半固态触变注射成型镁合金组织性能分析定稿版

合集下载

半固态成型加热工艺对镁合金组织与耐腐蚀性能影响

半固态成型加热工艺对镁合金组织与耐腐蚀性能影响

调研报告1.课题来源及意义镁是地壳中含量最丰富的元素之一,其丰度居第8位,约占地壳组成2.5%,主要以白云石(碳酸镁钙)、菱镁矿存在,此外,海水中含镁约0.13%,可谓取之不尽[1]。

镁合金密度小、比强度高、弹性模量大、减振、抗冲击性能好,成为21世纪材料体系中的重要组成部分,在航空、航天、汽车等众多领域得到广泛应用[2,3]。

然而镁合金仍暴露出力学性能偏低和耐蚀性能差等问题。

本次课题研究了半固态重熔工艺对镁合金组织与耐腐蚀性能的影响。

半固态等温热处理是20世纪90年代中期发展起来的一种半固态合金的制备方法,该方法将合金加热到固液两相区并保温以获得特殊的组织形态,是一种消除铸件中枝晶粗大的有效方法。

本课题的主要意义是通过加强镁的力学性能、耐蚀性的相关研究,积极探索增强镁合金强度、耐蚀性的途径,推动镁合金作为结构材料的应用。

2.镁合金的发展概况2.1国内外镁合金材料应用的现状(1)通讯电子行业镁合金在电子行业中的应用以3C产品(手机、笔记本电脑、数码相机) 为主导, 用镁合金制造的壳罩与传统塑胶壳罩相比, 具有如下优缺点。

优点: 1)强度、刚度高, 镁合金强度比塑胶的大4~ 5倍、刚度大20倍, 用作外壳, 可以做得更薄、更轻; 2)散热性好, 镁合金的散热性是塑胶的200倍~ 300倍, 比热也比塑胶的大, 不易过热; 3)镁合金导电性能佳, 有电磁屏蔽作用, 可防止电磁干扰和对人体的伤害, 不必另作导电处理。

缺点: 1)制造周期长, 镁合金制品制造工序冗长, 开模耗时长, 成型后还需二次加工和后续处理;2)生产成本高, 原料贵, 制造工序多, 产品的良品率低, 使镁合金制品成本偏高; 3)色彩变化少, 镁合金本身为银灰色, 只能用涂装印刷变色, 无法如塑料壳那样混色出多种色彩与纹路。

综上所述, 镁合金与塑胶各有所长, 但随着镁合金制件加工方式的改进, 镁合金具有越来越强的竞争力。

(2)汽车行业为减轻汽车重量以降低油耗, 以及“环保型汽车”对材料可回收性的要求, 镁合金在汽车工业中的应用日益广泛。

镁合金半固态压铸触变成形技术的研究

镁合金半固态压铸触变成形技术的研究

《热加工工艺》2005年第10期综述近年来镁合金作为一种新型绿色环保合金适应了汽车结构件和3C产品对环保方面的要求[1 ̄3],使镁合金不但在航空航天而且在计算机、通讯设备、汽车上得到了广泛的应用。

