用ZEMAX设计简易LED准直镜
课程设计1半导体激光器准直物镜设计

《半导体激光器准直物镜设计》
一、已知条件
充分掌握工程光学的理论和典型光路的基础上,利用像差理论进行简单光路的光学参数计算和设计,并利用Zemax光学设计软件进行仿真和参数优化,达到理论和实际应用相结合。
二、设计要求
灵活运用工程光学课程重所讲授的内容,进行近轴光路的计算,设定初始光学参数;熟悉Zemax光学设计软件的基本功能和用法,并进行简单光路的模拟和优化。
设计要求:采用双胶合(Doublet)结构,D/f=1/3,通光口径D:5 mm
半视场角:0°设计波长:0.656um
计算:系统焦距f,后焦距(BFL)
半导体激光器准直物镜设计(双胶合结构)参数
三、要完成的任务
1、根据设计要求完成参数的计算,并利用Zemax软件进行参数的优化,最终得到半导体激光器准直物镜的设计参数,以及相应物镜结构与光线追迹图。
2、撰写设计说明书,封皮统一,正文格式规范,用A4纸打印装订。
基于ZEMAX的半导体激光器非球面准直透镜设计

(中北 大学 电子测试技术 国家重点实验室 ,山西 太原 030051)
摘 要 :为 了解 决半 导体 激光器 出射光 束发散 角 大 的 问题 ,根 据 几何 光 学原 理 ,分 别针 对 半 导 体 激 光器 弧矢和 子 午方 向的不 同发 散角度 建 立 数 学模 型 ,设 计 出 了在 两个 相 互 垂 直 的方 向上 具有 不 同非球 面面 型 的非球 面透 镜 ,并 在 ZEMAX光 学设 计 软 件 中进 行 了仿 真 。经 非球 面 准 直透镜 准 直之 后 ,半 导体 激光器 快 慢轴 方 向 的发 散 角 分别 从 35。和 7.5。压 缩 到 了 1.8 mrad和 0.84 mrad,在 距 离光 源 10 1TI处接 收 面上 的总 光功率 为 0.497 W ,光 能利用 率高 达 99.4% 。 结 果表 明,在 相 互垂直 的方 向上 具有 不 同面 型 的非球 面准 直 透 镜 对半 导 体 激 光器 的准 直具 有 良 好 的效果 。 关 键词 :半 导体 激光 器 ;非球 面透镜 ;ZEMAX;准 直 中图分 类 号 :TN248 文 献标 识码 :A DOI:10.3969/j.issn.1001-5078.2013.12.15
基金项 目:国家 自然科学 基金 (No.61078036);山西省 重大专 项 (No.20111101045)资 助 。
作者简介 :杜彬彬 (1988一),女 ,硕士研究生 ,主要从 事光学设 计 以及红外气体 传感 器气 室结 构设 计 等方 面研 究 。E-mail:dubinbin—
第 43卷 第 12期 2013年 12月
ZEMAX在透射仪测量光路准直系统设计中的应用

ZEMAX在透射仪测量光路准直系统设计中的应用周树道;马忠良;王敏【摘要】在ZEMAX非序列环境下建立了透射仪光学系统模型.利用建立的模型研究了LED光源表面特征对透射仪测量光路准直的影响,并通过增加扩散片优化了光学系统结构.对提出的基于扫描方式的测量光路准直方法进行了仿真研究.研究结果表明,基于该方法方位角测量最大相对误差为2%,验证了该方法的可行性.%An optical system model of the transmittance meter is established in the ZEMAX non-sequence environment.The influence of the surface characteristics of LED on the alignment of optical path is studied by using the model, and the structure of optical system is optimized by increasing the diffusion sheet.The method of alignment for measuring light path based on scanning is studied in simulation.Research results show that the maximum relative error of azimuth measurement is 2% and the feasibility of the method is verified.【期刊名称】《微型机与应用》【年(卷),期】2016(035)022【总页数】4页(P92-94,97)【关键词】ZEMAX;准直系统;透射仪【作者】周树道;马忠良;王敏【作者单位】解放军理工大学气象海洋学院,江苏南京 211101;南京信息工程大学气象灾害预警与评估协同创新中心,江苏南京 211101;解放军理工大学气象海洋学院,江苏南京 211101;解放军理工大学气象海洋学院,江苏南京 211101【正文语种】中文【中图分类】TN12;P427.2透射仪是机场跑道进行水平能见度测量的常用设备[1],也是世界气象组织(WMO)进行大规模能见度测量仪器比对时采用的标准设备[2]。
基于ZEMAX的半导体激光准直仿真设计

引言
半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。
但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。
作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。
1.理论分析及计算
采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散
角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图
1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。
如有侵权请联系告知删除,感谢你们的配合!。
[优质文档]zemax自聚焦透镜设计
![[优质文档]zemax自聚焦透镜设计](https://img.taocdn.com/s3/m/c84ae5bf011ca300a7c39055.png)
[优质文档]zemax自聚焦透镜设计目录摘要 (I)Abstract............................................ II 绪论................................................. 1 1 自聚焦透镜简介..................................... 2 1.1自聚焦透镜 ..................................... 2 1.2 自聚焦透镜的特点 ............................... 2 1.3 自聚焦透镜的主要参数 ........................... 3 2 自聚焦透镜的应用................................... 5 2.1 聚焦和准直 ..................................... 5 2.2 光耦合 ......................................... 6 2.3 单透镜成像 ..................................... 7 2.4 自聚焦透镜阵列成像 ............................. 7 3 球面自聚焦透镜设计仿真............................. 9 3.1 确定透镜模型 ................................... 9 3.2 设置波长 (9)3.3数值孔径设定 .................................. 11 3.4 自聚焦透镜光路 ................................ 11 4 优化参数.......................................... 124.1光线相差分析 .................................. 12 4.2聚焦光斑分析 .................................. 14 4.3 3D模型 ....................................... 14 结束语.............................................. 15 致谢.............................................. 16 参考文献.. (17)摘要本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。
基于Zemax的半导体激光准直和整形设计

