有理数单元培优测试卷
七上《有理数》单元培优测试卷(含答案)

第2章《有理数》单元培优测试卷(含答案)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间60分钟,试题共28题,选择8道、填空10道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•盐城)2020的相反数是()A.﹣2020 B.2020 C.D.2.(2020•徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8×103B.1.18×104C.1.18×105D.0.118×106 3.(2019秋•江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个4.(2019秋•江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.45.(2019秋•江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.56.(2019秋•江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.37.(2020春•江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6 B.3 C.﹣6 D.﹣98.(2019秋•江苏省南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•江苏省太仓市期中)我国开展的月球探测工程(即“嫦娥工程“)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为.10.(2019秋•江苏省海州区校级期中)如图,小明有五张写着不同数字的卡片,请你从中抽出2张卡片,使这两张卡片上数字乘积最大,这个最大值是.11.(2019秋•江苏省宿豫区期中)若三个互不相等的有理数,既可以表示为3,a+b,b的形式,也可以表示为0,,a的形式,则4a﹣b的值.12.(2019秋•江苏省宿豫区期中)规定a⊕b=a﹣b+1,则(3⊕2)⊕5=.13.(2019秋•江苏省海陵区校级期中)|m+n|+(m+3)2=0,则m n的值是.14.(2019秋•江苏省连云港期中)有理数a,b,c在数轴上的位置如图所示,则|a﹣b|﹣|c ﹣b|+|a+c|=.15.(2019秋•江苏省武进区期中)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B 两点经以上方法折叠后重合,则A点表示的数是.16.(2019秋•江苏省海安市期中)若m、n满足|m﹣3|+(n﹣2)2=0,则(m﹣n)2019的值等于.17.(2019秋•江苏省海陵区校级期中)已知数轴上三点A,B,C所对应的数分别为m,n,2+n,当其中一点到另外两点的距离相等时,则m﹣n的值是.18.(2020春•江苏省鼓楼区期中)(1)()﹣(1)()=.三、解答题(本大题共8题,共54分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•江苏省海州区校级期中)把下列各数填入相应的集合中:10,﹣2π,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.正数集合:{…};负数集合:{…};整数集合:{…};有理数集合:{…}.20.(2019秋•江苏省连云港期中)计算(1)(﹣2)3﹣(﹣5)+(﹣3)×2 (2)()×(﹣60)(3)(﹣5)(﹣4)(4)﹣32÷[()×(﹣3)22] 21.(2019秋•江苏省建湖县期中)计算:(1)28﹣(+34)+(﹣51)﹣(﹣42);(2);(3);(4).22.(2019秋•江苏省广陵区校级期中)某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10 (1)巡逻车在巡逻过程中,第次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?23.(2020春•江苏省兴化市期中)(1)计算:0×1×2×3+1=()2;1×2×3×4+1=()2;2×3×4×5+1=()2;3×4×5×6+1=()2;……(2)根据以上规律填空:4×5×6×7+1=()2;×××+1=(55)2.(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.24.(2019秋•江苏省崇川区校级期中)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在上所应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是;(2)数轴上表示x与2的两点之间的距离可以表示为.\;(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.25.(2019秋•江苏省崇川区校级期中)已知b是最小的正整数,且a,b满足(c﹣5)2+|a+b|=0,请回答:(1)请直接写出a,b,c的值:a=,b=,c=;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.(2019秋•江苏省海州区校级期中)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把记作a©,读作“a的圈c次方”.(1)【初步探究】直接写出计算结果:3③=,;(2)关于除方,下列说法错误的是;A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1□=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(3)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;;Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于;Ⅲ.算一算:.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•盐城)2020的相反数是()A.﹣2020 B.2020 C.D.【分析】根据a的相反数是﹣a,直接得结论即可.【解析】2020的相反数是﹣2020.故选:A.2.(2020•徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8×103B.1.18×104C.1.18×105D.0.118×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】11.8万=118000=1.18×105故选:C.3.(2019秋•江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解析】∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.4.(2019秋•江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数的三种形式求解.【解析】无理数有:﹣2π,﹣2.6266266…共2个.故选:B.5.(2019秋•江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.5【分析】设出其中的一个数,根据各个数在数轴的位置,表示出其它的数,列方程求解即可.【解析】设点D表示的数为x,则点C表示的数为x﹣3,点B表示的数为x﹣4,点A 表示的数为x﹣7,由题意得,x+(x﹣3)+(x﹣4)+(x﹣7)=6,解得,x=5,故选:D.6.(2019秋•江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.3【分析】直接利用绝对值的性质把x的值分别代入求出答案.【解析】A、当x=0时,原式=3+4=7,不合题意;B、当x=1时,原式=1+2=3,不合题意;C、当x=2时,原式=1+0=1,符合题意;D、当x=3时,原式=3+2=5,不合题意;故选:C.7.(2020春•江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6 B.3 C.﹣6 D.﹣9【分析】根据定义,图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,由对角线三数的和与中间数的关系可求m的值.【解析】图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,∵﹣2﹣4=﹣6,∴中间数是﹣6÷2=﹣3,∴m=﹣6﹣3=﹣9.故选:D.8.(2019秋•江苏省南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.【解析】根据分析,可得则所有符合条件的m的值为:128、21、20、3.故选:B.