锂电池爆炸技术性分析

合集下载

近期锂电火灾事故分析论文

近期锂电火灾事故分析论文

近期锂电火灾事故分析论文近年来,随着移动电子设备的普及和电动汽车市场的迅速成长,锂电池作为目前最常见的储能装置,其使用范围也变得越来越广泛。

然而,与此同时,锂电池火灾事故也频频发生,给人们的生命财产带来了巨大的危害。

本文将以近期发生的一起锂电池火灾事故为例,对该事故进行分析,并就锂电池火灾问题提出改进建议。

一、事故概述某市某手机厂家生产的新款手机在市场上获得了不错的销售成绩,然而,在不久前,该手机突然发生火灾事故。

据调查得知,火灾起因是手机使用的锂电池爆炸引发的。

当时该手机正处于充电状态,突然发生了爆炸,引发了火灾。

虽然火灾及时被扑灭,但是由于火灾引发的烟雾严重,导致了厂房内部的电子设备和仓库存货遭受了不同程度的损失,造成了数百万元的经济损失。

幸运的是,由于事发时正值非工作时间,没有人员在火灾中受伤。

二、事故原因分析1. 锂电池设计缺陷由于锂电池的工作原理决定了它需要具有高能量密度,而高能量密度往往也伴随着高风险。

在一些情况下,锂电池缺乏理想的电池管理系统(BMS)或错误的制造工艺可能导致锂电池内部发生短路或者过热,从而引发火灾。

2. 充电过程问题在这起事故中,手机处于充电状态。

虽然锂电池具有较高的充放电效率,但是过度充电或者充电过程中温度升高都有可能导致锂电池过热、起火甚至爆炸。

3. 厂家监管不到位对于相关生产企业而言,严格控制锂电池的制造工艺和质量检验至关重要,然而,一些小型手机厂家往往在制造和监管上存在着不到位的情况,导致了锂电池质量参差不齐。

4. 缺乏相应的安全防范措施事故发生后,对于厂房内部的安全防范措施调查发现,虽然厂房内设置了一部分灭火器材,但是对于高风险的锂电池火灾并没有采取更为有效的措施,例如设置自动报警系统、灭火系统等。

三、应对措施1. 完善锂电池设计和制造工艺在设计和制造锂电池时,厂家应该加强与研发团队的沟通,确保锂电池具备良好的安全性能。

此外,需要建立完善的BMS监控系统,及时发现和处理锂电池的异常情况。

锂离子电池过充电保护实验中着火_爆炸原因分析

锂离子电池过充电保护实验中着火_爆炸原因分析
1 实验
1 . 1 仪器与材料 BS-9300 二次电池性能检测装置(广州
擎天)、BT2000 电池测试仪 S/N:163901-T (美国 ARBIN)、8785 电子负载(100W)、短 路夹具、万能充电器夹具、数字多用表( 日 本产) 。
实验电池为 4 种不同厂家生产的手机 用锂离子电池, 编号:A 、B 、C、D , A 标称容 量为(3.7V,500mAh)、B 标称容量为(3.7V, 650mAh)、C 标称容量为(3.7V,860mAh)、 D 标称容量为(3.7V,860mAh)。 1 . 2 实验方法
锂离子电池具有体积小、容量大、重 量轻、无污染、单节电压高、自放电率低、 循环次数多等优点[ 1 ] , 已经成为现代能源的 重要组成部分。但是锂离子电池由于能量 密度高, 因此难以确保电池充放电的安全 性[ 2 - 5 ] , 在使用的过程中就很可能出现起火 和爆炸, 危害生命和财产安全。本文作者 根据 GB/T 18287-2000 要求,对四种不同 厂家生产的手机锂离子电池进行安全保护 性能测试, 并对实验中锂电池出现的起火、 爆炸原因进行了详细分析。
[ 2 ] 王彩娟, 宋杨, 金军. 部分锂离子电池的 安全问题[ J ] . 电池, 2 0 0 8 ( 1 ) : 2 5 ~2 6 .
[ 3 ] 王静, 余仲宝, 储绪光, 等. 锂离子电池热 的安全性研究进展[ J ] . 电池, 2 0 0 3 , 3 3 ( 6 ) : 3 8 8 ~3 9 1 .
过充电保护、过放电保护、短路保护 实验的目的是考察锂离子电池用户在使用 过程中发生危险的机率。锂离子电池在过 充电保护实验中发生起火和爆炸的因素主
图2
要有以下几点。 2 . 2 . 1 保护电路无效 锂离子电池因考虑充放电的安全, 都

