),则应作后退运算: 令:h h0 置换:x3 x1 y 3 y1 ; x1 x2 y1 y2 ;x2 x3 y2 y3 再令:h 2h
2 2 2 2 ( x2 x3 ) f1 ( x3 x12 ) f 2 ( x12 x2 ) f 3 b ( x1 x2 )( x2 x3 )( x3 x1 )
教材中,c的表达式缺-号
c
( x3 x2 ) x2 x3 f1 ( x1 x3 ) x1 x3 f 2 ( x2 x1 ) x1 x2 f 3 ( x1 x2 )( x2 x3 )( x3 x1 )
入口
x
(0),ε
X
(1)=x(0)-f/x(0)/f//x(0)
∣f/x(1)∣≤ε 或∣x(1)-x(0)∣≤ε ?
x
(*):=x (1)
x
(0):=x (1)
出口
4 3 2 例: 试用牛顿法求 f ( x) 1 x 2 x 2 x 7 x 8 4 3 值,已知探索区间为[a,b]=[3,4],ε=0.05。
4、牛顿法的特点 优点:收敛速度较快 缺点: 1)计算f’ 、f’’,计算工作量大。 2)用数值微分计算f’ 、f’’时,舍入误差会影响收敛速度。 3)x0与 x不能离太远,否则会发散或收敛于非极小点。 与0.618法比较: 0.618 法:1)收敛慢 2)对函数要求不严格 牛顿法正好相反。
5、牛顿法的框图
x3 x 2 h
3. 若 y 2 y1 ,应作前进运算(图a实线):