镁合金产量在全球的年增长率高达20%,显示出了极大的应用前景[4,5],但与铝合金相比,镁合金产量只有铝合金产量的1%。

制约镁合金广泛应用的主要问题是,传统压铸成形工艺在熔炼和加工过程中,镁合金极易氧化燃烧,使得镁合金的生产难度较大,反映出镁合金成形技术的不完善,有待进一步发展。

20世纪70年代初期美国麻省理工学院的Flem-ngs等发明了半固态金属成形技术[6,7]。

该技术是将金属或合金在固相线与液相线温度区间进行加工,其实是一种近净成形工艺。

半固态成形技术的出现为解决镁合金成形中的氧化燃烧等问题提供了条件。

他将传统压铸技术与塑料注射成形技术结合起来,因而无需熔化设备,并避免了镁合金熔化的危险性[8],可用于传统压铸技术不能解决的镁合金的应用问题。

目前,镁合金半固态成形工艺主要分为:流变压铸、触变成形和注射成形。

然而在实际工业生产中主要采用第二种工艺即触变成形工艺。

该工艺是将半固态金属浆料冷却凝固成坯料后,根据产品尺寸下料,再重新加热到半固态温度,然后放入模具型腔中进行压铸成形。

此工艺中涉及到三个非常重要的环节:非枝晶坯料的制备、坯料的二次重熔加热、半固态触变成形。

如图1所示。

1非枝晶组织半固态浆料的制备制备具有非枝晶组织的优质坯料是半固态成形技术的基础和关键。

之所以这样讲是因为这种无枝晶组织的半固态浆料具有独特的流变学特性,即触变性和伪塑性[9,10]。

具有这种组织的材料力学性能优异,因而它的制备方法也是倍受关注的。

根据原材料的状态不同,可将其制备方法分为液态法、固相法和其他方法[11]。

液态法,像机械搅拌和电磁搅拌等都属于液态法范围。

主要是在外场的作用下对熔体进行处理,破碎出生的固相组织使其形成球状颗粒。

注射成形增强半固态AZ91D镁合金的组织及性能

注射成形增强半固态AZ91D镁合金的组织及性能

注射成形增强半固态AZ91D镁合金的组织及性能宇文江涛;赵雄;董璐;牛立斌;胡宇阳【期刊名称】《热加工工艺》【年(卷),期】2024(53)6【摘要】为了研究半固态注射成形技术对AZ91D镁合金显微组织、力学性能以及腐蚀行为的影响,通过对半固态注射成形镁合金进行热处理及电化学腐蚀分析,研究了镁合金成形件在注射成形中与热处理后的组织及性能变化。

结果表明,相对于压铸镁合金,半固态注射成形镁合金的组织均匀、力学性能优良、晶粒细小且平均晶粒尺寸为20~30μm,能获得质量良好的显微组织。

镁合金的热处理对晶界第二相的数量和分布有较大影响,能作用于材料性能。

经时效处理后,镁合金硬度从63.47 HV提高到74.05 HV,抗拉强度从125.56 MPa提高到150.91 MPa,抗拉强度提高了20.2%。

在质量分数为3.5%的NaCl溶液的电化学腐蚀中,合金的自腐蚀电位为-959.56 m V,经固溶+时效处理后,自腐蚀电位先升高到-927.55 m V后下降至-988.94 m V,耐腐蚀性能先增高后降低。

【总页数】6页(P122-127)【作者】宇文江涛;赵雄;董璐;牛立斌;胡宇阳【作者单位】中国船舶集团有限公司第七O五研究所;中国船舶集团有限公司第十二研究所;西安科技大学材料科学与工程学院【正文语种】中文【中图分类】TG146.2【相关文献】1.半固态AZ91D镁合金触变注射成形过程数值模拟及参数优化2.等温热处理工艺对AZ91D镁合金半固态组织演变和成形性的影响3.AZ91D铸造镁合金的固溶处理与半固态等温处理后组织与性能变化的比较分析4.形变率对AZ91D镁合金半固态成形组织及流动性的影响5.多段半固态触变成形与半固态流变成形、半固态触变成形工艺对Mg-Y-Gd-Zn-Zr系合金的组织性能影响研究因版权原因,仅展示原文概要,查看原文内容请购买。

镁合金半固态成型用模具

镁合金半固态成型用模具

镁合金半固态成型用模具一、镁合金半固态成型用模具的设计1. 成型零件的特点镁合金半固态成型工艺的特点是成型零件具有较高的强度和硬度,同时还具有优异的成型精度和表面质量。

因此,模具的设计需要考虑成型零件的特点,在保证成型零件精度和表面质量的基础上,尽可能地降低设备成本和生产成本。

2. 模具结构设计模具结构设计是模具设计的关键环节,其设计需要考虑到材料的选择和成型零件的结构特点。

对于镁合金半固态成型,通常采用的模具结构包括上模、下模和模具芯。

上模用于固定模具,下模用于支撑工件,而模具芯则用于成型工件的内部空腔。

3. 模具材料选择模具材料的选择对模具的寿命、使用性能和成本都有着直接的影响。

对于镁合金半固态成型,需要选择耐磨性好、热膨胀系数低、导热性能好的材料。

常用的模具材料包括优质合金钢、硬质合金和陶瓷材料等。

4. 模具温控系统设计模具在半固态成型过程中需要保持一定的温度,以保证工件成型时的温度控制和成型质量。

因此,对于镁合金半固态成型用模具,需要设计相应的温控系统,以实现对模具的恒温控制和稳定工作温度。

二、镁合金半固态成型用模具的制造1. 模具加工工艺模具加工工艺通常包括数控加工、线切割、磨削和装配等环节。

数控加工通常用于模具的大型结构部件加工,如上模和下模等;线切割用于模具的小孔和内部复杂结构的加工;磨削则用于模具的表面精加工,以提高模具的表面质量和精度;最后进行模具的装配和调试,以保证模具的成型精度和稳定性。

