胆固醇代谢平衡调控
胆固醇代谢途径在肝脏细胞中的调控与疾病治疗

胆固醇代谢途径在肝脏细胞中的调控与疾病治疗胆固醇是一种被谷氨酰胆碱酯类物质所包含的脂质类物质。
在人体内胆固醇的来源包括外源性摄入,内源性合成和外分泌后内转运的胆固醇。
人体内的胆固醇主要由肝细胞合成,同时还有一小部分由饮食摄入,胆固醇代谢在肝脏细胞中起着重要的调控作用。
胆固醇代谢的途径人体内胆固醇代谢的过程可以分为两个阶段,即内源性合成和外源性水解代谢。
1. 内源性合成代谢内源性合成代谢是指胆固醇在人体内经多个酶的作用而从乙酰辅酶A合成,合成过程大致可分为3个步骤:酮丙烯酸、胆甾醇以及雌激素的合成。
2. 外源性水解代谢外源性水解代谢是指人体在摄入食物中的胆固醇后,通过肠道的水解作用将其转化成为胆汁酸,再运输入肝细胞内,进行再次水解代谢。
这种代谢方式一般出现在长时间饮食食物较多的情况下。
胆固醇代谢途径在肝脏细胞中的调控肝脏是人体内最主要的代谢器官之一,其调控机制主要通过内源性相互作用以及外因刺激产生的反应两个方面来表现。
1. 内源性相互作用内源性相互作用是指肝细胞内发生的合成代谢过程,其中包括了HMG-CoA还原酶、戊酸水平和LXR等多个酶系统的相互协同调节。
在这个过程中,HMG-CoA酶起到重要的作用,它是控制内源性胆固醇代谢的一种关键酶。
当肝细胞内HMG-CoA还原酶的产生量增加,例如在高胆固醇饮食的口内着系统中,它带有的负反馈作用就会发生,这个时候肝细胞内的胆固醇合成代谢就减少了。
2. 外因刺激产生的反应外因刺激产生的反应包括由内在机制和外界刺激所导致相应反应,例如体内发生炎症等情况时,肝细胞内转录因子LXR所激活的基因表达就会发生变化,从而影响到胆固醇代谢途径。
胆固醇代谢调控与疾病治疗现如今,胆固醇摄入过多和胆固醇代谢失衡都可能导致多种疾病的发生,例如动脉粥样硬化、脂肪肝、糖尿病等。
胆固醇合成是一个高度复杂和多因素调节的过程,胆固醇代谢途径的改变会对胆固醇水平和细胞功能产生重要影响。
1. 动脉粥样硬化动脉粥样硬化是一种导致心血管疾病发生的主要原因。
胆固醇的合成和代谢

胆固醇的合成和代谢胆固醇是一种脂质类有机物,是人体内常见的一种脂类。
它在人体内起着重要的生物学功能。
胆固醇具有调节细胞膜的流动性、合成维生素D、产生胆酸等多种作用。
然而,胆固醇在体内产生过程中,也存在着一定的问题。
本文将对胆固醇的合成和代谢进行详细的论述。
一、胆固醇的合成胆固醇主要在肝脏和肠道中合成。
肝脏是胆固醇合成的主要场所,其合成主要通过内源性合成和摄入的方式完成。
1. 内源性合成内源性合成是通过一系列的酶催化反应在肝脏细胞中完成的。
首先,乙酰辅酶A与乙酰基辅酶A羧化酶发生反应,生成乙酰辅酶A羧化酶。
接着,乙酰辅酶A羧化酶与缩醛酯酶和甲基戊二酰辅酶A还原酶作用,最终生成胆固醇。
2. 摄入食物中摄入的胆固醇也是人体胆固醇含量的重要来源。
当摄入的食物中胆固醇较多时,肠道吸收的胆固醇会超过肝脏的合成能力,导致胆固醇水平的增加。
二、胆固醇的代谢胆固醇除了通过合成获得外,还通过一系列代谢反应在体内进行转化或排泄。
1. 胆固醇酯化在肠道中,胆固醇会与长链脂肪酸酯化生成胆固醇酯,然后结合胆固醇转运蛋白(CETP)转运到其它脂蛋白中,形成低密度脂蛋白(LDL)和高密度脂蛋白(HDL)。
2. 转运和吸收胆固醇通过转运蛋白从肠道吸收,并结合胆汁酸形成混合胆汁,然后进一步转运到肝脏中。
在肝脏中,部分胆固醇被胆盐转运蛋白(ABCG5/G8)运到胆汁中,排出体外。
3. 胆固醇代谢途径胆固醇在体内主要代谢为胆酸和胆色素。
胆酸合成途径是胆固醇代谢的另一重要环节。
胆酸合成需要经历多个酶催化反应,最终生成胆酸,并通过胆道排泄到肠道中。
三、胆固醇的调节机制由于胆固醇是一种重要的生理物质,体内对其合成和代谢有一套严密的调节机制。
1. 受体介导的内吞作用胆固醇与脂蛋白结合后通过受体介导的内吞作用,进入细胞内部。
这个过程是细胞摄取外源性胆固醇的重要途径。
2. 胆固醇合成抑制一旦细胞内胆固醇水平过高,会通过转录因子SREBPs(胆固醇调节元件结合蛋白)抑制胆固醇合成相关酶基因的表达。
胆固醇代谢胆固醇合成的调节