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•江苏省太仓市期中)我国开展的月球探测工程(即“嫦娥工程“)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为 3.84×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解析】将384000用科学记数法表示为3.84×105.故答案是:3.84×105.10.(2019秋•江苏省海州区校级期中)如图,小明有五张写着不同数字的卡片,请你从中抽出2张卡片,使这两张卡片上数字乘积最大,这个最大值是15.【分析】根据有理数乘法法则,可得﹣3与﹣5的乘积最大.【解析】(﹣3)×(﹣5)=15,∴这个最大值是15.故答案为:1511.(2019秋•江苏省宿豫区期中)若三个互不相等的有理数,既可以表示为3,a+b,b的形式,也可以表示为0,,a的形式,则4a﹣b的值15.【分析】根据分母不等于0判断出b≠0,从而得到a+b=0,再求出3,从而得到b=﹣3,a=3,然后代入代数式进行计算即可得解.【解析】∵三个互不相等的有理数,既可以表示为1、a+b、b的形式,也可以表示为0、、a的形式,∴b≠0,∴a+b=0,∴3,∴b=﹣3,a=3,∴4a﹣b=12+3=15,故答案为15.12.(2019秋•江苏省宿豫区期中)规定a⊕b=a﹣b+1,则(3⊕2)⊕5=﹣2.【分析】根据a⊕b=a﹣b+1,可以求得所求式子的值.【解析】∵a⊕b=a﹣b+1,∴(3⊕2)⊕5=(3﹣2+1)⊕5=2⊕5=2﹣5+1=﹣2,故答案为:﹣2.13.(2019秋•江苏省海陵区校级期中)|m+n|+(m+3)2=0,则m n的值是﹣27.【分析】根据非负数的性质,可以求得m、n的值,从而可以求得m n的值,本题得以解决.【解析】∵|m+n|+(m+3)2=0,∴m+n=0,m+3=0,解得,m=﹣3,n=3,∴m n=(﹣3)3=﹣27,故答案为:﹣27.14.(2019秋•江苏省连云港期中)有理数a,b,c在数轴上的位置如图所示,则|a﹣b|﹣|c ﹣b|+|a+c|=﹣2a.【分析】先根据各点在数轴上的位置判断出其符号,再根据绝对值的性质去绝对值符号,合并同类项即可.【解析】∵由图可知,c<﹣1<0<a<1<b,∴a﹣b<0,c﹣b<0,a+c<0,∴原式=﹣a+b+(c﹣b)﹣(a+c)=﹣a+b+c﹣b﹣a﹣c=0.故答案为:0.15.(2019秋•江苏省武进区期中)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B 两点经以上方法折叠后重合,则A点表示的数是﹣1004.【分析】根据数轴上两点间的距离为这两个数差的绝对值,若﹣2表示的点与8表示的点重合,则折痕经过3;若数轴上A、B两点之间的距离为2014(A在B的左侧),则两个点分别距离中点是3,进一步得到A点表示的数.【解析】依题意得:两数是关于﹣2和8的中点对称,即关于(﹣2+8)÷2=3对称,∵A、B两点之间的距离为2014(A在B的左侧),且A、B两点经以上方法折叠后重合,则A、B关于3对称,∴A:3﹣2014÷2=3﹣1007=﹣1004.故答案为:﹣1004.16.(2019秋•江苏省海安市期中)若m、n满足|m﹣3|+(n﹣2)2=0,则(m﹣n)2019的值等于1.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可;【解析】∵|m﹣3|+(n﹣2)2=0,∴m﹣3=0,n﹣2=0,∴m=3,n=2,∴(m﹣n)2019=(3﹣2)2019=1.故答案为:1.17.(2019秋•江苏省海陵区校级期中)已知数轴上三点A,B,C所对应的数分别为m,n,2+n,当其中一点到另外两点的距离相等时,则m﹣n的值是﹣2或1或4.【分析】用m、n的代数式表示线段AB、BC、AC的长,再分三种情况分别进行解答即可.【解析】数轴上三点A,B,C所对应的数分别为m,n,2+n,则点C一定在点B的右边两个单位,①如图1,当点B是AC的中点时,,有AB=BC,即m﹣n=n﹣(2+n),∴m﹣n=﹣2;②如图2,当点A是BC的中点时,,有AB=AC,即m﹣n=2+n﹣m,∴m﹣n=1;③如图3,当点C是AB的中点时,,有BC=AC,即(2+n)﹣n=m﹣(2+n),∴m﹣n=4,故答案为:﹣2或1或4.18.(2020春•江苏省鼓楼区期中)(1)()﹣(1)()=.【分析】根据乘法分配律变形,再抵消后进行计算即可求解.【解析】(1)()﹣(1)()()()﹣()+()().故答案为:.三、解答题(本大题共8题,共64分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•江苏省海州区校级期中)把下列各数填入相应的集合中:10,﹣2π,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.正数集合:{10,3.14,,﹣(﹣5),0.…};负数集合:{﹣2π,﹣0.6,﹣75%…};整数集合:{10,0,﹣(﹣5)…};有理数集合:{10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.…}.【分析】根据实数的分类即可求出答案.【解析】正数集合:{ 10,3.14,,﹣(﹣5),0.};负数集合:{﹣2π,﹣0.6,﹣75% …};整数集合:{10,0,﹣(﹣5)…};有理数集合:{10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.}.故答案为:10,3.14,,﹣(﹣5),0.;﹣2π,﹣0.6,﹣75%;10,0,﹣(﹣5);10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0..20.(2019秋•江苏省连云港期中)计算(1)(﹣2)3﹣(﹣5)+(﹣3)×2(2)()×(﹣60)(3)(﹣5)(﹣4)(4)﹣32÷[()×(﹣3)22]【分析】(1)根据有理数的乘方、有理数的乘法和加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)(﹣2)3﹣(﹣5)+(﹣3)×2=(﹣8)+5+(﹣6)=﹣9;(2)()×(﹣60)=(﹣36)+(﹣30)+5=﹣61;(3)(﹣5)(﹣4)=5;(4)﹣32÷[()×(﹣3)22]=﹣9÷(1)=﹣9÷(1)=﹣9÷(1)=﹣9=﹣9=﹣15.21.(2019秋•江苏省建湖县期中)计算:(1)28﹣(+34)+(﹣51)﹣(﹣42);(2);(3);(4).【分析】各式根据有理数的运算法则依次计算即可.【解析】(1)原式=28﹣34﹣51+42=28+42﹣34﹣51=70﹣85=﹣15;(2)原式=4.8 1.8+4﹣1=4.8﹣1.8+41=3+4﹣1=6;(3)原式0.250.25=0.25;(4)原式=﹣9﹣(12+8)=﹣9﹣20=﹣9﹣8=﹣17.22.(2019秋•江苏省广陵区校级期中)某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10 (1)巡逻车在巡逻过程中,第6次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?【分析】(1)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;(2)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;(3)根据行车就耗油,可得耗油量,再根据总价=单价×数量即可求解.【解析】(1)第一次距A地:15千米,第二次距A地:15﹣8=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:25﹣4=21千米,第六次距A地:21+5=26千米,第七次距A地:26﹣10=16千米,26>25>21>16>15>13>7,答:巡逻车在巡逻过程中,第6次离A地最远;(2)15﹣8+6+12﹣4+5﹣10=16(千米),答:B地在A地东方,与A地相距16千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60(千米),60×0.2=12(升),12×7=84(元).答:这一天交通巡逻车所需汽油费84元.故答案为:6.23.(2020春•江苏省兴化市期中)(1)计算:0×1×2×3+1=(1)2;1×2×3×4+1=(5)2;2×3×4×5+1=(11)2;3×4×5×6+1=(19)2;……(2)根据以上规律填空:4×5×6×7+1=(29)2;6×7×8×9+1=(55)2.(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.【分析】(1)通过有理数的运算便可得结果;(2)由已知等式得到规律:任意四个连续自然数的积与1的和等于较小数与比它大3的数的积与1的和的平方.按此规律解答便可;(3)根据题意可得第n个等式应是n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2=(n2+3n+1)2,再证明n2+3n+1是否为奇数便可.