2. 表面处理工艺模具的表面处理通常包括热处理、表面涂层等。

热处理可以提高模具的耐磨性和使用寿命,同时还可以改善模具的机械性能;表面涂层可以提高模具的表面硬度和耐磨性,从而提高模具的表面质量和成型精度。

3. 模具检测与质量控制模具的质量控制通常包括模具的检测和试模等。

模具的检测主要包括外观检测、尺寸检测和材料检测等,以保证模具的质量和使用性能;试模则用于验证模具的成型工艺和成型零件的质量,以保证模具能够正常运行和生产出合格的工件。

AZ91D镁合金半固态成型

AZ91D镁合金半固态成型

LOGO
感谢观赏
枝晶臂发生熔断示意图
LOGO
3、枝晶臂弯曲机制。 此机制认为,位错的产生并积累导致塑性变形。 在两相区,位错间发生攀移并结成晶界,当相邻晶 粒的倾角超过20°时,界面能超过固液界面能的两 倍,液相将侵入晶界并迅速渗入,从而使枝晶臂从 主干分离。
LOGO
镁合金半固态流变行为:
等温稳态流变行为: 流体组织随剪切历程、时间变化 较小时的流变规律即为半固态合 金的稳态流变性能。 动态流变行为:冷却速率、固相分数和剪切速率
二、半固态成形技术
LOGO
半固态(semi-solid)成形技术: 金属在凝固过程中,对其进行剧烈搅拌, 或控制固-液态的温度区间,得到一种母液中 均匀地悬浮着一定固相成分的固-液混合浆料, 这种半固态金属浆料具有流变特性,即具有 很好的流动性,易于通过普通加工方法制成 产品。
LOGO
半固态浆料(semi-solid Slurry)的制备技术: (1)机械搅拌法
镁合金半固态成形工艺路线及示意图
LOGO
(枝晶)
(固相)
半固态合金中形成的常规枝晶
经搅拌法得到的半固态合金触变结构
三、镁合金半固态理论
半固态金属组织形成机制
LOGO
1、枝晶臂根部断裂机制。因剪切力的作用使枝晶臂 在根部断裂
(a)
(b)
(c)
(d)
枝晶断裂机制示意图
LOGO
2、枝晶臂根部熔断机制: 晶体长大过程中,表面积逐渐减小,由于受到 流体的快速扩散、温度涨落引起的热振动及在根部 产生的应力的作用,有利于枝晶臂熔断,同时由于 固相中根部溶质含量较高,这也降低了熔点,促进 了该机制的作用。
有两个带齿的同心圆筒组成,其中内筒保持静止, 浆料放置内外筒之间,搅拌通过外筒旋转进行。 直接将搅拌棒插入熔 融的金属中进行搅拌 连续搅拌 非连续搅拌

固溶处理对触变成形AZ63镁合金组织和力学性能的影响的开题报告

固溶处理对触变成形AZ63镁合金组织和力学性能的影响的开题报告

固溶处理对触变成形AZ63镁合金组织和力学性能的影响的开题报告摘要:触变成形技术是一种高效的金属成形方法,但因其对设备和工艺的特殊要求,目前还没有得到广泛应用。

AZ63镁合金因其较高的塑性和加工性能而被认状为一种潜在的触变成形材料。

然而,该合金的低强度和大变形需求限制了其应用范围。

本文通过对AZ63镁合金的固溶处理进行研究,探讨了固溶处理对该合金的组织和力学性能的影响,为进一步研究其在触变成形领域中的应用提供了支持。

关键词:触变成形,AZ63镁合金,固溶处理,组织,力学性能一、研究背景触变成形是一种高效、灵活的金属成形技术,已被广泛应用于航空、航天、汽车和电子行业。

AZ63镁合金因其低密度、高比强度和良好的加工性能,被认为是一个潜在的触变成形材料。

然而,该合金的低强度和大变形需求限制了其应用范围。

固溶处理是一种常用的提高合金强度和塑性的方法,因此对AZ63镁合金的固溶处理进行研究,探究其对该合金的组织和力学性能的影响,有利于扩大其在触变成形领域的应用范围。

