第3章迭代终止准则及一维搜索方法教材

合集下载

一维牛顿法

一维牛顿法

一维牛顿法也称为一维牛顿-拉夫逊方法,是一种迭代的优化算法,用于求解一维非线性函数的极值点。

这种方法通过利用函数的二阶导数信息来逼近极值点,并在每次迭代中更新搜索方向,以快速收敛到最优解。

一维牛顿法的具体步骤如下:
初始化:选择初始点x0,并设定迭代终止条件,如迭代次数或函数值的收敛阈值。

计算一阶和二阶导数:计算函数f(x)在当前点xk处的一阶导数f'(xk)和二阶导数f''(xk)。

更新搜索方向和步长:根据二阶导数的信息,计算搜索方向dk和步长αk。

更新当前点:计算新的点xk+1 = xk + αk * dk。

判断终止条件:检查是否满足终止条件,如果满足则停止迭代,否则返回步骤2。

例如,对于函数f ( x ) = x 3 −2 sin ⁡( x ) f(x) = x^3 - 2\sin(x)f(x)=x3−2sin(x),在A AA点处对函数f ( x ) f(x)f(x)展开,得到近似的二次函数φ( x ) \varphi(x)φ(x),φ( x ) \varphi(x)φ(x)的最小值在B BB点处取得,高斯牛顿法的下一步迭代点即为与B BB点横坐标相等的C CC点。

如此,只需数次,迭代能够达到很高的精度,可见牛顿法收敛速度快。

第三章 一维搜索法

第三章 一维搜索法
x
0
x1 x2
x3
3-1 确定初始区间的进退法
探测初始空间的进退法步骤: 探测初始空间的进退法步骤 (1)给定初始点 x0 ,初始步长 h ,令 x1 = x0 ,记: f1 = f ( x1 ) 给定初始点 初始步长 令 记 (2)产生新的探测点 x2 = x1 + h ,记 f 2 = f ( x2 ) 产生新的探测点 (3)比较函数值 f1 和 f 2 的大小 确定向前或向后探测的策略 比较函数值 的大小,确定向前或向后探测的策略 则加大步长,令 若: f1 > f 2 则加大步长 令 h = 2h ,转(4)向前探测 转 向前探测 (4)产生新的探测点 x3 = x0 + h ,令 f 3 = f ( x3 ) 产生新的探测点 令 (5)比较函数值 f 2 和 f 3 的大小 比较函数值 则调转方向,令 若: f1 < f 2 则调转方向 令 h = − h ,转(4)向后探测 转 向后探测
3-1 确定初始区间的进退法
f (x ) f ( x1 )
f ( x2 )
f ( x1 ) > f ( x2 ) > f ( x3 )
极小点在右端点的
f (x3 ) (x
x
x3 右侧
0
x1
x2 x3
3-1 确定初始区间的进退法
f (x ) f ( x1 ) f ( x2 )
f ( x3 )
f ( x1 ) < f ( x2 ) < f ( x3 )
h=-h;x2=x0+h;f2=f(x2); ; ; ; End
3-2 黄金分割法
一维搜索试探方法的基本思想: 一维搜索试探方法的基本思想:在确定了搜索区间的 前提下,不断缩小搜索区间, 前提下,不断缩小搜索区间,同时保持搜索区间内函数值 “大-小-大”的走势,直到区间的宽度小于预定的精度。 小 大 的走势,直到区间的宽度小于预定的精度。 黄金分割法基本思想: 黄金分割法基本思想 : 在搜索区间内插入两个黄金分 割点,将区间分成三段。利用函数的单谷性质,通过函数值 割点,将区间分成三段。利用函数的单谷性质, 大小的比较,删去其中一段。 大小的比较,删去其中一段。在保留下来的区间上作同样的 处置,如此往复送代,使搜索区间缩小到精度范围内, 处置,如此往复送代,使搜索区间缩小到精度范围内,得到 极小点的近似解。 极小点的近似解。