【解析】(1)0×1×2×3+1=0+1=1=12;1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192,故答案为:1;5;11;19;(2)由已知等式知,任意四个连续自然数的积与1的和等于较小数与比它大3的数的积与1的和的平方.∴4×5×6×7+1=(4×7+1 )2=292;∵55=6×9+1,∴6×7×8×9+1=552;故答案为:29;6;7;8;9;(3)正确.证明:设四个自然数分别为n,n+1,n+2,n+3,则有n(n+1)(n+2)(n+3)+1=[n(n+3)][(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2=[n(n+1)+2n+1]2,∵n为自然数,∴n(n+1)为偶数,2n+1为奇数,∴n(n+1)+2n+1必为奇数,故(n2+3n+1)2是一个奇数的平方,即任意四个连续自然数的积与1的和都是某个奇数的平方.24.(2019秋•江苏省崇川区校级期中)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在上所应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.\;(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.【分析】(1)根据距离公式即可解答;(2)根据距离公式即可解答;(3)利用绝对值和数轴求解即可.【解析】(1)数轴上表示5与﹣2两点之间的距离是:5﹣(﹣2)=7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,(3)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1.故答案为:7;|x﹣2|;﹣2、﹣1、0、1.25.(2019秋•江苏省崇川区校级期中)已知b是最小的正整数,且a,b满足(c﹣5)2+|a+b|=0,请回答:(1)请直接写出a,b,c的值:a=﹣1,b=1,c=5;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x﹣3,5﹣x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC﹣AB=2.【解析】(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.故答案是:﹣1;1;5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x﹣2<0,则:|x+1|﹣|x﹣1|+3|x﹣2|=x+1﹣(1﹣x)+2(2﹣x)=x+1﹣1+x+4﹣2x=4;当1<x≤2时,x+1>0,x﹣1>0,x﹣2≤0.|x+1|﹣|x﹣1|+3|x﹣2|=x+1﹣(x﹣1)+2(2﹣x)=x+1﹣x+1+4﹣2x=﹣2x+6;(3)不变.理由如下:t秒时,点A对应的数为﹣1﹣t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,∴BC﹣AB=(3t+4)﹣(3t+2)=2,即BC﹣AB值的不随着时间t的变化而改变.(另解)∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A、B之间的距离每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B、C之间的距离每秒钟增加3个单位长度.又∵BC﹣AB=2,∴BC﹣AB的值不随着时间t的变化而改变解.26.(2019秋•江苏省海州区校级期中)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把记作a©,读作“a的圈c次方”.(1)【初步探究】直接写出计算结果:3③=,﹣27;(2)关于除方,下列说法错误的是C;A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1□=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(3)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=()2;5⑥=()4;(﹣2)8;Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于aⓝ=()n﹣2;Ⅲ.算一算:﹣131.【分析】【概念学习】(1)分别按公式进行计算即可;(2)根据定义依次判定即可;【深入思考】(3)Ⅰ.把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;Ⅱ.结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n﹣1;Ⅲ.将第二问的规律代入计算,注意运算顺序.【解析】【概念学习】(1)3③=3÷3÷3,()⑤=()÷()÷()÷()÷()=﹣27.故答案为:,﹣27;(2)A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1;所以选项B正确;C、3④=3÷3÷3÷3,4③=4÷4÷4,则3④≠4③;所以选项C错误;D、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D正确;本题选择说法错误的,故选C;【深入思考】(3)Ⅰ.(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=()2;5⑥=5÷5÷5÷5÷5÷5=()4;同理得:()⑩=(﹣2)8;故答案为:()2;()4;(﹣2)8;(2)aⓝ=()n﹣2;(3)=144÷(﹣3)2×(﹣2)3﹣(﹣3)4÷33=144(﹣8)﹣81÷27=16×(﹣8)﹣3=﹣128﹣3=﹣131.故答案为:,﹣27;C;,,(﹣2)8 ;aⓝ;﹣131.。
有理数单元检测卷(培优)

…○…………密…………封…………线…………内…………不…………要…………答…………题…………○………班级: 姓名: 考场 考号:第 1 页 共 2 页2018—2019学年度初一年级第一学期数学《有理数》测试卷题号 (一) (二) (三) (四) 总分 得分评卷人一.选择题(每题3分,共10小题) 1.下列说法正确的是( ) A .所有的整数都是正数 B .不是正数的数一定是负数 C .0不是最小的有理数D .正有理数包括整数和分数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( ) A .15×106B .1.5×107C .1.5×108D .0.15×1083.下列各组数中,互为相反数的是( ) A .﹣1与(﹣1)2B .1与(﹣1)2C .2与D .2与|﹣2|4.如图,的倒数在数轴上表示的点位于下列两个点之间( )A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I5.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13豪米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.11毫米,则质量最差的零件是( )A .第一个B .第二个C .第三个D .第四个6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是( ) A .1B .2C .4D .87.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|﹣|a ﹣2b|﹣|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c8.绝对值大于﹣2且小于5的所有的整数的和是( ) A .7B .﹣7C .0D .59.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点的个数是( ) A .2018或2019B .2019或2020C .2020或2021D .2021或202210.若ab <0,且a >b ,则a ,|a ﹣b|,b 的大小关系为( )A .a >|a ﹣b|>bB .a >b >|a ﹣b|C .|a ﹣b|>a >bD .|a ﹣b|>b >a 二、填空题(每题3分,共30分)11.一艘潜艇正在﹣50米处执行任务,其正上方10米处有一条鲨鱼在游弋,则鲨鱼所处的高度为 米.12.若()22120x y -++=,则2x y += . 13. 已知|a|=5,|-b|=-7,且ab <0,则a-b= .14. 设n 是正整数,则1﹣(﹣1)n 的值是 .15. 绝对值小于2018的整数有 个,和为 ,积为 .…………○…………密…………封…………线…………内…………不…………要…………答…………题…………○…第 2 页 共 2 页16. 在,﹣(﹣1),3.14,﹣|﹣8﹣22|,﹣3,﹣32,﹣(﹣)3,0中有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m ﹣n ﹣k+t= . 