不定形耐火材料的发展和应用
不定形耐火材料

2、喷涂料的湿法喷涂技术 喷涂料广泛采用的是半干法的施工方法进行喷涂,施工时由于材料中不预先混
入水或仅混入少量的水,导致在施工现场产生极大的粉尘,这种生产性粉尘不但严 重地影响了环境,而且对人体的健康造成伤害。湿法喷涂施工方法,首先是先在干 粉中添加水分至材料完全混练均匀,然后用压力泵把混炼好的材料送入软管中,最 后材料在喷枪中和添加的急结剂一起喷涂到施工体上。由于湿法喷涂料的材料是经 过加水后充分搅拌的,所以施工环境条件优良,不产生粉尘,并且材料的附着性能 好,反弹率低。均匀添加微量聚凝剂可得到与致密浇注料相同低气孔率的均匀组织。
3、可塑料施工时应注意问题 (1)可塑料与锚固砖需紧密结合; (2)由于用气锤捣打后的可塑料表面光滑,不利于可塑料块与块之间的结合, 因此当第一层材料锤实后,需将其表面用刮板削毛,以使结合面粗糙,然后再放 上第二层材料,用同样的方法锤实; (3)按照设计要求切膨胀缝; (4) 在施工后的可塑料上扎透气孔; (5)可塑料施工结束后的养护期间,应避免可塑料衬体与水接触; (6) 烘炉之前要尽早拆模使砌体自然干燥。烘炉结束后对出现有较大裂纹的地 方应填塞耐火纤维,以防止窜火现象的发生。
2、浇注料的高温施工技术 浇注料在气温偏高( 30~50 ℃ ) 或者窑炉停炉检修期间炉内温度过高的情况
下进行施工时,温度偏高同样会影响铝酸盐水泥正常的水化反应,造成浇注料硬 化过快,导致浇注料还未及时施工就已经无法流动,影响了浇注料的正常施工。 因此,当浇注料在高温施工时,必须在浇注料中添加适当的缓凝剂来缓解浇注料 的硬化过快。
防冻型可塑料与普通可塑料经过相同时间冷冻处理后,普通可塑料发生冻结,而研制 的防冻型可塑料未发生冻结现象,且材料的可塑性指数几乎没有发生明显变化( 如表所示) , 这就确保了可塑料能够在冬季正常施工。此外,在强度方面上,防冻型可塑料的常温抗折 强度和耐压强度与正常可塑料的相比,均未降低。
不定型耐火材料

不定形耐火材料(unshaped refractories)由一定级配的骨料、粉料、结合剂和外加剂组成不定形状的不经烧成可供直接使用的耐火材料。
不定形耐火材料的耐火度应不低于1500℃,有些隔热不定形耐火材料的耐火度允许低于1500℃。
这类材料无固定的外形,呈松散状、浆状或泥膏状,因而也称为散状耐火材料,也可以制成预制块使用或构成无接缝的整体构筑物,也称为整体耐火材料。
不定形耐火材料具有工艺简单,生产周期短、节约能源、使用时整体性好、适应性强、便于机械化施工等特点。
简史不定形耐火材料是以耐火浇注料为基础而拓展的。
早在1918年法国已开始销售铝酸盐水泥,一般认为在1925年欧美国家才以铝酸盐水泥作为耐火浇注料的结合剂,在第二次世界大战时期,美国用耐火浇注料和耐火可塑料作为锅炉和石油设备内衬。
日本在1955年开始生产不定形耐火材料。
到1960年美、日、联邦德国不定形耐火材料分别占耐火材料产量的12.6%、1.6%和1.6%。
1966~1975年不定形耐火材料在工业发达国家实现了品种系列化,质量稳步提高、产量显著增长,1980年以前,美、日、联邦德国的不定形耐火材料产量已分别提高至37.1%、31.7%和36.8%,大致占耐火材料产量的三分之一或稍多一些。
20世纪80年代以后,工业发达国家耐火材料产量逐步有所下降,而不定形耐火材料产量并无太大变化,因而不定形耐火材料产量比率相应提高,如以日本为例:1976~1985年耐火材料产量从270万t左右降至200万t左右,而其中不定形耐火材料始终维持在90万t左右,其比率从34%提高到44%。
美国不定形耐火材料的比率已达到50%,西欧共同体为35%。
到90年代初,不定形耐火材料的产量已接近烧成耐火制品的产量,在耐火材料行业促成了巨大的变化,这也说明了不定形耐火材料的迅速发展。
中国的不定形耐火材料发展史要追溯至古代的原,始制陶时代和青铜器时代,当时所用的焙烧陶器的窑和冶炼青铜的炉(或坩埚)就是用可塑性的耐火粘土塑造或捣制而成的,这可以说就是原始的不定形耐火材料。
不定形耐火材料