机械优化设计-第三章一维优化方法

机械优化设计-第三章一维优化方法
23
机械优化设计
• 第四次缩小区间: 第四次缩小区间: • 令 x2=x1=0.764, , f2=f1=0.282 • x1=0.472+0.382*(0.944-0.472)=0.652, f1=0.223 • 由于f1<f2, 故新区间 由于f 故新区间[a,b]=[a, x2]=[0.472, 0.764] • 因为 b-a=0.764-0.472=0.292>0.2, 应继续缩小区间。 , 应继续缩小区间。 第五次缩小区间: 第五次缩小区间: f2=f1=0.223 令 x2=x1=0.652, x1=0.472+0.382*(0.764-0.472)=0.584, f1=0.262 由于f 故新区间[a,b]=[x1,b]=[0.584, 0.764] 由于f1>f2, 故新区间 因为 b-a=0.764-0.584=0.18<0.2, 停止迭代。 程序演示 , 停止迭代。 极小点与极小值: 极小点与极小值: x*=0.5*(0.584+0.764)=0.674,
x2 = a + 0.618(b − a), y2 = f ( x2 )
f
b = x2 , x2 = x1, y2 = y1
x1 = a + 0.382(b − a), y1 = f ( x1 )
y1 < y2


y1 y2
x
b
a = x1 , x1 = x2 , y1 = y2
x2 = a + 0.618(b − a), y2 = f ( x2 )
7
机械优化设计
h0
x2
机械优化设计
2.前进搜索 加大步长 h=2 h ,产生新点x3= x2+ 2h0 ; (a)如y2<y3,则函数在[x1,x3]内 必有极小点,令a= x1,b= x3搜索 区间为[a,b] ; (b)如y2>y3, 令x1=x2 ,y1=y2 ; x2=x3 ,y2=y3 ; h=2h 重新构造新点x3=x2+h,并比较y2、 y3的大小,直到y2<y3。

《现代机械优化设计》第3章 一维搜索

《现代机械优化设计》第3章 一维搜索

a xp, f (a) f (xp ), f (a) f (xp )
b xp, f (b) f (xp ), f (b) f (xp )
计算 f (x*p ), f (x*p )

f (x*p ) 0 是

f (x*p )
x xp , f f (xp )

结束


K>0

xp-xp0 ≤ε

x*=x2, f*=f2

x*=xp,f*=fp
xp
1 2
f1(x22 x32 ) f2 (x32 x12 ) f3(x12 x22 ) f1(x2 x3) f2 (x3 x1) f3(x1 x2 )
结束
由于区 间缩到很 小时因计 算机舍入 误差引起, 可取中间 点输出。
x3
ⅱ) (xP x1)(x3 xP ) 0
f1
x1
f2
f3
x2 x3
补充 §3-5 格点法
一)基本思路
先将搜索区间分成若干等分,计算出当中的n个等分 点的目标函数值. 再通过比较,找出其中的最小点,则该 点的两个邻近点围成缩短了的新区间。
f
a
xmx1 m xm1 b
x
二)每轮迭代区间的缩短率
ⅰ)A=0
f1(x2 x3 ) f2 (x3 x1) f3 (x1 x2 ) 0
f1[( x2 x1) (x3 x1)] f2 (x3 x1) f3(x1 x2 ) 0
f2 f1 f3 f1 这表明此时三个插值点共线。 x2 x1 x3 x1
f2
f3
f1
x1
x2
a=x3、b=x1
x3=x2+h、y3=f(x3)