17. 已知a 的倒数是﹣,b 与c 互为相反数,m 与n 互为倒数,则b ﹣a+c ﹣mn= .18. 定义一种新运算:a ※b=,则当x=3时,2※x ﹣4※x 的结果为 .19. 若31=3,32=9,33=27,34=81,35=243,…,那么2015201233-的末位数字= . 20.如果a a =-,下列说法正确的是( ) ①﹣a 一定是负数 ②﹣a 一定是非正数 ③|a|一定是正数④|a|不能是0三、解答题(共40分)21.(5分) 画一条数轴.在数轴上表示下列各数:20, 2.5,2,2,5---+,并按从小到大的顺序用“<”号把这些数连接起来:22.计算下列各题(每小题5分,共20分)()1 1.5 1.4 4.3 5.2 3.6-+--+ ()()()942813249-÷⨯÷-()()421316233⎛⎫---÷-⨯-⎪⎝⎭ ()()()2222443350.30.95⎛⎫-+-+-⨯--÷- ⎪⎝⎭23.(7分)已知三个有理数a ,b ,c 的积是正数,它们的和是负数,当x=++时,求代数式:2005x 19﹣2008x+2010 的值.24. (8分)某自行车厂一周计划生产700辆自行车,平均每天生产100辆.由于各种原因,实际上每天的生产量与计划量相比有出入.表是某周的生产情况(增产为正,减产为负): 星期 一 二三四 五 六 日 增减+5﹣2 ﹣7+13﹣11+18﹣9(1)根据记录的数据可知前四天共生产 辆; (2)产量最多的一天比产量最少的一天多生产 辆;(3)该厂实行每周计件工资制,每生产一辆得60元,超额完成则每辆再奖10元,少生产一辆则扣20元,那么该厂工人这一周的工资总额是多少?。
【精选】 有理数单元培优测试卷

一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
部编数学七年级上册专题有理数单元测试(培优提升卷)2023年7上册同步培优(解析版)【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.19第1章有理数单元测试(培优提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•荣昌区校级模拟)下列各数中,最小的数是( )A.﹣4B.﹣3C.0D.1【分析】根据有理数的大小比较解答即可.【解析】根据有理数比较大小法则:正数大于零,零大于负数,两个负数绝对值大的反而小,∴0、1不符合题意,∵|﹣4|>|﹣3|,∴﹣4<﹣3.故选:A.2.(2022•连山区一模)下列四个数中,最大的负整数是( )A.﹣1.5B.﹣3C.0D.﹣2【分析】根据题中要求是负整数,﹣1.5,0不符合题意;根据两个负数比较大小,绝对值大的反而小即可得出答案.【解析】题中要求是负整数,﹣1.5,0不符合题意;∵2<3,∴﹣2>﹣3,∴最大的负整数是﹣2,故选:D.3.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解答【解析】∵|a|=5 4,∴a=±5 4.故选:D.4.(2020秋•津南区期中)有理数a,b在数轴上的位置如图所示,则下列式子中正确的个数是( )①a+b>0;②a﹣b<0;③|a|﹣|b|>0;④﹣a>﹣b.A.2B.3C.4D.1【分析】先根据数轴得出a<0,b>0,且|a|>|b|,再根据有理数的加减法则逐一判断即可.【解析】由数轴知a<0,b>0,且|a|>|b|,①a+b<0,此结论错误;②a﹣b<0,此结论正确;③|a|﹣|b|>0,此结论正确;④﹣a>﹣b,此结论正确;故选:B.5.(2021秋•蔡甸区期中)已知|a|=2,(b+1)2=25,且a<b,则a+b的值是( )A.﹣2或﹣8B.﹣8或6C.2或6D.2或﹣8【分析】根据绝对值和有理数的乘方求出a,b的值,根据a<b分两种情况分别计算即可.【解析】∵|a|=2,(b+1)2=25,∴a=±2,b+1=±5,∴b=4或﹣6,∵a<b,∴当a=2,b=4时,a+b=6;当a=﹣2,b=4时,a+b=2;故选:C.6.(2021秋•栖霞市期末)在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是( )甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23―12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】甲:9﹣32÷8=9﹣9÷8=778,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷32=36×23―12×23=16,做对了;丁:(﹣3)2÷13×3=9÷13×3=81,原来没有做对.故选:C.7.(2021秋•姑苏区校级期末)如果实数﹣1<a<0,那么a,﹣a,a2,1a自小到大顺序排列正确的是( )A.a<﹣a<a2<1aB.﹣a<a<a2<1aC.1a<a<a2<﹣a D.1a<a2<a<﹣a【分析】用特殊值法比较大小即可.【解析】若a=―1 2,﹣a=1 2,a2=1 4,1a=―2,∵﹣2<―12<14<12,∴1a<a<a2<﹣a,故选:C.8.(2018秋•市北区期中)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.﹣a一定是负数C.绝对值相等的两个数互为相反数D.两个有理数的和与积均为负数,那么这两个数绝对值较大的数是正数,另一个是负数【分析】利用有理数的加法,乘法法则,相反数,相反数,以及绝对值的性质判断即可.【解析】A、整数和分数统称为有理数,符合题意;B、﹣a不一定是负数,不符合题意;C、绝对值相等的两个数互为相反数或相等,不符合题意;D、两个有理数的和与积均为负数,那么这两个数绝对值较大的数是负数,另一个是正数,不符合题意,故选:A.9.(2021秋•安居区期末)若a与b互为相反数,c与d互为倒数,m的绝对值为2,则|m|﹣c×d+a bm的值为( )A.1B.﹣2C.1或﹣3D.32或52【分析】根据a与b互为相反数,c与d互为倒数,m的绝对值为2,可以求得所求式子的值,本题得以解决.【解析】∵a与b互为相反数,c与d互为倒数,m的绝对值为2,∴a+b=0,cd=1,|m|=2,∴|m|﹣c×d+a b m=2﹣1+0 m=2﹣1+0=1,故选:A.10.(2019秋•滦南县期中)如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?( )A.2秒B.4秒C.2秒或4秒D.2秒或6秒【分析】设当AB=8时,运动时间为t秒,根据题意列方程即可得到结论.【解析】设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.二.填空题(共8小题)11.(2021秋•建华区期末)国家统计局2021年5月11日公布第七次全国人口普查数据结果:2020年全国人口共141178万人,约占世界总人口18%,仍然是世界第一人口大国,我国人口10年来继续保持低速增长态势.数据141178万人用科学记数法可表示为 1.41178×109 人.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】141178万人=1411780000人=1.41178×109人.故答案为:1.41178×109.12.(2021秋•巴彦县期末)计算:﹣(23)2+19= ―13 .【分析】先算乘方,再算加法即可.【解析】﹣(23)2+19=―49+19=―1 3.故答案为:―1 3.13.(2020秋•郫都区校级月考)若|x﹣3|+|y+2|=0,则x= 3 ,y= ﹣2 .【分析】根据非负数的性质列出算式,求出x、y的值即可.【解析】根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,答案为:3,﹣2.14.(2022•蒲城县一模)请写出一个比﹣4.5大的负整数是 ﹣4(答案不唯一) .(写出一个即可)【分析】两个负数,绝对值大的数反而小,所以写出一个符合条件的负整数即可.【解析】∵两个负数绝对值大的数反而小,∴|﹣4.5|>|﹣4|,∴﹣4>﹣4.5.故答案为:﹣4(答案不唯一).15.(2021秋•普陀区校级月考)三个有理数a、b、c之积是负数,其和也是负数;当x=|a| a+|b|b+|c|c时,则x+1= ±2. .【分析】根据a,b,c的积是负数,它们的和是负数,可分a,b,c有两数是正数,一数是负数;或三数是负数的情况进行讨论.【解析】∵a,b,c的积是负数,它们的和是负数,∴a,b,c有两个数是正数,一个数是负数;或三个数均是负数.①当a,b,c有两个数是正数,一个数是负数时,设a,b是正数,c是负数,∴x=1+1﹣1=1,∴x+1=1+1=2,②当三个数均是负数时,x =﹣1﹣1﹣1=﹣3,∴x +1=﹣3+1=﹣2,综上,x +1=±2,故答案为:±2.16.(2021秋•黔东南州期中)在(﹣2)3,﹣(+5),﹣(﹣3),(﹣1)2020,﹣|6|中,负数有 3 个.【分析】根据有理数的乘方、相反数、绝对值、负数的定义解决此题.【解析】∵(﹣2)3=﹣8<0,﹣(+5)=﹣5<0,﹣(﹣3)=3>0,(﹣1)2020=1>0,﹣|6|=﹣6<0,∴负数有(﹣2)3,﹣(+5),﹣|6|,共3个.