不定形耐火材料
不定形耐火材料是一种具有耐高温和耐火性能的材料,广泛应用于冶金、化工、电力等各个行业中。
它的主要特点是具有良好的热稳定性、耐磨损性和机械性能。
不定形耐火材料主要由耐火粘土和一些特殊添加剂组成。
耐火粘土是一种高岭土,具有较高的熔点和耐高温性能。
特殊添加剂可以提高不定形耐火材料的耐磨损性和机械性能,使其更加适合于各种工业环境的使用。
不定形耐火材料具有高耐火性能,可以承受高达1500°C以上的高温。
它可以在高温下长时间工作,不会破裂或熔化。
这使得它成为高温炉、工业窑炉和火炉等设备中的理想材料。
此外,不定形耐火材料还具有优异的耐磨损性能。
在高温和高压的环境下,不定形耐火材料能够抵抗磨损和腐蚀,保持长期的稳定性能。
这使得它成为一种理想的耐火材料,广泛应用于冶金、石油、化工等行业中的各种设备。
不定形耐火材料还具有良好的机械性能。
它具有较高的压缩强度和抗拉强度。
这使得它不易破裂和变形,能够承受较大的压力和拉力。
因此,不定形耐火材料可以用于各种设备的制造,如高温管道、加热炉等。
总之,不定形耐火材料具有高耐高温性能、耐磨损性和良好的机械性能。
它是一种广泛应用于各个行业中的重要材料。
在冶
金、化工、电力等行业中的各种高温设备中,不定形耐火材料发挥着重要的作用,保障工业生产的正常进行。
不定形耐火材料分类及应用

不定形耐火材料分类及应用不定形耐火材料是指那些在高温下能够保持稳定性能且具有较好耐火性能的材料。
不同种类的不定形耐火材料具有不同的化学成分和结构,因此在应用上也有所差异。
下面将对不定形耐火材料的分类和应用进行详细介绍。
一、不定形耐火材料的分类:1. 火炬型耐火材料:主要由氧化铝、三氧化二铝、高铝水泥等主要原料制成。
具有较高的耐火性能和耐热震性能,广泛应用于各种型号的工业窑炉、热处理炉、转炉、电炉等高温设备。
2. 隔热型耐火材料:主要由氧化铝、石墨、高铝水泥等主要原料制成。
具有较好的保温性能和耐高温性能,广泛应用于工业窑炉的保温层、隔热层、烟道、热处理工艺中的保温设备等。
3. 耐化学侵蚀型耐火材料:主要由碳化硅、氮化硅、碳化硅质、碳化硅质等主要原料制成。
具有耐酸碱腐蚀、耐氧化性能好、抗渗透性能强等特点,广泛应用于化工装置、冶金设备、炼油装置等耐腐蚀场合。
4. 耐磨性耐火材料:主要由氧化铝、碳化硅、铝酸盐等主要原料制成。
具有耐磨性、耐热震性和抗冲击性好等特点,广泛应用于冶金、建材、造纸、玻璃等行业中的磨料和耐磨设备。
5. 耐高温隔热型耐火材料:主要由氧化铝、石墨、氮化硅等主要原料制成。
具有较好的抗温性能和隔热性能,广泛应用于高温熔融金属的冶炼、有色金属冶炼等工业领域。
二、不定形耐火材料的应用:1. 铁矿冶炼行业:在高炉、电炉、转炉等炼铁设备中使用火炬型耐火材料和隔热型耐火材料,能够有效地抵御高温和热震的侵蚀,确保设备的正常运行。
2. 石油化工行业:在石化装置、化工设备、炼油装置等场合中使用耐化学侵蚀型耐火材料,能够有效地抵御酸碱等腐蚀介质的侵蚀,延长设备的使用寿命。
3. 冶金行业:在冶金设备、耐磨设备等场合中使用耐磨性耐火材料,能够有效地提高设备的使用寿命和耐磨性能,减少设备的维护和更换次数。
4. 建材行业:在建材生产设备、窑炉等场合中使用隔热型耐火材料,能够提高设备的保温性能,降低能耗,提高生产效率。
无定形耐火材料