锂电池进电梯爆炸原理

锂电池进电梯爆炸原理

锂电池进电梯爆炸原理最近在研究锂电池进电梯爆炸原理,发现了一些有趣的道理。

咱们先来说说锂电池吧,这东西现在到处都是,像手机里啊、充电宝里啊都有。

你看,平时这些东西好像都安安稳稳的,但是你知道吗?偶尔就会出现锂电池爆炸这种吓人的事儿,尤其是进电梯的时候。

我就想啊,这得是什么原因呢?从根本上讲呢,锂电池爆炸是因为内部发生了热失控。

这就好比一个小炉灶开始失控狂火,在锂电池内部,正负极之间的锂离子跑来跑去产生电能,要是这个过程出了岔子,里面的化学物质就开始“造反”了。

比如说锂电池受到外力撞击或者里面短路了,那就像是家里的电线突然搭错了一样,不听话了。

就拿日常的现象来说,你有没有发现如果你的手机用了特别差的、不匹配的充电器充电,它就会发烫得厉害?这就是一个不太正常的现象。

这时候电池内部的那些小粒子就像一群原本排着队干活的小蚂蚁,一下子乱套了,开始疯狂地产生热量,热量攒多了,里面的压力也就越来越大。

更可怕的是,锂电池在电梯这种相对封闭的小空间里,就像一个充满了气快要爆炸的气球被困在了小盒子里一样,热量散不出去,压力一达到极限,那就“嘭”的一声炸了。

说到这里,你可能会问,那外力撞击怎么就容易让锂电池在电梯里爆炸呢?老实说,我一开始也不明白。

后来才知道,就像一个精巧的小齿轮机器,锂电池的构造也是很精密的。

外面的壳子本来好好保护着内部的结构,结果要是被撞了一下,比如说在进电梯不小心磕了碰了或者被重物挤压了,就可能让里面的小零件出问题,造成短路。

然后热量就开始搞破坏了。

还有一种情况就是电池质量本身就不好,这就好比建房子用了不好的材料,基础就不牢。

内里一些成分调解失衡了,在电梯这种普通的使用环境下都可能出现隐患。

比如说一些廉价的充电宝就容易出现这种问题。

这里面还有个可怕的地方在于,电梯这个特殊的环境异常封闭,如果锂电池爆炸起火,更是容易触发连锁反应,而且里面人员很难迅速疏散,像个小盒子突然变成了危险的小监狱一样。

所以啊,现在很多地方都注意到这个问题,不让锂电池违规进入电梯。

18650锂电芯爆炸分析报告

18650锂电芯爆炸分析报告

客户投诉分析8D改善报告客户:发生日期:报告编号:回复日期:部品编号:联络人:部品描述:QAM Signature:拟定:审核:报告编号:一8D小组成员组长:组员:二问题描述一.投诉信息:一组08AQ980-01电池中的一颗电芯出货两年后在终端客户使用充电时爆炸。

三原因分析1.、爆炸电芯确认:电芯底部鼓起,爆炸时的威力将钢壳墩封部位以及包边已经冲开,盖帽与卷芯的大部分已经炸飞,钢壳内部至剩下少部分负极集流体铜箔与正极集流体铝箔。

2.对同组未爆炸的电芯进行分析:使用万用表测试其电压为0,密封圈和隔膜已经熔化,在隔膜熔化后正负极粉料也发生反应烧毁,已经无法完整地将极片展开,稍碰即碎。

说明爆炸的那颗电芯在爆炸前产生了大量的热量并传给旁边的电芯,使得旁边的电芯也受热烧毁,但没有跟着爆炸。

3.分析爆炸的可能原因有:(1)由于电解液稍偏少、极片涂布不均正极片局部稍偏重或负极片局部稍偏轻,电芯循环寿命的后期,充电时负极不足以全部接受正极过来的锂离子,过量的锂在负极表面累积逐渐形成锂枝晶,直至锂枝晶刺穿隔膜,形成内部短路通道,产生大量热量,电解液受热分解产生大量气体,内部气压逐渐增大,气压达到爆炸极限时,盖帽的防爆阀没有开启或者反应太快来不及开启,产生爆炸,此原因的可能性较大。