半导体 激光器因其体积小 、 重量轻 、 阈值 电流低等特点 已被广 泛 哆 + £ , 。 n = V y + ( ( y ) ) ‘ + ( 0 一 ( ) ) ・ n ( 4 ) 应用 于材料加工 、 激 光通信 、 信号处理 、 医疗 、 军事等 相关领域 但 由 式中d y 代表 光源距离透镜顶 点的距离 , t 代表 透镜的厚度 。 将 公 于半导体激 光有源层在 横向和侧 向的尺寸不 一样 . 导致 出射光束 发 式 ( 4 ) 按 照公式 ( 3 ) 改写为 : 散 角较大且不 均匀 , 严 重影响 了能量的传播 和后续 的测量 过程 一 般 常用 的激光准 直的方 法有 圆柱透 镜法 、 非球 面柱 镜法 、 光 纤耦合 ㈤ 法、 渐变折射率 透镜法 和液体透镜法 等。本文 主要介 绍利用 两片非 球 面柱 透镜的方法进行 激光准直 , 并在 z a m a x 软 件中进行仿 真 . 同时 V ( n — l 提 出一 种对 点光源整形为 线光源的方法 最后得 到横 向的非球面方程各参数为 :
2 非 球 面 准 直透 镜 组 设 计
3 软 件 仿 真 与 整 形 系统 介 绍
3 . 1 参数计算 2 . 1 非球面方程介绍 本文i 丘 用半导 体激光的 波长为 6 5 0 n m, 子午方向上的半功率全角 = 非球面 可有非球 面方程来表 示 ,设非 球面 的对称轴 为 z轴 . 如 2 8  ̄ , 弧矢方向上的半功率全角 = 9 o 。 最后算得两个柱透镜的非球面方程参 果在成 像光学 中即为光轴 . 坐标原点设在顶 点 , 则方程可写 为 : 2 数为 : z ( r ) = _ ;; 一 ( 3 ) d_ l _ O . 9 2 9 8
( + (
用ZEMAX设计简易LED准直镜[1]
![用ZEMAX设计简易LED准直镜[1]](https://img.taocdn.com/s3/m/194b121e7cd184254b353569.png)
用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。
使用ZEMAX进行准直镜头设计

设计准备
• • • • •
ZEMAX-EE(专业版)光学设计软件 掌握准直径的特点:Afocal系统 使用的功能:ZEMAX像空间Afocal模式 优化方法:Afocal模式,RMS+Wavefront 分析方法:采用ZEMAX的Afocal的模式可以 直接读取镜头的发散角
WAVELAB
光研科学
设定初始结构:
WAVELAB
平板玻璃
光研科学
设定变量:
• 曲率半径 • 第二个面采用偶次非球面
– (本实例只采用1个单片透镜)
WAVELAB
光研科学
设定目标:
• • •
RMS+Wavefront Rings+Arms 这种系统的默认 的评价函数将可 以实现准直设计 (我们已经选择 了Afocal模式)
发散角度评价:
RMS为主要的评价标准: 发散角度<1.279 mrad GEO为参考的评价标准: 发散角度<3.009 mrad 设计结果符合设计要求 Afocla 的点列图 WAVELAB 光研科学
加工图纸输出:
WAVELAB
光研科学
加工图纸输出:
可以编定各种公差数据,以及其他信息
可以对镜头进行公差分析, 以及模拟装配等、 (此例中不做详细介绍)
光研科学
WAVELAB
设定目标:
• EFFL设定
有效焦距 控制 • 下面是系 统自动生 成的控制 光程差
WAVELAB 光研科学
优化:
• 自动收敛设计 • 观察MF(评价函
数的变化) • 自动update实时 观察系统变化
WAVELAB
光研科学
查看结果:
2D外型图形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用ZEMAX设计简易LED准直镜
一. 初始解的构建
1. 为了简单采用此透镜由三部分构成:
A. 全反射部分,
B. 折射部分,
C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)
图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.
初始数据:
1) 几何体部分
TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;
注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.
2) 光源部分
我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:
steps=90
incr=90/steps #max angle is 90 degree
pi = 4*ATAN(1)
dr = pi/180
startobj=4
For i,0,steps,1
angle = i*incr
oo=i+startobj
InsertObject 1,oo
SetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angle
SetNSCParameter 1,oo,1,1 #layout rays
SetNSCParameter 1,oo,2,1 #analysis rays
tar = 0
opr = i+1
InsertMFO opr
setoperand opr, 11, "NSRA"
setoperand opr, 3, oo # src#
setoperand opr, 6, 3 # seg#
setoperand opr, 9, 1 # weight
setoperand opr, 7, 5 # y coordinate
setoperand opr, 8, tar # tar
Next
update
我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!
二. 优化
经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.
初步优化的结果如下:
可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!
三. 最终模型的建立和模拟
1) 布尔操作后的结果
2) 模拟,
将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模
拟1M处的光斑, DETECTOR的大小设为
500*500
3) 模拟结果:
A. 光斑
B. 发散角
以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。