二、研究内容1. AZ63镁合金的制备采用真空熔炼 - 静态结晶法制备AZ63镁合金,化学成分如下:Mg-5.7%Zn-2.3%Al-0.6%Mn。

2. 固溶处理工艺研究采用不同温度和时间的固溶处理工艺,对AZ63镁合金进行处理。

3. 微观组织分析采用金相显微镜和扫描电子显微镜对AZ63镁合金的微观组织进行分析。

4. 力学性能测试采用万能材料试验机对不同处理后的AZ63镁合金的拉伸强度和伸长率进行测试。

三、研究意义1. 研究AZ63镁合金的固溶处理对其组织和力学性能的影响,为进一步研究其在触变成形领域中的应用提供支持。

2. 拓展固溶处理方法在镁合金中的应用,促进了镁合金材料的发展和应用。

3. 对于理解镁合金的组织和性能变化机理,有一定的理论意义。

四、研究方案1. 制备AZ63镁合金样品。

2. 设计不同温度和时间的固溶处理工艺,并进行处理。

3. 对固溶处理后的样品进行金相显微镜和扫描电子显微镜分析,了解其微观组织变化。

触变成形az91d镁合金的固溶和时效热处理研究

触变成形az91d镁合金的固溶和时效热处理研究

触变成形az91d镁合金的固溶和时效热处理研究触变成形az91d镁合金是一种通过镁合金半固态浆料进行触变成形制备得到的高性能镁合金,具有优异的力学性能和成形性能。

固溶和时效热处理是提高镁合金力学性能的重要手段,对于触变成形az91d镁合金也不例外。

在固溶处理过程中,将触变成形az91d镁合金加热至镁合金的固溶温度,保温一段时间,使合金元素充分溶解到基体中,然后快速冷却至室温,以获得过饱和固溶体。

固溶处理可以改善镁合金的塑性和韧性,同时还可以提高镁合金的强度和抗腐蚀性能。

在固溶处理过程中,应该注意控制固溶温度和保温时间,避免出现晶粒长大和过烧现象。

时效处理是将固溶处理后的触变成形az91d镁合金加热至较低温度,保温一段时间,使过饱和固溶体分解并析出强化相。

时效处理可以提高镁合金的硬度和强度,同时还可以改善镁合金的抗蠕变性能和疲劳性能。

在时效处理过程中,应该注意控制时效温度和保温时间,避免出现析出相过于粗大或者析出不完全的现象。

通过优化固溶和时效热处理的工艺参数,可以进一步提高触变成形az91d 镁合金的力学性能和抗腐蚀性能。

同时,在热处理过程中应该注意保护镁合金表面不被氧化和腐蚀,以保证其综合性能和使用寿命。

AZ91D镁合金半固态触变成形的数值模拟

AZ91D镁合金半固态触变成形的数值模拟

摘 要 : 采用商业有限元软件 D EFORM3DTM 对半固态镁合金 AZ91D 的触变成形过程进行了数值模拟 , 并利用自 制的模具 , 在加热到 570 ℃保温不同时间的情况下 , 对 AZ91D 镁合金半固态坯料进行触变成形试验 。通过模拟分 析的结果与试验的实际结果进行对比 , 得出了最佳触变成形工艺参数 , 同时 , 在一定程度上验证了数值模拟分析结 果的可靠性 。 关键词 : A Z91D 镁合金 ; 触变成形 ; 数值模拟 ; 有限元 中图分类号 : T G1461 2 + 2 文献标识码 : A 文章编号 : 100722012 (2006) 0320104204
106
塑性工程学报
第 13 卷
2 结 论
1) 对 A Z91D 镁合金半固态成形进行了三维刚 粘塑性有限元数值模拟 , 通过试验结果与模拟结果 对比 , 得出充型模拟结果和试验结果基本吻合 。
2) A Z91D 镁合金半固态流动成形在 570 ℃成型 时 , 随着半固态等温时间的增加 , 成形件的组织将 越来越细化 、均匀 , 固相颗粒也会更加球化 , 液相 增加 ; 存在临界成形力和最大成形力随着半固态等 温时间的延长而减小 ; 最佳的半固态等温时间为 30min~45min 。
[ 6 ] Dominique Bouchard ,Jo sée Colbert , Frédéric Pineau. Characterization of co ntact heat t ransfer coefficient s and mat hematical modeling of a semi2solid aluminium die casting. The 8t h S2 P International Conferences , 2004 ,Limassol ,Cyp rus ,2004
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半固态触变注射成型镁
合金组织性能分析
HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
半固态触变注射成型镁合金组织性能分析
摘要:本文对半固态触变注射成型镁合金AZ91D 的组织与性能进行了分析,结果表明,该成形法所生产的镁合金产品的组织及力学性能均优于压铸产品,从而为应用半固态触变注射成型法进行镁合金汽车零部件的生产奠定基础。