故答案为:3.17.(2018秋•兴化市校级期中)下列说法:①若a b =―1,则a 、b 互为相反数;②若a +b <0,且ba>0,则|a +2b |=﹣a ﹣2b ;③一个数的立方是它本身,则这个数为0或1;④若a +b +c <0,ab >0,c >0,则|﹣a |=﹣a ,其中正确的是 ①②④ .【分析】根据相反数、绝对值、乘方、有理数的加法法则、有理数的乘法法则解决此题.【解析】①若ab =―1,则a +b =0.根据相反数的定义,符号相反、绝对值相等的两个数互为相反数,那么①正确.②若a +b <0,且ba>0,则a <0,b <0,即a +2b <0,故|a +2b |=﹣a ﹣2b ,那么②正确.③根据乘方的定义,﹣1、0、1的立方均等于本身,那么③不正确.④根据有理数的乘方、加法法则,由a +b +c <0,ab >0,c >0,得a <0,b <0,故|﹣a |=﹣a ,那么④正确.综上:正确的有①②④.故答案为:①②④.18.(2022春•房县期末)我们知道:相同加数的和用乘法表示,相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,我们把n 个a (a ≠0)相除记作an ,读作“a 的圈n 次方”.根据所学概念,求(﹣4)③的值是 ―14 .【分析】根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算.【解析】(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4×14×14=―14.故答案为:―14.三.解答题(共6小题)19.(2021秋•云梦县校级月考)把下列各数分别填入相应的集合:+6,0,﹣8,π,﹣4.8,﹣7,227,0.6,―58.整数集合{ +6,0,﹣8,﹣7 };分数集合{ ﹣4.8,227,0.6,―58 };正有理数集合{ +6,227,0.6 };负有理数集合{ ﹣8,﹣4.8,﹣7,―58 };非负有理数集合{ +6,0,227,0.6 };自然数集合{ +6,0 }.【分析】根据有理数的分类进行填空即可.【解析】整数集合{+6,0,﹣8,﹣7};分数集合{﹣4.8,227,0.6,―58};正有理数集合{+6,227,0.6};负有理数集合{﹣8,﹣4.8,﹣7,―58};非负有理数集合{+6,0,227,0.6};自然数集合{+6,0}.故答案为:+6,0,﹣8,﹣7;﹣4.8,227,0.6,―58;+6,227,0.6;﹣8,﹣4.8,﹣7,―58;+6,0,227,0.6;+6,0.20.(2022春•龙凤区期末)计算:(1)(―12―59+23)÷118;(2)﹣14﹣(―13)2×(﹣3)3﹣(﹣1)2.【分析】(1)将除法变为乘法,再根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解析】(1)(―12―59+23)÷118=(―12―59+23)×18=―12×18―59×18+23×18=﹣9﹣10+12=﹣7;(2)﹣14﹣(―13)2×(﹣3)3﹣(﹣1)2=﹣1―19×(﹣27)﹣1=﹣1+3﹣1=1.21.(2021秋•赵县月考)某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.月份七月份八月份九月份十月份十一月份十二月份甲厂﹣0.2﹣0.4+0.50+1.2+1.3乙厂+1.0﹣0.7﹣1.5+1.8﹣1.80(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?【分析】(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,由此可得出结果.(2)将甲乙两场每个月的盈利相加即可得出结果.【解析】(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元22.(2018秋•钟楼区校级月考)阅读理解:小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x取值范围是 ﹣1≤x≤2 ,最小值是 3 ”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:①当式子|x﹣2|+|x﹣4|+|x﹣6|取最小值时,相应x= 4 ,最小值是 4 .②已知y=|2x+8|﹣|4x+2|,求相应的x的取值范围及y的最大值,写出解答过程.【分析】阅读理解:根据线段上的点与线段的端点的距离最小,可得答案;(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【解析】阅读理解:当式子|x+1|+|x﹣2|取最小值时,相应的x取值范围是﹣1≤x≤2,最小值是3,故答案为﹣1≤x≤2,3;(1)当式子|x﹣2|+|x﹣4|+|x﹣6|取最小值时,相应的x=4,最小值是4;故答案为4,4;(2)当x≥―12时y=﹣2x+6,当x=―12时,y最大=7;当﹣4≤x≤―12时,y=6x+10,当x=―12时,y最大=7;当x≤﹣4,时y=2x﹣6,当x=﹣4时,y最大=﹣14,所以x=―12时,y有最大值y=7.23.(2021秋•如皋市期末)定义:数轴上有A,B两点,若点A到原点的距离为点B到原点的距离的两倍,则称点A为点B的2倍原距点.已知点A,M,N在数轴上表示的数分别为4,m,n.(1)若点A是点M的2倍原距点,①当点M在数轴正半轴上时,则m= 2 ;②当点M在数轴负半轴上,且为线段AN的中点时,判断点N是否是点A的2倍原距点,并说明理由;(2)若点M,N分别从数轴上表示数10,6的点出发向数轴负半轴运动,点M每秒运动速度为2个单位长度,点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时,点A恰好也是点N的2倍原距点,请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4,根据定义可知点M到原点距离为2,点M在数轴正半轴,进而可求出m.②m<0,则m=﹣2,4﹣(﹣2)=﹣2﹣n得出n的值,再根据定义来判断.(2)设t秒时,点M为点A的2倍原距点,点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t的值,将t代入4=2×|6﹣at|,求出a的所有可能值即可.【解析】(1)①4|m|=2,∴m=±2.∵m>0,∴m=2.故答案为:2.②∵m<0,∴m=﹣2.∵点M为线段AN的中点,∴4﹣(﹣2)=﹣2﹣n,解得n=﹣8.∴ON=8,ON=2OA,故N点是点A的2倍原距点.(2)设t秒时,点M为点A的2倍原距点,点A恰好也是点N的2倍原距点.∴|10―2t|=2×4①4=2×|6―at|②,解①得:t1=9,t2=1.将t1=9代入②得:4=2×|6﹣9t|,解得:a1=89,a2=49;将t2=1代入②得:4=2×|6﹣a|,解得:a3=4,a4=8.故a所有的可能值为:4,8,49,89.24.(2020秋•诸暨市期中)阅读下列材料:|x|=x,x>00,x=0―x,x<0,即当x<0时,x|x|=xx=―1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求a|a|+b|b|的值;(2)已知a,b,c是有理数,当abc≠0时,求a|a|+b|b|+c|c|的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求b c|a|+a c|b|+a b|c|的值.【分析】(1)对a、b进行讨论,即a、b同正,a、b同负,a、b异号,根据绝对值的意义计算a|a|+b|b|得到结果;(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a|a|+b|b|+c|c|得结果;(3)根据a,b,c是有理数,a+b+c=0,把求b c|a|+a c|b|+a b|c|转化为求a|a|+b|b|+c|c|的值,根据abc<0得结果.【解析】(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,a|a|+b|b|=―1﹣1=﹣2;②a>0,b>0,a|a|+b|b|=1+1=2;③a,b异号,a|a|+b|b|=0.故a|a|+b|b|的值为±2或0.(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,a|a|+b|b|+c|c|=―1﹣1﹣1=﹣3;②a>0,b>0,c>0,a|a|+b|b|+c|c|=1+1+1=3;③a,b,c两负一正,a|a|+b|b|+c|c|=―1﹣1+1=﹣1;④a,b,c两正一负,a|a|+b|b|+c|c|=―1+1+1=1.故a|a|+b|b|+c|c|的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以b c|a|+a c|b|+a b|c|=a|a|+b|b|+c|c|=﹣[a|a|+b|b|+c|c|]=﹣1.。
有理数单元练习培优