第四章一维搜索法(完整资料).doc

第四章一维搜索法(完整资料).doc

【最新整理,下载后即可编辑】第四章 一维搜索法由第一章关于求解最优化问题概述中我们知道,从已知迭代点n k R X ∈出发按照基本迭代公式k k k k P t X X +=+1来求解最优化问题,其关键在于如何构造一个搜索方向n k R P ∈和确定一个步长1R t k ∈,使下一迭代点1+k X 处的目标函数值下降,即)()(1k k X f X f <+.现在我们来讨论,当搜索方向k P 已经确定的情况下,如何来确定步长k t ?步长因子的选取有多种方法,如取步长为常数,但这样选取的步长并不最好,如何选取最好步长呢?实际计算通常采用一维搜索来确定最优步长. 对无约束最优化问题)(min X f nR X ∈,当已知迭代点kX 和下降方向k P 时,要确定适当的步长k t 使=+)(1k X f)(k k k P t X f +比)(k X f 有所下降,即相当于对于参变量t 的函数)()(k k tP X f t +=ϕ要在区间],0[∞+上选取k t t =使)()(1k k X f X f <+,即)0()()()(ϕϕ=<+=k k k k k X f P t X f t .由于这种从已知点k X 出发,沿某一下降的探索方向k P 来确定步长k t 的问题,实质上是单变量函数()t ϕ关于变量t 的一维搜索选取问题,故通常叫做一维搜索.按这种方法确定的步长k t 又称为最优步长,这种方法的优点是,它使目标函数值在搜索方向上下降得最多.今后为了简便起见,我们用记号)(1k k k P X ls X ,=+ (4.1)表示从点k X 出发沿k P 方向对目标函数)(X f 作直线搜索所得到的极小点是1+k X .其中l 和s 分别是Linear search (直线搜索)两词的词首.在目标函数)(X f 已确定的条件下(4.1)等价于如下两式:⎪⎩⎪⎨⎧+==+=++kk k k tk k t k k k P t X X t tP X f P t X f 1)(min )(min )(,ϕ 下面进一步解释迭代点k k k k P t X X +=+1的空间位置.容易证明,若从k X 出发,沿k P 方向进行一维搜索得极小点k k k k P t X X +=+1,则该点1+=k X X 处的梯度方向)(1+∇k X f 与搜索方向k P 之间应满足0)(1=∇+k T k P X f .(4.2)事实上,设)()(k k tP X f t +=ϕ,对t 求导有k T k k P tP X f t )()(+∇='ϕ.令0)('=t ϕ,即0)(=+∇k T k k P tP X f ,所以0)(1=∇+k T k P X f .式(4.2)的几何意义是明显的.从某一点k X 出发沿k P 方向对目标函数)(X f 作直线搜索,所得到的极小点为1+k X .式(4.2)指出,梯度)(1+∇k X f 必与搜索方向k P 正交.又因为)(1+∇k X f 与目标函数过点1+k X 的等值面)()(1+=k X f X f 正交,所以进一步看到,搜索方向k P 与这个等值面在点1+k X 处相切(如图4.1所示).§4.1 搜索区间及其确定方法一、搜索区间设一维最优化问题为)(min max0t t t ϕ≤≤. (4.3)为了求解问题(4.3),我们引入如下的搜索区间概念.定义4.1 设])0[)(0[max **11t t t R R ,,,:∈∞+∈→ϕ,并且 )(min )(max0*t t t t ϕϕ≤≤=,若存在闭区间])0[])([0[][max t b a b a ,,,,⊂∞+⊂使][*b a t ,∈,则称][b a ,是问题(4.3)的搜索区间.简言之,一个一维最优化问题的搜索区间,就是包含该问题最优解的一个闭区间.通常,在进行一维搜索时,一般要先确定出问题的一个搜索区间,然后在此区间中进行搜索求解. 二、加步探索法下面,介绍一个确定问题(4.3)的搜索区间的简单方法.这个方法的思想是:先选定一个初始点])0[)(0[max 00t t t ,或,∈⊂∞+∈和初始步长00>h .然后,沿着t 轴的正方向探索前进一个步长,得到新点00h t +.若目标函数在新点处的值是下降了,即)()(000t h t ϕϕ<+,则下一步就从新点00h t +出发加大步长,再向前探索.若目标函数在新点处的 函数值上升,即)()(000t h t ϕϕ>+,图4.1则下一步仍以0t 为出发点以原步长开始向t 轴的负方向同样探索.当达到目标函数上升的点时,就停止探索,这时便得到问题(4.3)的一个搜索区间.这种以加大步长进行探索来寻找探索区间的方法叫做加步探索法.加步探索法算法的计算步骤:(1) 选取初始数据.选取初始点])0[)(0[max 00t t t ,或,∈⊂∞+∈,计算)(00t ϕϕ=.给出初始步长00>h ,加步系数1α>,令0=k . (2) 比较目标函数值.令k k k h t t +=+1,计算)(11++=k k t ϕϕ,若k k ϕϕ<+1,转(3).否则转(4).(3)加大探索步长.令k k h h α=+1,同时,令k t t =,1+=k k t t ,1k k ϕϕ+=,1k k =+,转(2).(4) 反向探索.若0=k ,转换探索方向,令1,+=-=k k k t t h h ,转(2).否则,停止迭代,令11min{}max{}k k a t t b t t ++==,,,输出][b a ,. 加步探索法算法的流程图如图4.2所示。

三点一维搜索法报告参考模板

三点一维搜索法报告参考模板

三点一维搜索法报告姓名:张攀班级:2009211102 学号:09210048算法的基本思想:三点一维算法是从0.618法衍生而来的,0.618算法使用从两点a,b间选择两个点c,d将原来区域分为三个,抛弃不符合所求数值趋势的两个区域,不断逼近所求值,当|b-a|<e,e为所选取的范围时停止。

得到一个近似值。

三点一维算法主要不同在于这里一次迭代要在解的存在区间中插入三个分点进而对该区间四分,最后考虑在包括原来区间的两个端点在内的五个点中选择相邻的三点,其函数值具有“高低高”结构且区间长度最短,将之保留。

算法分析:该算法使用x1,x2,x3将整个区域分为了5个区域,比较后抛弃两个。

对于p 值,P值的选取决定区域的划分方式,在确立中间点后,P值越大,中间3个区域,而两边越小。

这样可以根据具体函数来调节p的大小,减少其运算量。

实例分析:选择函数:f[x] := Sin[x^4] + Cos[x]该函数在[0,1]范围内有极小值,令a=0,b=1,p=0.1,e选取1*10^(-9),运算后结果在x=0.4904089750976563时有最小值0.939949。