常用的一维搜索方法

常用的一维搜索方法

称为搜索方向;
k 称为步长或步长因子。
图1
线搜索迭代法的步骤
0 x (1) 选定某一初始点 ,并令 k : 0;
(2) 确定搜索方向 d
k
k
;
k
(3) 从 x 出发,沿方向 d x k 1; (4) 检查得到的新点
求步长 λ
k
,以产生下一个迭代点
x
k 1
是否为极小点或近似极小点。
若是,则停止迭代。 否则,令 k :k1,转回(2)继续进行迭代。 在以上步骤中,选取搜索方向是最关键的一步。 各种算法的区分,主要在于搜索方向 d
最优解
从当前点出发,按照某 种规则找下一个迭代点 注:迭代格式 不同,对应着 不同的算法
找下一个迭代点
迭代法的分类
可 行 算 法 : 所 有 迭 代 点 都 是 可 行 点 据 迭 代 点 初始点不好找 的 可 行 性 不 可 行 算 法 : 至 少 有 一 个 迭 代 点 不 是 可 行 点 初始点任意选取
k k k Tk kk
T k T k g d g k 1 k d,
其中
(, 1 ) ,0 1 .
常用的一维搜索方法
我们主要介绍下面几种方法





“成功—失败”法 0.618法(黄金分割法) 二分法 牛顿法(Newton)和插值法 Armiji-Goldstein 准则 Wolfe-Powell 准则
注意: 1. h 选择要适当.(太大含多个单峰区间,太小迭代次数多); 2. f (x)单调时无结果, (加迭代次数限制);
“成功—失败”法----算例
3 例 :利用“成功-失败”法求函数 f( x )x 2 x 1 的搜索区间, 1 取初始点 x 1 ,步长 h . 2 21 1 h , 解:取初始点 x ,步长 2 2 1 1 5 11 f (x ) f ( ) , f ( x h ) f ( ) f ( 0 ) 1 , 2 8 22 搜 索 成 功 , 步 长 加 倍 ; 因 为 f () x f ( x h ) , 1 1 计 算 f ( x h + 2 h ) f ( x 3 h ) f ( 3 ) f ( 1 ) 0 , 2 2 搜 索 成 功 , 步 长 加 倍 ; 因 为 fxh ( ) fx ( 3 h ) , 1 1 计 算 f ( x 3 h + 4 h ) f ( x 7 h ) f ( 7 ) f ( 3 ) 2 2 , 2 2 搜 索 失 败 , 停 止 迭 代 ; 因 为 fx ( 3 h ) fx ( 7 h ) ,

最优化方法第三章第一讲下降迭代算法基本概念

最优化方法第三章第一讲下降迭代算法基本概念

(i )
xk1 xk
或 xk1 xk
xk

(ii )
f ( xk1 ) f

(xk
) 或 f ( xk1 ) f ( xk ) ;
f ( xk )
(iii) f ( xk ) gk ;
(i ) 上述三种终止准则的组合,
其中 0是给定的适当小的实数。
2. 一维搜索
最优化问题的算法一般迭代格式:
给定初始点 x0,令k 0。 (i)确定 xk 处的可行下降方向 pk ;
(ii)确定步长k 0,使得 f ( xk k pk ) f ( xk ); (iii)令 xk1 xk k pk ; (i )若 xk1满足某种终止准则,则停止迭代,以 xk1为近似最优解。否则令k k 1,转(i)。
定义 1.2.1:在 xk 点处,对于 pk 0,若存在 0, 使 (0, )有
f ( xk pk ) f ( xk ) 成立,则称 pk 为 f ( x)在点 xk 处的一个下降方向。
当 f ( x)具有连续的一阶偏导数时,记f ( xk ) gk 。由
Taylor 公式 f ( xk pk ) f ( xk ) gkT pk o( )
由 xk 出发沿 pk 方向求步长k 的过程叫一维搜索
或线性搜索。
如果算法构造出的点列xk 在有限步之内得到 问题的最优解 x*,或者点列xk 有极限点,并且其
极限点是最优解 x*,则称这种算法是收敛的。
如果只有当 x0充分接近最优解 x*时,由算法产 生的点列才收敛于 x*,则该算法称为局部收敛。
定义 1.2.4:设序列xk 收敛于 x*,若对于实数 p 1,