第一章 有理数单元练习培优一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的).1.下列说法正确的是( )A .所有的整数都是正数B .不是正数的数一定是负数C .O 不是最小的有理数D .正有理数包括整数和分数2.下列说法正确的是( )A .平方是本身的数是正数B .立方是本身的数是士1C .绝对值是它本身的数是正数D .倒数是它本身的数是±1|2|.3--的相反数是( )2.A 21.B 21.-C2.-D 4.在222)2(|,2|),2(,)2(,2--------中,负数的个数是( )个1.A2.B3.C4.D5.下列有理数大小关系判断正确的是( )|101|)91(.-->--A |10|0.->B |3||3|.+<-C 01.01.->-D 6.下列各对数中,互为相反数的是( )|3|)3(.----与A |3||3|.-+与B |3|)3(.---与C )3()3(.-++-与D7.若a 是负数,则下列各式不正确的是( )22)(.a a A -=||.22a a B =33)(.a a C -=)(.33a a D --=8.若,1|2|=-x 则x 的值是( )3.A 1.B 31.或C 13.-或D9.若m 为有理数,则||m m +的结果必为( )A .正数B .负数C 非正数D .非负数10.已知m ,n 互为相反数,a ,b 互为倒数,x 的绝对值等于3,则)()1(23n m x ab n m x +++++--2011x2012)(ab -+的值为( )26.-A 28.B 2826.或-C D .以上答案都不对二、填空题(本大题共8 小题,每小题3分,共24分),11.若气温升高C 5记为,5C +则温度降低C 3记为12.在52,8.12,30,15.0,83,152---中,负分数的有 321.13-的倒数是321,-的相反数是321,-的绝对值是. 14绝对值不小于76而不大于533的整数是,它们的和是. 15.若,0)2(|3|2=++-n m 则n m 2+的值为16.近似数5.3万精确到位;近似数61027.5⨯有个有效数字;将87000保留两个有效数字用科学记数法表示为17.在数轴上任取一条长度为912012的线段,则此线段在这条数轴上最多能盖住的整数点的个数是 18.已知P 是数轴上的一个点.把点P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离是4个单位,则P 点表示的数是____.三、解答题(21题16分,22~25题每题6分,)21.计算:)528(435)532(413)1(----+5]36)65121197(45)[2(÷⨯+--201223)1()2(]161)1()21[()21)(3(-÷-⨯--÷--])3(5[4)2(1)4(234--⨯÷-+-22. -a 的相反数为5,b 的倒数是c ,c 的负倒数是2,有理数d 在数轴上的对应点到原点的距离为3,求 3|)(2|c d b a ---的值.23.重庆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下:(单位:km)16,5,8,6,11,3,15,7,9,17++--+--+-+(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5L/km ,则这次养护共耗油多少升?24.已知,0,0><ac ab 且|,|||||a b c >>数轴上a 、b 、c 对应的点是A 、B 、C ,则 (1)若a a -=||时,可分析出a 、b 、c 的符号为0;b0;c0;(2)在(1)的条件下,请在数轴上标出A 、B 、C 的大致位置;(3)在(1)的条件下,请你说明||||||a c C b b a +++--的值与c 的值是否无关?并说明理由.25.同学们都知道,l5-(-2)I 表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.试探索:(1)求=--|)2(5|(2)找出所有符合条件的整数x ,使得7|2||5|=-++x x 这样的整数是(3)由以上探索猜想对于任何有理数|6||3|,-+-x x x 是否有最小值?如果有,写出最小值;如果没有,说明理由.26.已知m 、n 为整数,且,1|||2|=-+-n m m 求n m +的值.。
第一章 有理数 培优训练(2024年版)人教版数学 七年级上册

第一章有理数培优训练2024-2025学年七年级上册数学人教版1.1 正数和负数考点 1 认识正数和负数1. 下列各数:−14,+2,3.5,−9,0,+27,25%,−π,0.12.其中,是负数的有 ( )A.2个B.3个C.4个D.5个考点2 用正数、负数表示具有相反意义的量2.下列选项中,是具有相反意义的量的是 ( )A.气温升高6℃与气温零下8 ℃B.增加 2 L与减少2kgC.超过0.5mm 与不足0.3mD. 向东走 4k m和向南走 5km3.某粮店出售的三种品牌的面粉袋上,分别标有“(50±0.1) kg、(50±0.2) kg、(50±0.3) k g”的字样,从中任意拿出两袋,它们的质量最多相差 ( )A.0.8kgB.0.6kgC.0.5kgD.0.4kg4.以下的五个时钟显示了同一时刻国外四个城市时间和北京时间,若表中给出的是国外四个城市与北京的时差,则这五个时钟对应的城市从左到右依次是 ( )A.C. 伦敦、纽约、北京、罗马、悉尼D.北京、罗马、伦敦、悉尼、纽约易错点对正数、负数、0的概念理解不透5. 下列说法:①带正号的数就是正数,带负号的数就是负数;②海拔高度是0米表示没有高度;③0是正数与负数的分界;④任意一个正数的前面加上“-”号就是负数;⑤字母a既是正数,又是负数;⑥不大于0的数一定是负数.正确的有 .(填序号)1.2 有理数考点1有理数的概念与分类1.下列说法中,正确的是 ( )A. 非负数一定是正数B.有最小的正整数,也有最小的有理数C. 前面有“-”号的数一定是负数D.最大的负整数是-12.将各数填在相应的集合的圈里:-8,+6,75,-0.4,25%,0,-2023,-2.8, 37考点2 数轴(重点)3.在数轴上距表示-2.5的点有3.5个单位长度的点所表示的数是 ( )A. -6B.1C.-1或6D.-6或1 >> 对点专练P4,P334.有理数a,b 在数轴上的位置如图所示,则数a,b,-a,-b 的大小关系为 ( )A. -a<-b<b<aB.-a<b<a<-bC.-a<b<-b<aD.-a<-b<a<b考点3 相反数5.下列各组数中,互为相反数的是 ( )A.-(+7)与+(-7)B.−12与+(-0.5)C.−54与 45 D. +(-0.01)与-(-0.01) 考点4 绝对值(重点)6.下列四个数中,最大的数是 ( )A.-(-1021)B.|- 022|C.-|-1023|D.-(+1024)7.若 |−m|=|−12|,则m 的值为 .易错点 多重符号化简时,正负号易出错8.(1)相反数等于本身的数是 ;化简−[−(+3)]=.(2)当+1的前面有99 个负号时,化简结果是 ,当-2的前面有 99 个负号时,化简结果是 .能力诊断1.若|a-1|与|b-2|互为相反数,则a+b 的值为 ( )A.3B. -3C. 1D. -12.如图,某同学用直尺画数轴,数轴上点A ,B 分别在直尺的1cm ,9 cm 处,若点A 对应-2,直尺的0刻度位置对应-4,则点 B 对应的数为 ( )A.6B.7C.12D.143.把下列各数对应的序号填在相应的大括号里:①-8,②π,③-121,④ 227,⑤4,⑥-0.9,⑦5.4,⑧-3.6,⑨0.负有理数集合:{ …}; 正分数集合:{ …};自然数集合:{ …}; 非正整数集合:{ …}.4.|m-n|表示数轴上表示数m和数n的两点之间的距离.结合数轴回答下列问题.(1)数轴上表示 3 和2 的两点之间的距离是;表示-2和1的两点之间的距离是.(2)如果|x-1|=3,那么x= .(3)若数轴上表示数a的点位于-4与2之间,则|a+4l+|a-2l= .(4)|a-(-3)|+|a-5|的最小值是 .5.如图,A,B分别为数轴上的两点,点A 对应的数是-20,点B 对应的数为80.现在有一只电子蚂蚁P从点 B出发,以2个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A 出发,以3个单位长度/秒的速度向右运动,设两只电子蚂蚁在数轴上的点 C相遇.(1)求出点 C 在数轴上所对应的数.(2)何时两只电子蚂蚁在数轴上相距15个单位长度?专题数轴与绝对值类型一数轴1. 数轴上表示整数的点称为整点.某数轴的单位长度为1cm,若在这条数轴上任意画一条长1 000 cm的线段,则线段盖住的整数点的个数是 ( )A. 1 000B. 1 001C. 1 000 或 1 001D.999 或1 00 02.在数轴上,点A,B在原点O 的两侧,分别表示数a,2,将点A 向右移动1个单位长度得到点C,若点 B 与点 C到原点的距离相等,则a的值为 ( )A. -3B. -2C. -1D. 13. 如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数-556将与圆周上的数字 重合.4. 