03 性能特点
高温稳定性
高温下保持强度和稳定性
抗热震性能
无定形耐火材料在高温环境下仍能保 持较高的强度和稳定性,不易软化、 熔融或剥落。
无定形耐火材料具有良好的抗热震性 能,能够承受温度急剧变化而不发生 破裂或剥落。
抗蠕变性能
无定形耐火材料在高温下不易发生蠕 变现象,能够承受长时间的高温作用, 保持结构的完整性。
抗热震性
快速适应温度变化
无定形耐火材料能够快速适应温 度的变化,不易因温度波动而产
生热应力。
热震稳定性
在反复的温度变化过程中,无定形 耐火材料能够保持结构的稳定性, 不易出现开裂、剥落等现象。
抗热震性能的改善
通过合理的配方设计和制备工艺, 可以进一步提高无定形耐火材料的 抗热震性能。
化学稳定性
抵抗化学侵蚀
覆。
陶瓷
作为陶瓷烧成窑炉的炉衬材料 ,提高窑炉的保温性能和节能
效果。
玻璃
作为熔融玻璃液的池窑炉衬材 料,提高玻璃质量和产量。
化工
用于高温反应器、加热炉、裂 解炉等设备的内衬材料,提高 设备的耐腐蚀性和使用寿命。
02 生产工艺
原料选择与处理
原料种类
选择具有高耐火性、低导 热性和良好化学稳定性的 原料,如硅质、铝质、锆 质等。
新型复合无定形耐火材料 的开发
结合不同材料的优点,开发出具有优异性能 的复合耐火材料,满足高温工业的多样化需 求。
环保与可持续发展
降低生产过程中的环境污染
01
优化制备工艺,减少废弃物产生,降低能耗,实现绿色生产。
资源循环利用
02
对废弃无定形耐火材料进行回收再利用,减少资源浪费,降低
环境负担。
低碳排放技术
不定形耐火材料的发展与应用探讨