(2)盖帽防爆阀或CID(电流切断装置)失效,在电芯内部短路气压过大使不能开启泄压,有这种可能性。

(3)过充电产生锂枝晶刺穿隔膜导致爆炸,可能性较小。

(4)极片粉尘毛刺微短路发展为严重短路造成爆炸,可能性较小。

(5)充电时外部短路造成爆炸,可能性很小。

4.发生爆属于极小概率事件,但在百万分之一或千万分之一的概率难以避免。

查我司的历史数据,从2013年至今,XXX电芯共来料105273pcs,此款电芯用在贵司XXX项目发生爆炸1pcs,用在其他两个项目上没有发生爆炸;从2013年至今,我司共采购XXX电芯1311652pcs(131万多pcs),除此次客诉外,其他项目并无发生爆炸,爆炸概率为0.76PPM。

探讨锂电池火灾爆炸原因分析与控制措施

探讨锂电池火灾爆炸原因分析与控制措施

探讨锂电池火灾爆炸原因分析与控制措施摘要:为进一步提升锂电池使用的安全性,最大程度减少安全事故的发生几率,文章以锂电池火灾爆炸作为研究对象,客观分析火灾爆炸诱发原因,并积极做好防控工作,稳步增强锂电池的安全性,逐步拓宽其使用领域,发挥锂电池在经济发展、社会生活等方面的积极作用。

关键词:锂电池;火灾爆炸;爆炸原因;控制措施引言根据FAA统计,历年锂电池火灾事故中,68%是由于内部或者外部短路造成,15%是由于充放电造成,7%由于设备意外启动造成,10%为其他原因造成。

1锂电池出现火灾爆炸事故的影响因素锂电池当中也分为正负极,并且正负极所含有的物质是不同的,其中锂化合物处在正极位置,是以锂离子的形态而存在的。

基于电解液能够嵌入炭层,在炭层中有很多微孔,在炭层中嵌入更多锂离子,电池充电量也就越高。

在电池放电过程中,潜在炭层当中的锂离子会透出,会变成电解液,而其又会重新回到正极位置。

当这个位置中的锂离子数量增加,那么其放电容量也就会升高,继而会对锂电池内外部安全产生不良影响,这里所讲的内部因素就是生产制作锂电池的材料、技术,还有锂电池本身的构造。

材料特性会影响电池过程以及人稳定性,制作工艺会出现微短路、电芯内短路以及技粉单来。

而外部因素包含充电、过温、外短路等在外界因素当中,温度会对锂电池的充电、放电性能产生影响,也就是电化学产生反应。

在温度逐渐降低的时候,反应情况也会不断降低,在电池电压保持不变的时候,放电随之降低,其功率也就会逐渐降低。

倘若锂电池的温度呈现上升状态,其功率也就会呈现上升态势。

温度会对电解液传送速度产生影响,温度的上升速度过快的话就会对其充电、放电性能产生不良影响。

在温度超高的时候,会对电池的化学平衡产生不良影响。

锂电池发生火灾爆炸事故的原因有很多,可是最为关键的原因就是电池出现高温与高压,与其会产热息息相关。

电池当中的产热因素非常多,其中锂电池热散失过速的话,反应速度也会随之增涨。

这时会导致两种情况产生,其一就是反应达到燃点温度爆发火灾,锂电池通常都被制作成封闭状态,如果封闭体系当中的温度过高,反应速度也会加快,反应物的气压快速上升,活性物分解,同电解液反应生成气体,如果再失去安全阀的保护,还会导致爆炸事故,会对使用者产生严重威胁。