一把刻度尺在数轴上的位置摆放如图①所示,刻度尺右端点 B 的刻度为“0”,刻度“10c m ”和“25cm ”分别与数轴上表示数0和-2 的点重合,现将该刻度尺沿数轴向右平移4个单位长度,如图②,使刻度尺的左端点 A 与数轴上表示的数1重合,则该刻度尺的长度为 cm.类型二 绝对值5. 若a 的绝对值等于它的相反数,则a 的值不可以是 ( )A. -1B.-0.5C.0D. 16. 若|a-1|+|b-2|=0,则a+b 的相反数是 ( )A. 1B.3C. -3D. -27. 已知 |73−a|=a −73,请写一个符合条件的整数a : . 8. 根据数轴,求绝对值不大于11.1的整数有多少个.第一章 章 末 检 测一、 选择题1.下列各数中: +3,-π,- 23,9,- 227,-(-8),0,-|3|,正有理数有 ( )A.1个B.2 个C.3 个D. 4个2.下列说法:①-a 一定是负数;②0不是有理数;③有理数都可以用数轴上的点来表示;④任何有理数必定等于或小于它的绝对值.其中正确的个数为 ( )A.1B.2C.3D.43.若m表示正整数,且−3m >−37,则m的值可以是 ( )A.3B.5C.7D.94.规定45分钟为1个单位时间,并将每天上午9时记为0,9时以前的时间记为负数,9时以后的时间记为正数,例如:8:15记为-1;9:45记为+1;以此类推,则上午7:30应记为( )A.+2B. -2C.-1.50D.-7.305.在数轴上有间隔相等的四个点M,N,P,Q,所表示的数分别为m,n,p,q,其中有两个数互为相反数,若m的绝对值最大,则数轴的原点是 ( )A. 点 NB.点 PC.点P或点N,P的中点D.点 P或点P,Q的中点二、填空题6.-100的相反数是;绝对值是 .7. 点A,B,C在同一条数轴上,其中点A,B表示的数分别为-4,1,若BC=2,则AC等于 .8. 按一定规律排列的一列数依次为2, −53,105,−177,269,−3711,…·按此规律排列下去,第10个数是 .三、解答题9. 根据以下信息,完成相应的任务:a是最大的负整数,b是最小的正整数,c是负数且数轴上表示c的点到原点的距离为2,d的相反数是其本身.任务:求出有理数a,b,c,d的值,并用“>”将值连接起来.10. 邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)由数轴可得 C村离A 村 km;(3)若摩托车的油耗为每千米0.03 L,求邮递员这次出行的耗油量.11. 如图,一只甲虫在:5×5的方格(每小格边长为1m)上沿着网格线运动.它从A 处出发去看望B,C,D处的其他甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),,从B到A记为:B→A(−1,−4),,其中第一个数表示左右方向,第二个数表示上下方向.(1)A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A 处去P 处的行走路线依次为(+2,+1),(+3,+2),(−2,−1),(−2,−2),请在图中标出点 P 的位置.。
人教版七年级上册数学 第一章 有理数 单元培优练习
人教版七年级上册数学第一章有理数单元培优练习一.选择题1. 下列各组的两个数中,运算后结果相等的是A.和B.和C.和D.和2. 在,,,四个数中,最大的数与最小的数的和等于A.B.C.D.3.是第五代移动通信技术,网络下载速度可以达到每秒以上,这意味着下载一部高清电影只需秒.将用科学记数法表示应为A.B.C.D.4. 如果向东走千米记为千米,那么走了千米表示A.向东走了千米 B.向南走了千米 C.向西走了千米 D.向北走了千米5. 按括号内的要求用四舍五入法取近似数,其中正确的是A.(精确到个位)B.(精确到十个位)C.(精确到)D.(精确到)6. 质检员抽查个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是A.B.C.D.7.下列说法:①有理数是正数和小数的统称;②一个有理数不是整数就是分数;③到原点距离相等的点所表示的数相等;④有最小的正整数但没有最小的正有理数;⑤数轴上的点离原点越远,表示的数越大;⑥相反数、绝对值都等于它本身的数只有.其中正确的个数有A.个B.个C.个D.个8. 适合的整数的值有A.个B.个C.个D.个9. 不论取什么值,下列代数式的值总是正数的是A.B.C.D.10.如图,四个有理数,,,在数轴上对应的点分别为,,,,若,则,,,四个有理数中,绝对值最小的一个是A.B.C.D.二.填空题11. 数轴上表示与之间的所有整数之和是.12. 一个小虫在数轴上先向右爬个单位,再向左爬个单位,正好停在的位置,则小虫的起始位置所表示的数是.13. 如图所示是一个运算程序,若输入的,则输出的的值为.14. 如图,是图纸上个零件的标注, 表示这个零件直径的标准尺寸是,实际产品的直径最大可以是,最小可以是.15. 若,则.16. 点,,和原点在数轴上的位置如图所示,点,,对应的有理数为,,(对应顺序暂不确定).如果,,那么表示数的点为点.三.解答题17.把下列各数在数轴上表示出来,再按从小到大的顺序用“”连接起来:,,,,.18.计算:(1) (2)(3)19.请回答:(1) 如图,在数轴上点表示的数是.(1) 指出点所表示的数.(2) 在数轴上有一点,到点的距离为个单位长度,求点表示的数.20. 如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在数集的圈里.,,,,,.(2)上图中,这两个圈的重叠部分表示什么数集合?(3)列式并计算:在()的数据中,求最大的数与最小的数的和.21. 计算:已知,.(1) 当时,求的值.(2) 求的最大值.22.我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算-“*运算”,定义是.根据定义,解决下面的问题:(1) 计算:;(2) 我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确;(3) 类比数的运算,整式也有“*运算”.若的值为,求.23. 一名快递员骑电动车从饭店出发送外卖,向东走了千米到达琪琪家,继续向东走了千米到达婷婷家,然后又向西走了千米到达乐乐家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示千米,点,,,分别表示饭店、琪琪家、婷婷家和乐乐家.(1)请你画出数轴,并在数轴上表示出点,,,的位置;(2) 乐乐家距琪琪家多远?(3)若琪琪步行到婷婷家每小时走千米;乐乐骑自行车到婷婷家每小时骑千米,若两个人同时分别从自己家出发,问两个人能否同时到达婷婷家,若不能同时,谁先到达?24.如图,已知数轴上点表示的数为,是数轴上在左侧的一点,且,两点间的距离为.动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为秒,数轴上点表示的数是,点表示的数是(用含的代数式表示);(2)若点,同时出发,求:①当点运动多少秒时,点与点相遇?②当点运动多少秒时,点与点间的距离为个单位长度?。
人教版七年级数学第1章 有理数 单元培优测试卷两套附答案解析
人教版七年级数学 第1章 有理数 培优测试卷一附答案解析(全卷总分150分)一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D.)(33a a --=6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )0 AGF E D C BA A. 464010⨯ B. 56410⨯ C. 66410⨯.D. 6410⨯7. 12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( )A. 万位B. 十万位C. 百万位D. 千位二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 如果x 2=9,那么x 3= .6. 如果2-=-x ,则x = .7. 化简:|π-4|+|3-π|= .8. 绝对值小于2.5的所有非负整数的和为 ,积为 . 9.使25++-x x 值最小的所有符合条件的整数x有 .10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 .12. 已知()0422=-++y x ,求x y 的值为 .13. 近似数2.40×104精确到 位,它的有效数字是 . 14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 . 15. 观察等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n -1)= .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 三、解答题(共82分)1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121 (999)110001-2. (5分)计算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2016+a 2017.6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:20162)2017+x-a++-.b++cd)()((cdab7. (6分)已知│a│=4,│b│=3,且a>b,求a、b的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题 3 分,共 30 分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数答案:D解析:整数包括正整数、零和负整数,A 选项错误;负整数的相反数是正整数,不是非负整数,B 选项错误;有理数包括正数、零和负数,C 选项错误;零是自然数,但不是正整数,D 选项正确。