lim
k
xk1 x* xk x* p

第3章迭代终止准则及一维搜索方法

第3章迭代终止准则及一维搜索方法

11d
K
f1 f ( X )
a1 a11 a11 a12 f1 f 2
a12 a1 ( a3 a1 ) X X ( K ) 12 d ( K ) f2 f ( X ) a3 a12 ; a12 a11 f 2 f1 a11 a3 (a3 a1 )
搜索区间的确定
外推法确定搜索区间
入口 t0 f0 0.01 , f ( X ), d ( I , J ) d
k
t1 0, t t 0 , f1
t2 t1 t , f 2
f0
f (X )
f
2

f1
YES
NO
确定搜索区间的程序原理
t t , t3 t1 , f 3

df ( ) 0 d
得:
4 (1 2 ) 0
将(3-3)代入(3-2)得:
1 2
(3-3)
x
因为
(1)
1 1 2 0 2
f ( x(1) ) 2x x0 0
满足准则1所以
x* x(1) 0
f ( x* )
=0
多维搜索
对于多维搜索,因为
出口
二次插值法 二次插值法的原理是用一个二次多项式(抛物线)来逼近目标函数 P( )=a+b +c
2
dp( ) b 2c d
b p* 2c
二次插值法原理
p*
的求法
( 22 32 ) f1 (32 12 ) f 2 (12 2 2 ) f3 b (1 2 )( 2 3 )(3 1 )
X
( k 1)

工程最优化第三章

工程最优化第三章

最优点同时与目标函数及约束函数的性质有关。存在两种情况:
x2
x2
x(0) =x*
x(0)
x*
S x1
(a) 无约束极值点x(0)S
S x1
(b) 无约束极值点x(0)S
! 目标函数的梯度等于零并不是约束问题的最优性必要条件!
带有不等式约束的优化问题的最优性条件通常是一组不等式与 方程,比较复杂的,很难求解,所以在一般情况下,不是直接 求解这些条件来获得极值点,而是使用各种迭代法求出近似的 极值点。但它在理论上很重要,是各种迭代方法的基础和依据。
(一)可行方向与起作用约束
定义:设点xS,p是一个方向,如果存在实数a1>0, 使对所有
a[0, a1],有x+apS,则称p为点x 的一个可行方向,或容许
方向、允许方向。
p
几何上,若从x处沿方 向p引一射线,若该射 线起始端有一段在可 行域内,则这个方向p
就叫可行方向。
x S
! 是否为可行方向与起始点的位置有关!
例3.5.1 验证下面的非线性规划在最优点x*处不满足约束规范,
最优点不是K-T点:
min
f
(x) (x1 3)2
x
2 2
s.t g1 (x) x 2 (1 x1 )3 0
g 2 (x) x1 0
g3 (x) x2 0
解:显然最优点 min
fx*(=x[)x1*,(xx21*]T=3[)12,
0]T,
x
2 2
f
=
f
(x*)
=
4.
x2
下面验证在 s.t
因为 g1(x*)
gx*1 (=x[)1,0x]T2处不(1满足x1约)3束 规0 范。 =g02 ,(xg2)(x*) <x10,g03(x*)=0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X
( k 1)
X d
k k
x
k
1
3.1.2 数值计算迭代法的终止准则
准则1 准则2 或 准则3
f ( X k 1 ) 1
X( k 1) X k k d k 2
max xi ( k 1) xi k 3
1i n
f ( X( k 1) ) f ( Xk ) 4 k f (X )
T
在工程优化中,这种求最优步长的方法并 不实用
因为需要用到函数的精确的一、二阶导数,当有些函数 不连续或函数的一、二阶导数很难求得时,该方法无 法使用。所以一般采用直接方法求。一维搜索的直接 方法很多,在此仅介绍黄金分割法(0.618法)、二次 插值法。一维最优化方法一般分两步进行,第一步: 确定函数值最小点所在区间; 第二步求出该区间内的最 优步长因子值。
(k )
f ( Xk ) 0