锂电池厂爆炸火灾事故原因

锂电池厂爆炸火灾事故原因

锂电池厂爆炸火灾事故原因近年来,随着便携式电子设备的普及和电动汽车的兴起,锂电池作为一种高能量密度储能设备被广泛应用。

然而,锂电池在高能量密度的同时也带来了火灾和爆炸的风险。

事实上,全球范围内,已经发生了多起锂电池厂爆炸火灾事故。

这些事故对现代社会的生产、生活和环境均造成了严重影响。

因此,对于锂电池厂爆炸火灾的原因进行深入分析,不仅有利于预防类似事故的发生,也能为锂电池制造企业提供重要的安全指导和技术支持。

一、锂电池厂爆炸火灾事故概述1.1 锂电池的基本结构和原理要深入分析锂电池厂爆炸火灾的原因,首先需要了解锂电池的基本结构和工作原理。

一般而言,锂电池由正极、负极、隔膜和电解液组成。

正极通常使用氧化物,负极通常使用石墨或锂金属,电解液通常是有机溶剂和锂盐的混合物。

在放电过程中,正极和负极通过电解液中的离子交换来释放能量。

锂电池的高能量密度使其成为便携式设备和电动汽车的理想能源储存装置。

1.2 锂电池爆炸火灾事故的严重性虽然锂电池具有高能量密度和长周期寿命等优点,但由于其在充放电过程中会产生热量和气体,也存在着发生爆炸火灾的潜在风险。

一旦发生锂电池爆炸火灾,不仅可能导致设备损坏和人员伤亡,还可能引发火灾蔓延和化学品泄漏等严重后果。

因此,锂电池厂爆炸火灾事故的严重性不容忽视。

1.3 锂电池厂爆炸火灾事故的代表性案例全球范围内,已经发生了多起锂电池厂爆炸火灾事故。

典型案例包括2011年5月在韩国天津三星SDI公司发生的锂电池厂爆炸火灾事故、2018年3月在中国广东佛山发生的锂电池厂爆炸火灾事故等。

这些事故不仅对当地的生产和环境造成了严重影响,也引起了全球范围内的关注和警惕。

二、锂电池厂爆炸火灾事故的原因分析2.1 原材料和工艺控制不当在锂电池的生产过程中,如果正极材料、负极材料、电解液等原材料的品质控制不当,可能会导致电池内部产生短路、漏电等隐患,从而增加爆炸火灾的风险。

此外,如果制造工艺不合理、操作不规范,也可能会在电池内部产生异常反应,引发火灾。

锂电池会爆炸的原因是什么?

锂电池会爆炸的原因是什么?

锂电池会爆炸的原因是什么?我们经常在回看到电动车发生自燃爆炸的现象,但是很多朋友并不知道造成锂电池爆炸的原因是什么,下面就一起来聊一聊锂电池发生自燃爆炸的原因有哪些?锂电池会爆炸的原因主要分外部原因和内部原因这两大类:一、锂电池爆炸的外部原因1、外力碰撞我们通常使用的锂电池都是由很多颗锂电芯通过串联和并联后组成的一个大电池组电池,所以其受到外力碰撞的时候,比较容易发生变形,这个有可能是因为电路板变形短路或者某个电池电芯变形导致内部短路,造成整个电池组温度急剧上升,如果没有及时采取措施,使其降温,除去短路安全隐患的话,电池组最终将会发生自燃爆炸。

这也就是我们有时候看到电池车发生碰撞之后,容易发生自燃爆炸的原因。

所以大家使用锂电池的时候,尽量避免让其发生碰撞,而且在其外包包装方面,尽量采取有效缓解碰撞发生后的力度。

2、温度过高如果锂电池所处的环境温度过高,而且散热困难的话,电池内部会因为稳定过高,化学活跃性不断提高,就会不断产生热量,而此时又散热不过来,就会因为热失控导致电池发生自燃爆炸的发生。

因此大家在存放电动汽车或摩托车的时候,尽量放在通风阴凉的地方,避免存放的环境既热又通风散热不良的地方。

3、潮湿锈蚀导致短路当电池组使用一段时间之后,电路板或其它配件会因为油污污垢沉积过多,链接起来,就会有发生短路的可能,或者因为过于潮湿,导致间距过短的正负极电路发生短路,这样,就会导致电池组发生短路的可能。