2、在有理数中,绝对值等于它本身的数有()A 1 个B 2 个C 3 个D 无数个答案:D解析:绝对值等于它本身的数是非负数,包括零和所有正数,有无数个。
3、下列计算正确的是()A (-3) =-3B |-3| =-3C (-3)²=-9D -3²= 9答案:B解析:(-3) = 3,A 选项错误;|-3| =-3,B 选项正确;(-3)²= 9,C 选项错误;-3²=-9,D 选项错误。
4、比-3 大 2 的数是()A -5B -1C 1D 5答案:B解析:-3 + 2 =-15、两个有理数的和为负数,那么这两个数一定()A 都是负数B 至少有一个负数C 有一个是 0D 绝对值相等答案:B解析:两个有理数的和为负数,那么这两个数至少有一个负数。
6、计算(-1)×(-2)的结果是()A 2B 1C -2D -1答案:A解析:(-1)×(-2) = 27、若 a < 0 , b > 0 ,且|a| >|b| ,则 a + b 的值()A 是正数B 是负数C 是零D 不能确定答案:B解析:因为 a < 0 , b > 0 ,且|a| >|b| ,所以 a + b 的值是负数。
8、下列说法正确的是()A 倒数等于它本身的数只有 1B 平方等于它本身的数只有 0C 立方等于它本身的数只有 0 和 1D 相反数等于它本身的数只有 0答案:D解析:倒数等于它本身的数有 1 和-1,A 选项错误;平方等于它本身的数有 0 和 1,B 选项错误;立方等于它本身的数有 0 、 1 和-1,C 选项错误;相反数等于它本身的数只有 0,D 选项正确。
七年级数学上册有理数单元培优测试卷
七年级数学上册有理数单元培优测试卷(满分:100分时间:90分钟)一、选择题(每题3分,共30分)1.下列四个实数中,是无理数的为( )A.0B.3C.2-D.2 72.绝对值为5的负有理数是( )A.2.5 B.±5 C.5 D.-5 3.计算2×(-1)的结果是( )A.-12B.-2 C.1 D.24.已知a、b都是不等于0的有理数,则a b aba b ab++的所有可能的值有( )A.1个B.2个C.3个D.4个5.若有理数a、b、c在数轴上对应点的位置如图所示,则下列各式错误的是( )A.a+b>0 B.b-c>0 C.ac>0 D.abc>06.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为( ) A.3.12×105B.3.12×106C.31.2×105D.0.312×1077.下列说法:①带有负号的数一定是负数;②一个数的绝对值一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是正数,其中正确的有( ) A.1个B.2个C.3个D.4个8.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如:计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A.1、2 B.1、3 C.4、2 D.4、39.下列语句中:①一个有理数是非负数即这个有理数是正数;②符号不同的两个数叫互为相反数;③两个有理数比较大小,绝对值大的反而小;④0与任何数相乘得0,0除以任何数也得0;⑤所有的有理数都可以用数轴上的点表示,反过来,数轴上所有的点也都表示有理数.其中说法正确的个数有()A.0个B.1个C.3个D.4个10.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是( ) A.43 B.44 C.45 D.46二、填空题(每题2分,共20分)11.某种药品的说明书上标明保存温度是(20±2)℃,请你写出一个适合药品保存的温度_______.12.-(+3)的相反数是_______;-0.2的倒数是_______.13.在数轴上,与表示-1的点距离为3的点所表示的数是_______.14.比较大小:(1)-78_______-67;(2)-(-3)_______-3-.15.小王和小李共下了14盘象棋.规定:赢一盘记作+2分,输一盘记作-1分,平局记作+1分.如果他们平局2盘,小李赢5盘,最后小李的得分为______________分.16.若定义一种新运算:a※b=2a+b-1,则-3※4=_______;(2※4)※9=_______.17.观察下列数的排列规律:1,-23,45,67-,89,1011-,1213,1415-,…,则第2020个数是_______.18.已知a=2,b=-1,且a<b,则a b-=_______.19.在227,-(-1),π,282--,-3,-23,313⎛⎫-- ⎪⎝⎭,0中,有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m -n -k +t =_______.20.按如图所示的程序进行计算,输出的结果是_______.三、解答题(共50分)21.(4分)把下列各数填人相应的括号内(没有适合集合的数可以留下):-3,-0.4,π,4--,-227,0.32,1.753,7π-,0,0.4262262226….(每两个6之间依次增加一个2). 整数集合:{ …};负分数集合:{ …};无理数集合:{ …}.22.(6分)在数轴上画出表示下列各数的点,并用“<”号把这些数连接起来:()()101213,3,0,2, 1.5,12⎛⎫+------- ⎪⎝⎭.23.(18分)计算:(1)()531315 3.25646⎛⎫⎛⎫⎛⎫++----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()1118163⎛⎫-⨯- ⎪⎝⎭;(3)()()20132111233-÷⨯-+;(4)()2499525⎛⎫-⨯- ⎪⎝⎭; (5)2221130.52412422⎛⎫-+⨯----÷⨯ ⎪⎝⎭; (6)()()7511303659612⎡⎤⎛⎫-+-⨯-÷- ⎪⎢⎥⎝⎭⎣⎦.24.(5分)有理数1342,6,8545-+-的代数和比这三个数的相反数的绝对值的和小多少?25.(6分)小李在电脑中设置了一个有理数运算程序:输入a ,后输入“※”键,再输入b ,得到运算a ※b =()()223121a b a a b b ⎡⎤----÷-⎢⎥⎣⎦. (1)求(-2)※12的值; (2)小王在运用该程序时,屏幕显示:“该操作无法进行”.请猜测小王输入数据时,可能出现了什么情况?为什么?26.(6分)小白兔从点A 出发,在一条直线上来回行走,假定向右行走的路程记为正数,向左行走的路程记为负数,行走的各段路程依次为(单位:米):+5,-3,+10,-8,-6,+12,-8.(1)小白兔最后是否回到出发点A?(2)小白兔离开出发点最远是多少米?(3)在行走过程中,如果每行走2米就奖励一个蘑菇,则小白兔共得到多少个蘑菇?27.(7分)阅读下面材料:点A 、B 在数轴上分别表示数a ,b ,A 、B 两点之间的距离表示为AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.3.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.4.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
5.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.【答案】6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P 不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或.故答案为:或.;设A表示-a,B表示3,P表示x,则线段AB 的长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即或;故答案为:或 .【解析】【解答】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x ,∴表示数轴上的点P到4的距离,用线段PA表示,表示数轴上的点P到-2的距离,用线段PB表示,∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,∴的最小值为6.故答案为:6.【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.8.阅读理解:若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。