运算次数为22次,P值选取效率的影响:在该函数中,[0,1]内函数波动较为平缓,从中间缓慢向两边扩展显然速度较快,因为所求点接近终点,当p增大的时能很快覆盖到所求点效率将变高,如果区域远超过所求点则效率将变低。

P取值以及逼近次数i的关系:P=0.1,i=22P=0.2,i=26P=0.25,i=19P=0.3,i=19P=0.35,i=21P=0.4,i=23P=0.5,i=26P=0.6,i=30P=0.7,i=36P=0.8,i=57可见最好的取值应为0.25到0.3之间。

总结:三点一维算法实际通过多次比较,减少了0.618法对点的移动,和对区域的选择,比0.618法稳定。

在比较区域大时三点一维算法比起0.618法更加优秀。

友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

《一维搜索方法》课件

《一维搜索方法》课件

02
线性搜索
线性搜索的定义
线性搜索是一种基本的搜索算法,它 从列表的第一个元素开始,逐个检查 每个元素,直到找到目标元素或遍历 完整个列表。
在线性搜索过程中,我们假设列表中 的元素是按顺序排列的,并且我们不 知道目标元素的确切位置,只知道它 存在于列表中。
线性搜索的步骤
初始化
选择一个起始位置,通常为列表的第一个元素。
抛物线搜索的步骤
3. 比较中间元素与目标值
2. 计算当前区间的中间元 素。
1. 初始化当前搜索区间为 整个数组。
01
03 02
抛物线搜索的步骤
01 如果中间元素等于目标值,返回该位置。
02
如果目标值小于中间元素,将左半部分区 间作为新的当前区间。
03
如果目标值大于中间元素,将右半部分区 间作为新的当前区间。
04
4. 重复步骤2和3,直到找到目标值或当前 区间为空。
抛物线搜索的时间复杂度
最坏情况下,抛物线搜索的时间复杂度为O(n),其中n为数 组长度。
平均情况下,由于每次比较都可以将搜索区间缩小一半,因 此时间复杂度为O(log n)。
THANKS
THANK YOU FOR YOUR WATCHING
的单峰函数。
一维搜索方法的重要性
解决实际问题
一维搜索方法广泛应用于各种实 际问题中,如参数优化、函数逼 近、插值等。
算法基础
一维搜索方法是许多算法的基础 ,如梯度下降法、牛顿法等都需 要用到一维搜索方法来寻找迭代 步长。
理论分析
一维搜索方法在数学分析中也有 重要应用,如中值定理、单调函 数性质等都需要用到一维搜索方 法。
常用的一维搜索方法
线性搜索

一维搜索-最优化方法

一维搜索-最优化方法
∈( a , b ) ; (2) ������1 = ������0 - Ψ’(������0) / Ψ’’(������0) ; (3)若 | Ψ’(������0) | ≤ ε , 输出 ������0 ,计算停
止 ; 否则 , ������0 = ������1 ,转(2) 。
例题:用切线法求Ψ(t) =������2-5t+2 , 在定义域 t ∈ ( 0 , 10 ) 上的极小点 , 要求 ε = 0.2 。
切线法(Newton法)
设Ψ(t)是区间(a , b)上的二次可微的单谷函数,������∗ 是 Ψ(t) 在 (a , b)上的极小值点, ������������ 是 ������∗ 的一个近似点。 目标 函数Ψ(t) 的一阶导数为������ = Ψ’(t) ,过点 (������������, Ψ’(������������) ) 作导函数 Ψ’(t) 的图像的切线,则此切线的方程为
在实践工作中,应根据问题的具体特点以及工作条 件来选用相应的合适算法。不过,从以往的实践中 来看,0.618法和对分法使用的更多一些。
可望达到上述的最小值,
所以有 c-a = b-c , 即 c = 0.5(b-a)
对分法的步骤
设单谷函数 Ψ(t)存在导函数Ψ’(t),极小值点的初始搜索 区间为(a。,b。),要求极小值点的近似值 ������ҧ 与精确极小值 点 t* 的最大绝对误差 ������ − ������ ∗ ҧ 不超过 ε 。
⑴ 令 a=a。 , b=b。;
⑵ 令 c = 0.5(b-a),计算Ψ’(c);
⑶ 若 Ψ’(c)ຫໍສະໝຸດ <0 ,令 a=c , 转到⑷