所以大家使用或存放锂电池的时候,防止干燥通风的地方。

4、过充电锂电池在使用完电之后,大家往往都会对其进行充电,而大家不知道的是,这个充电会可能发生下面的情况:(1)充电过程中,可能会因为散热不足,导致电池温度持续上升,最后导致热失控后发生自燃爆炸;(2)当电池充满电电之后,充电器和电池保护板发生失效,会对电池继续持续充电,这时候就会发生过充,电池发生过充,不仅会发热过高,而且会因为能量过大,导致电池发生自燃爆炸的后果。

锂电池火灾爆炸原因分析与控制措施研究

锂电池火灾爆炸原因分析与控制措施研究

针对这一事故,应采取以下控制措施:加强电动汽车锂电池组的设计审查, 确保电池组内部的隔膜等关键部件具备较高的安全性能;同时,应优化电池管理 系统的算法和硬件设计,提高其对电池状态的监测准确性和响应速度;另外,在 车辆使用过程中,应规范驾驶员的行为,避免发生剧烈撞击和高温暴露等危险行 为。
五、总结本次演示对锂电池火灾爆炸的原因进行了深入分析,并探讨了相应 的控制措施。通过背景介绍、原因分析、控制措施研究和案例分析,可以得出以 下结论:
锂电池火灾用于现代电子产品和电动汽车等领域,由于其具有高能量密度、 长寿命等特点而受到广泛。然而,锂电池在生产、使用过程中存在潜在的火灾爆 炸风险,给人们的生命财产安全带来严重威胁。本次演示将深入分析锂电池火灾 爆炸的原因,并探讨相应的控制措施,旨在为减少锂电池火灾爆炸事故提供有效 参考。
一、背景介绍随着科技的不断进步,锂电池已成为现代社会不可或缺的重要 组成部分。无论是在手机、笔记本电脑等电子产品领域,还是在电动汽车、储能 系统等领域,锂电池都发挥着不可替代的作用。然而,锂电池在生产、使用过程 中一旦发生火灾爆炸,将会给人们的生命财产带来严重损失。因此,深入分析锂 电池火灾爆炸的原因,并探讨相应的控制措施,对于保障公众安全具有重要意义。
谢谢观看
1、锂电池在生产、使用过程中存在潜在的火灾爆炸风险,应引起足够重视。
2、锂电池火灾爆炸的原因包括内部原因和外部原因两个方面,内部原因包 括电池本身的设计缺陷和生产质量问题,外部原因包括滥用、高温、撞击等因素。
3、应从设计、生产和使用等方面采取有效的控制措施,提高锂电池的安全 性能和可靠性,降低火灾爆炸风险。
三、控制措施针对锂电池火灾爆炸的原因,可以采取以下控制措施:
1、设计方面加强电池设计阶段的审查和验证,确保电池本身具有较高的安 全性能。例如,提高电池组的绝缘性能,避免电池内部短路问题的发生;优化电 池防过充过放保护电路的设计,防止电池过度充电或放电导致的安全事故。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂电池爆炸技术性分析锂是化学周期表上直径最小也最活泼的金属。

体积小所以容量密度高,广受消费者与工程师欢迎。

但是,化学特性太活泼,则带来了极高的危险性。

锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。

为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。

这些材料的分子结构,形成了纳米等级的细小储存格子,可用来储存锂原子。

这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。

锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。

锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。

放电时,整个程序倒过来。

为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。

好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施锂电池芯过充到电压高于4.2V后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。

当电芯电压低于2.4V时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V 才停止。

锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。

一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。

但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。

要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

爆炸类型分析电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。

此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的机率不高。

这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。

因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。

因此,电池温度会逐渐升高,最后高温将电解液气体。

这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。

有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。

这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。

消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

综合以上爆炸的类型,我们可以将防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方面。

其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。

电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。

设计规范由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。

由于,电路板的故障率一般都远高于一亿分之一。

因此,电池系统设计时,必须有两道以上的安全防线。

常见的错误设计是用充电器(adaptor)直接去充电池组。

这样将过充的防护重任,完全交给电池组上的保护板。

虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。

电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。

常见的电池充电系统方块图如下,包含充电器及电池组两大部分。

充电器又包含适配器(Adaptor)及充电控制器两部分。

适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。

电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。

文字方块: 适配器交流变直流文字方块: 充电控制器限流限压文字方块: 充电器文字方块: 保护板过充、过放过流等防护文字方块: 电池组文字方块: 限流片文字方块: 电池芯以手机电池系统为例,过充防护系利用充电器输出电压设定在4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会被过充而发生危险。