关键词:触变注射成型镁合金组织力学性能
1 引言
近年来,随着对绿色、环保等方面要求的提高,镁合金以其重量轻、比强度高、比刚度高、减震性好、耐电磁屏蔽、易回收等特点从众多金属材料中脱颖而出,广泛的应用于航空、航天、电子和汽车等行业。

目前,镁合金应用的两大热点产业是电子业和汽车业。

一方面,用于“3C” (Computer、Communication、Consumption Electronics Products)产品的壳体,有逐渐取代可回收性较差的塑料壳体的趋势;另一方面,作为实际应用中最轻的结构金属,镁合金能够满足交通运输业日益严格的节能和尾气排放要求,从而生产出重量轻、耗油少、环保的新一代交通工具。

国内外广泛采用的镁合金成形方法为压铸法。

压铸镁合金产品具有尺寸稳定性好、生产率高等优点,但也具有夹杂多、气孔多、成形后难热处理、尺寸近净成形差等不足。

采用压铸法制造的零件很难满足诸如用于“ 3C”产品中所广泛使用的薄壁壳体类零件以及用于汽车工业中的高性能镁合金零部件的要求。

同压铸法相比,半固态方法制造的产品具有铸造缺陷少,产品的力学性能、尺寸精度、表面和内在质量高等优点,此外还有节约能源、安全性好、近净成形性好等优点。

目前世界上已经成功工业化的镁合金半固态成型技术是触变注射成型技术[1]。

长春华禹镁业有限公司是我国最早引进此项技术的厂家,本文利用该公司的触变注射成型机制备试样,对触变注射成型镁合金的组织及力学性能进行了分析,从而为公司下一步进行汽车用高性能镁合金的研究开发作适当的技术储备。

2 半固态触变注射成型技术的原理及工艺过程
2.1 半固态触变注射成型技术的原理
在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2 左右时,枝晶就形成连续网络骨架,失去宏观流动性。

半固态成形是在液态金属从液相到固相冷却过程中进行强烈搅拌,使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。

这种颗粒状非枝晶的显微组织,在固相率达0.5~0.6 时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形[2~4]。

半固态触变注射成形法是近些年来开发的一种新工艺,源于美国DOW化学公司,美国THI XOMAT公司将其商业化。

该工艺是将塑料的注塑成形原理与半固态金属成形工艺相结合,集半固态金属浆料的制备、输送、成形等过程于一体,该法较好地解决了半固态金属浆料的保存输送、成形控制困难等问题。

2.2 半固态触变注射成型技术的工艺过程
注射成形法主要工艺过程如下:被制成颗粒的镁合金原料(由枝晶镁合金铸锭制成,其组织仍为枝晶组织)从料斗中加入;在套筒中的镁合金原料通过电加热转变成半固体状态,在螺杆的剪切作用下,在套筒中半固体金属浆料形成了近乎于球形状的固体颗粒,在注射缸的作用下,以相当于塑料注塑机的十倍速率压射到模具内成形。

触变注射成形机的基本结构如图1-1 所示。

图1 触变注射成形机原理图
3 试验设备及方法
3.1 触变注射成形试样的制备
本论文采用日本制钢所的JLM-450MG 型触变注射成型机制备了标准力学性能试样,在不同制备条件下,考察了目前最广泛使用的镁合金AZ91D 组织与性能的变化以及耐腐蚀性能。

该成型机的外观如图2 所示,试样模具由日本制钢所提供,所制备的测试试样如图3所示,成形过程中模具温度为180℃。

图3 中由左至右依次为标准冲击试样,标准蠕变试样,标准拉伸试样和硬度试样,在论文只采用标准拉伸试样进行试验,分别考察不同工艺条件下,半固态镁合金组织与性能的变化。

图2 JLM 450-MG 触变成型机图3 注射成型的半固态镁合金试样
快速腐蚀条件如下:腐蚀介质为0.5%NaCl 或0.1molNaCl 溶液;试验温度:室温(静态)或35±1℃;腐蚀时间:5 昼夜。

4 结果与讨论
4.1 半固态触变注射成型镁合金的组织分析
图4 中组织是取自不同工艺参数制备标准拉伸试棒的中部,其工艺参数的区别主要表现在料筒温度的差别,在图4 中由工艺(a)至工艺(d)料筒温度逐步升高。