若 Ψ’(c)>0 ,令 b=c ,转到⑷

一维搜索法

一维搜索法

第二章 一维搜索法● 概述● 确定初始单谷区间的进退法 ● 一维搜索法分类 ● 区间消去法 ● 函数逼近法概述求一元函数()F x 的极小点和极小值问题就是一维最优化问题。

求解一维优化问题的方法称为一维优化方法,又称一维搜索法。

一维搜索法是优化问题中最简单、最基本方法。

因为它不仅可以解决单变量目标函数的最优化问题,而且在求多变量目标函数的最优值时,大多数方法都要反复多次地进行一维搜索,用到一维优化法。

一般多维优化计算的迭代的基本格式:从一个已知点()k x 出发(()k x由上次迭代获得,开始时就是起始点(0)x),沿某一优化方法所规定的是目标函数值下降的搜索方向()k S,选择一个步长因子α,求得下一个新迭代点(1)k x +,(1)()()k k k xx S α+=+并且满足1()()k k F x F x +≤,即新点必须能够使目标函数值有所下降,这个新点就是下一次迭代的出发点,如此重复,直到求出目标函数的最优解为止。

理想步长kα可以通过()()()()k k F F x S αα=+的极小点获得min ()F α,使得目标函数达到最小()()min ()k k F x S α+,这种在第k 次迭代中求理想步长k α的过程,就是一维搜索过程。

大致分为两个步骤:1. 确定初始搜索区域[a,b],该区域应该包括一维函数极小点在内的单谷区域;2. 在单谷区域[a,b]上寻找极小点。

寻找极小点kα可以采用解析解和数值解等方法。

确定初始单谷区间的进退法单谷区域的定义:设函数()F x 在区域12[,]x x 内有定义,且(1) 在区域12[,]x x 内存在极小值x *,既有min ()()F x F x *=,12[,]x x x ∈; (2) 对区域1[,]x x *上任意自变量x ,有()()F x F x x >+∆,0x ∆>;对区域2[,]x x *上任意自变量x ,有()()F x F x x <+∆,0x ∆>;则称12[,]x x 为函数()F x 的单谷区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三点一维搜索法报告
姓名:张攀班级:2009211102 学号:09210048
算法的基本思想:
三点一维算法是从0.618法衍生而来的,0.618算法使用从两点a,b间选择两个点c,d将原来区域分为三个,抛弃不符合所求数值趋势的两个区域,不断逼近所求值,当|b-a|<e,e为所选取的范围时停止。

得到一个近似值。

三点一维算法主要不同在于这里一次迭代要在解的存在区间中插入三个分点进而对该区间四分,最后考虑在包括原来区间的两个端点在内的五个点中选择
相邻的三点,其函数值具有“高低高”结构且区间长度最短,将之保留。

算法分析:
该算法使用x1,x2,x3将整个区域分为了5个区域,比较后抛弃两个。

对于p 值,P值的选取决定区域的划分方式,在确立中间点后,P值越大,中间3个区域,而两边越小。

这样可以根据具体函数来调节p的大小,减少其运算量。

实例分析:
选择函数:f[x] := Sin[x^4] + Cos[x]
该函数在[0,1]范围内有极小值,令a=0,b=1,p=0.1,e选取1*10^(-9),运算后结果在x=0.4904089750976563时有最小值0.939949。

运算次数为22次,
P值选取效率的影响:
在该函数中,[0,1]内函数波动较为平缓,从中间缓慢向两边扩展显然速度较快,因为所求点接近终点,当p增大的时能很快覆盖到所求点效率将变高,如果区域远超过所求点则效率将变低。

P取值以及逼近次数i的关系:
P=0.1,i=22
P=0.2,i=26
P=0.25,i=19
P=0.3,i=19
P=0.35,i=21
P=0.4,i=23
P=0.5,i=26
P=0.6,i=30
P=0.7,i=36
P=0.8,i=57
可见最好的取值应为0.25到0.3之间。

总结:
三点一维算法实际通过多次比较,减少了0.618法对点的移动,和对区域的选择,比0.618法稳定。

在比较区域大时三点一维算法比起0.618法更加优秀。

相关文档
最新文档