第二道防护是保护板上的过充防护功能,一般设定为4.3V。

这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。

过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。

由于过放电只会发生在电子产品被使用的过程。

因此,一般设计是由该电子产品的线路板来提供第一到防护,电池组上的保护板则提供第二道防护。

当电子产品侦测到供电电压低于3.0V时,应该自动关机。

如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V时,关闭放电回路。

总之,电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。

其中保护板是第二道防护。

把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。

结果,劣币驱逐良币,市面上出现了许多劣质充电器。

这使得过充防护失去了第一道也是最重要的一道防线。

而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。

当然,并非所有的电池系统都采用如上图的方案。

在有些情况下,电池组内也会有充电控制器的设计。

例如:许多笔记型计算机的外加电池棒,就有充电控制器。

这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。

因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。

另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。

最后的防线如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。

电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。

由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。

而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。

如果,外部短路不会爆炸的电芯,可以得到一颗星。

而过充不会爆炸的电芯,可以得到两颗星。

那么电芯的安全等级,就有零颗星到三颗星,四种等级。

日本制和台湾制的电池芯,通常都可达到三颗星的最高等级,中国制的电芯就参差不齐。

下表为市场上常见锂电芯的安全等级。

安全等级过充不爆炸短路不爆炸代表厂商★★★ O O 日本厂、能元、宜电等★★ O X★ X O 大陆一、二级厂☆ X X 大陆二、三级厂电芯抗外部短路的方法,通常包括使用高质量的隔膜纸和采用压力阀两种措施。

其中高质量的隔膜效果最好,外部短路时超过百分之九十九的电池不会发生爆炸。

压力阀则有副作用。

例如电池过充时,压力阀如果太早破裂,会让氧气进入导致爆炸。

另外,中国制压力阀的精密度非常不可*。

中国铝壳厂生产的铝壳,不到一成的压力阀会在业者宣称的压力范围内起作用,可*度只有百分之一、二。

因此,对组装厂而言,要确保电池不会发生短路爆炸,最好的方法还是直接作实验。

只要将电池充饱电,再放入防爆箱中短路即可判定抗短路的能力。

电池芯抗过充的方法则非常复杂,必须考虑化学配方、外壳机械特性、及配套的电子组件。

一般系利用电池过充到某个电压时,让添加物开始发生反应,一方面增加内阻,一方面将电能转为热能,以达到1C/12V过充6小时,不会爆炸的安全水平。

对于串并用的电池,有时还会再加上配套的电子组件或精密的压力阀。

目前中国制电芯约近半数可以通过短路测试,但是绝大多数都无法通过过充测试。

又由于电子防护方面,最容易崩溃的防线是过充防护,而过充所衍生的爆炸也最严重。

因此,电池芯的抗过充能力,是相关业者在选择电池芯时,重点中的重点。

对单颗使用的电池而言,至少要能达到1C/6V过充6小时不爆炸。

对串联使用的电池,至少要能通过1C/12V过充6小时。

这样才能在消费者使用劣质充电器的情形下,确保电池组的安全。

责任归属电池组发生爆炸事件时,分析爆炸原因,是判定责任归属的第一步。

如果是短路爆炸且短路的部位在电池组的外部,这必然是两道电子防护都失效且电芯也未能通过短路的考验。

这时保护板厂商、电芯厂商、PTC厂商、与组装厂商都有责任。

但是这种情况发生的机率不高。

如果短路的部位在电池组的内部,最可能的导因是绝缘失效且电芯未能通过短路的考验。

因此,组装厂与电芯厂都有责任。

如果是过充爆炸,通常导因于充电器电压过高、保护板因温度过高而暂时性或永久性的失效、且电芯未能防过充。

由于所有电芯厂都只保证电芯短路时不爆炸,而不保证过充时不爆炸。

相关文档
最新文档