不定形耐火材料的发展与应用探讨【摘要】不定形耐火材料是一种具有高耐火性能的特种材料,具有重要的应用价值。
本文从不定形耐火材料的分类、制备技术以及在冶金和建筑行业的应用等方面进行了探讨。
未来,不定形耐火材料的发展趋势将更加注重环保和可持续性,为行业带来更多的创新和发展机遇。
结论部分强调了不定形耐火材料的广阔应用前景和可持续发展的重要性,展望其在未来的发展方向。
不定形耐火材料的研究和应用将为工业生产和建筑领域带来更多的创新,实现经济效益和环境友好的双赢局面。
【关键词】不定形耐火材料、发展、应用、冶金、建筑、制备技术、未来发展趋势、应用前景、可持续发展、展望1. 引言1.1 什么是不定形耐火材料不定形耐火材料是一类在高温下具有抗热性能的无定形材料,主要由无定形氧化物和无定形耐火纤维组成。
在高温条件下,不定形耐火材料可以保持稳定的结构和性能,不易受热膨胀和收缩的影响,具有优异的耐火性和耐化学腐蚀性。
不定形耐火材料的主要特点包括高温强度高、耐热性好、耐冲击能力强、耐腐蚀性好、使用寿命长等。
由于其优良的性能特点,不定形耐火材料被广泛应用于冶金、建筑、化工、玻璃等行业,是这些行业中不可缺少的重要材料之一。
随着科技的不断进步和需求的不断提高,不定形耐火材料的研究和应用也不断得到加强和拓展。
1.2 不定形耐火材料的重要性不定形耐火材料是一种具有高温稳定性和耐腐蚀性的材料,广泛应用于冶金、建筑等领域。
其重要性主要体现在以下几个方面:不定形耐火材料在冶金行业中扮演着至关重要的角色。
在冶金生产过程中,需要承受高温、高压和腐蚀等恶劣环境,传统的金属材料往往难以满足要求。
而不定形耐火材料的高温稳定性和耐腐蚀性能,使其成为冶金工业中不可或缺的材料之一。
不定形耐火材料在建筑业中也具有重要意义。
随着建筑技术的发展,高温隔热、耐火隔热成为越来越重要的需求。
不定形耐火材料的优异性能使其成为建筑材料领域的热门选择,能够有效提高建筑物的安全性和耐久性。
不定形耐火材料发展的趋势

= 1000nm
25
硅微粉的波动性: 概况,特性和杂质的影响
1 Elkem 983
Norway
2 Elkem 971U
Norway
3 AFM
Australia
4 Elkem 940U
Norway
5 Norchem 93
USA
6 RW F黮ler Q1
Germany
7 RW F黮ler
1000
800
600
400
Emerging Counபைடு நூலகம்ries
200
P.R.China+D.P.R.Korea
former Eastern Block
0
Developed Countries
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
4
Forecast of steel production in China
22
生产商
不定型耐火材料 : 配方发展
价值驱动
• 现金流/用途 • 研发成本 • 利润率/利润空间 • 质量成本
• 施工成本 • 设备投资 • 可变成本
• 停工成本
产品观念
准备 制造
稳定性/规律性 配方简单
搅拌和运输
施工
浇注
脱模
干燥
使用
原材料的兼容性 例如:硅微粉
• 特殊耐火材料成 本
• 安全成本 • 环境成本
Germany
8 Simcala
USA
9 Pechiney/Alcan ANG 423 ND France
10 Elkem 965U
国内外耐火材料的现状以及发展

国内外耐火材料的现状以及发展摘要:耐火材料是高温工业不可缺少的基础材料,其主要用户如钢铁、水泥、玻璃、有色金属等行业。
为了满足节能降耗和环保方面的要求,需要新型的耐火材料的发展。
本文是对国内外耐火材料的现状及发展的一个简述。
Abstract: Refractory material is essential basic materials in high temperature industrial. Its main users such as Steel, cement, glass, non-ferrous metal industry, etc. In order to meet the energy consumption and environmental protection requirement, our need meet new type refractory material. This paper is to domestic and international refractory material of the present situation and the development of a briefly reviewed.关键词:耐火材料产业新型耐火材料结构型功能型1.我国耐火材料产业现状耐火材料是高温工业不可缺少的基础材料。
钢铁、有色、建材、化工、机械等国民经济重要支柱产业的发展都与耐火材料的发展进步息息相关,耐火材料工业的发展已经成为国民经济发展的基础条件之一。
高温工业,尤其是冶金工业的快速发展,带动了我国耐火材料工业的迅猛发展,这不仅体现在我国耐火材料产量第一、消耗第一,还体现在我国耐火材料技术水平也已经实现了全面提升。
我国是耐火材料生产大国,产量在全球遥遥领先。
我国耐火材料产业面临的问题耐火材料企业规模小、装备差在我国改革开放的大形势下,一个品种由很多企业同时生产,形成低水平重复的局面。