f (X ) 0
f ( X ( k 1) f ( X k ) 5
往往采用两个准则来判别
1 f ( x ( k 1) f ( x ( k ) )
2 x ( k 1) x ( k )
f(x)在x*附近比较平坦
往往采用两个准则来判别
f1
t1 t 2 , f1 t 2 t3 , f 2
t 2t
f2 f3
f (X )
t3 t 2 t , f 3
NO
f3

f2
YES
t1 t 3
NO YES
a t1 , b t 3
a t 3 , b t1
出口
非单峰值函数
步长的取值一般不宜取得太大
第3章 迭代终止准则及一维搜索方法
本章知识要点及学习要求 1. 掌握优化设计迭代终止准则 2. 掌握多维问题转化为一维寻优问题方法
3. 基本掌握 确定搜索区间的程序原理
4. 基本掌握黄金分割法、二次插值法程序原理
优化设计问题的迭代思路及迭代终止准则
x
2
X(K-2)
X(K)
X(K-1)
X(K+1)
o
2x f ( X) 1 0 x 0 根据收敛准则1得: 2 x2 1
x2 0
二维问题化成一维问题的几何说明
最优步长可以用间接求优方法求
f (X
(k ) T 1 (k) 2 (k) T (k ) (k ) (k ) (k) (k) s ) f ( X ) f ( X ) d d H ( X ) d 2 (k ) (k ) (k )

T (k ) df (X( k ) ( k )d( k ) ) (k ) (k ) (k ) T (k ) (k ) f ( X ) d d H ( X ) d 0 (k ) d ( )
解得:
(k )
(k ) f ( X ) d T (k ) (k ) (k ) d H ( X ) d (k )
搜索区间的确定
外推法确定搜索区间
入口 t0 f0 0.01 , f ( X ), d ( I , J ) d
k
t1 0, t t 0 , f1
t2 t1 t , f 2
f0
f (X )
f
2

f1
YES
NO
确定搜索区间的程序原理
t t , t3 t1 , f 3
f (X)
得:
f ( (0) ) (1 2 (0) )2 (1 2 (0) )2 2(1 2 (0) )2
df ( (0) ) (0) 4( 1 2 ) 2 0 (0) d ( )
0 X 0
(1)
(0)
1 2
黄金分割法
黄金分割法原理
α1(1)=α1 α1 1 α3(1)=α3
=α3(1)-λ(α3(1)-α1(1))
α1 2=α1(1)+λ(α3(1)-α1(1))
λ=0.618的由来
能否保留缩小区间 内的三个点,只需计算一个新点, 以节约计算机的运行时间
黄金分割法前提条件
m1 1)
2 2 x1 = x 1 = 2 x 2 2 1 x 1
2
所以
X(1) X(0) (0)s(0)
代入
X
(1)
1 2 (0) 1 (0) 2 = 1 2 1 2 (0)
(1)
x
(0)
d
(0)
d(0) f ( x) x1 2x x1 2
x
(1)
1 2
(1) 将 x 代入
f ( x) 得:
f ( ) (1 2 )2
df ( ) 2(1 2 ) 2 4 (1 2 ) d
(3-2)
1 f ( x ( k 1) f ( x k )
2 x k 1 x k
f(x)在X*附近比较陡峭
一维搜索的最优化方法
例3-1 min f ( x) x2 已知极小值在区间 1 1 内,若从 x (0) 1
点出发,根据迭代公式(3-1):
x


df ( ) 0 d
得:
4 (1 2 ) 0
将(3-3)代入(3-2)得:
1 2
(3-3)
x
因为
(1)
1 1 2 0 2
f ( x(1) ) 2x x0 0
满足准则1所以
x* x(1) 0
f ( x* )
=0
多维搜索
对于多维搜索,因为
X
( k 1)
X d
k k
k
f (X( k 1) ) min f (Xk k dk )
所以多维问题在这里转化为一维(
k 为变量)的寻优问题
例3-2
2 min f (X) x12 x2

X
(0)
1 1
d
(0)
f ( X) x 1 f ( X) x 2 x(0)
相关文档
最新文档