图4 触变注射成型AZ91D 组织
由图4 可见,在不同工艺参数条件下,半固态镁合金组织的变化不大,主要差别表现在缺陷的数量和大小方面。

可见,料筒温度对半固态镁合金成型性具有决定性的影响,在料筒温度较低的条件下,半固态浆料的流变性不足,成型性能不足,提高料筒温度可以明显的提高半固态浆料的流变性能,但会明显降低固相率,在工艺d 的条件下,除晶粒细小
外,其组织已经接近普通压铸合金组织。

因此,在实际产品制备中必须控制好料筒温度和组织这两方面的因素,才有可能获得高质量的产品。

图5 为半固态镁合金组织的扫描电镜照片。

由图5a 可见,半固态镁合金试棒的组织细小、均匀,图5b 为放大的晶界相,对晶界相的定点能谱分析表明,其晶界相的主要组成为Mg 和Al,并含有少量的Zn,其定点能谱分析结果如图6 所示。

对半固态镁合金进行线扫描的结果表明,Al 和Zn 主要分布在晶界上,在晶内分布较少,Mg 则主要分布在晶内,在晶界处Mg 含量明显减少,如图7 所示。

以上结果表明半固态触变注射成型镁合金的组织形态及分布基本与压铸组织相同。

(a) 半固态镁合金组织 (b) 半固态镁合金的晶界相
图5 半固态镁合金组织的扫描电镜照片
图6 半固态镁合金晶界相分析
图7 半固态镁合金线扫描结果
4.2 半固态触变注射成型AZ91D 的力学性能分析
4.2.1 触变注射成型AZ91D 的力学性能
图8 中示出了50 根试棒(图4 工艺d 条件下)中随机抽取5 根试棒的力-位移曲线、力-变形曲线以及力学性能的测量数据。

由此可见,半固态触变注射成形试棒已达到了很高的强度,其平均断裂强度可达到270MPa 以上,平均屈服强度可达150MPa 左右(由于镁合金试棒在拉伸过程中没有明显的屈服点,故而以σp0.2 估算屈服强度)。

图8 半固态镁合金的力学性能[6]
4.2.2 盐水快速腐蚀对触变注射成型AZ91D 性能的影响
镁合金的抗腐蚀性能是衡量镁合金性能的一个重要指标,本文采用快速腐蚀试验考察了经快速腐蚀后触变成型镁合金试棒组织与性能的变化。

所采用试棒与前述力学性能试棒相同。

图9 示出了经5 昼夜快速腐蚀后AZ91D 镁合金试棒的力学性能。

可见,腐蚀后镁合金试棒力学性能明显下降,平均断裂强度下降到220MP 左右,屈服强度下降至120MPa 左右。

腐蚀试验结果表明,尽管半固态组织细小、致密,但是其抗腐蚀性能仍然相当差,做为重要结构部件和装饰性壳体类零部件时,仍须采用适当的表面处理工艺,否则将无法满足使用要求。

图9 快速腐蚀后触变注射成型AZ91D 的力学性能[6]
5 结论
近年来,世界各国高度重视镁合金的研究与开发,将镁资源作为21 世纪的重要战略物资,加强了镁合金在汽车、计算机、通讯及航空航天领域的应用开发研究。

美、日、欧等发达国家目前已经投入大量人力和物力,实施多项大型联合研究发展计划,研究汽车用镁
合金零部件,这些研究开发计划加快了国外应用镁合金零部件的步伐。

我国是一个摩托车生产、消费大国和出口大国,也是一个潜在的汽车生产和消费大国。

然而,目前我国的镁合金成型技术还相对落后,镁合金零部件的力学性能及耐腐蚀性能较低是制约汽车用镁合金零部件在我国应用的一个重要因素。

本论文通过对触变注射成型AZ91D 镁合金试棒的显微组织、力学性能分析和快速腐蚀试验,得出如下结论:应用触变注射成型技术可得到组织细小、致密,力学性能相对较高的镁合金部件。

其综合力学性能优于目前广泛采用的压铸镁合金部件。

但是应该看到,触变注射成型设备的高昂费用及所必须支付的专利许可费用,加之成型用原材料——镁粒的成本较高,整体投资比较大。

因而该技术尤其适用于那些具有较高要求和高附加值产品的加工。

相关文档
最新文档