胆固醇代谢胆固醇合成的调节胆固醇代谢胆固醇是人体主要的固醇类化合物,它既是生物膜及血浆脂蛋白的重要成分,又是固醇激素、胆汁酸及维生素D的前体,体内可自行合成胆固醇以满足代谢和类固醇激素合成的需要 .一、胆固醇合成部位和合成原料几乎全身各组织均可合成胆固醇,肝是合成胆固醇的主要场所。
胆固醇合成酶系存在于胞液及光面内质网上。
合成胆固醇的原料为乙酰辅酶A和NADPH,此外还需ATP提供能量,乙酰辅酶A是葡萄糖、氨基酸和脂肪酸在线粒体内的代谢分解产物。
它不能通过线粒体内膜,需在线粒体内先与草酰乙酸缩合成柠檬酸,后者再通过线粒体内膜的载体进入胞浆,然后柠檬酸在裂解酶的催化下,裂解生成乙酰CoA 用于胆固醇合成。
合成反应所需NADPH主要来自磷酸戊糖途径。
二、胆固醇合成的调节β-羟-β甲戊二酸单酰CoA(HMG-CoA)还原酶是胆固醇合成的限速酶,也是各种因素对胆固醇合成的调节点。
此酶受蛋白激酶作用而发生磷酸化,使酶活性丧失;胞液中的脂蛋白磷酸酶使HMG-CoA还原酶去磷酸化,使酶恢复活性。
胆固醇的合成受到下列因素的调节:1.饥饿与饱食饥饿与禁食可抑制肝合成胆固醇。
相反,进食高糖、高饱和脂肪膳食后,肝HMG-CoA还原酶活性增加,胆固醇的合成增加。
医学教育网|搜索整理2.胆固醇胆固醇可反馈抑制肝脏合成胆固醇,它主要抑制HMG-CoA还原酶的合成。
此外胆固醇的代谢产物,如7β羟胆固醇和25羟胆固醇对HMG-CoA还原酶有较强的抑制作用3.激素胰岛素和甲状腺素能诱导肝HMG-CoA还原酶的合成,从而增加胆固醇的合成。
胰高血糖素和皮质醇能抑制并降低HMG-CoA还原酶的活性,因而减少胆固醇的合成。
甲状腺素还可促进胆固醇在肝脏内转变成胆汁酸,因此甲状腺功能亢进时,患者血清胆固醇含量反见下降。
人体胆固醇代谢调控的关键控制点_吕娜

transcription of hepatic HMGCoA reductase by insulin requires tristetraprolin[J].FASEB J,2012(26): 931.1. [2]Rex AP,Ricardo G,Carol SR,et al. Bile acid and sterol metabolism with combined HMG-CoA reductase and PCSK9 suppression[J].J Lipid Res,2013(54): 2400-2409. [3]Daniel JR,John JP.Lomitapide and Mipomersen:Two First-inClass Drugs for Reducing LowDensity Lipoprotein Cholesterol in Patients With Homozygous Familial Hypercholesterolemia[J].Circulation, 2014,129:1022-1032. [4]Repa JJ,Mangelsdorf DJ.The liver X receptor gene team:potential new players in atherosclerosis[J]. Nature Med,2002,8(11):1243-8.
临床研究
人体胆固醇代谢调控的关键控制点
吕 娜 吉林农业大学食品科学与工程学院 吉林省长春市 130118
【摘 要】大量的流行病学资料表明,降低血中胆固醇水平对预防多种相关疾病,特别是对心血管疾病的发生和发展具有重要的 意义。本文综述了人体胆固醇代谢调控的关键控制点,为今后人体胆固醇代谢的基础研究及降胆固醇药物的开发提供参考。
胆固醇合成与代谢调控

胆固醇合成与代谢调控胆固醇是一种脂质,在体内广泛存在,而且对于我们的身体很有必要。
在人体中,胆固醇是一种重要的组成部分,它在细胞中起着维持细胞膜完整性、合成荷尔蒙、维持神经系统健康等重要作用。
但是,如果胆固醇含量过多,就会增加动脉粥样硬化、心脏病等心血管疾病的风险。
因此,研究胆固醇的合成和代谢调控对于预防和治疗这些疾病十分重要。
一、胆固醇的合成途径胆固醇的合成主要发生在肝脏和肠道中,而且合成的起点都是从醋酸开始。
醋酸可以通过三个途径转化成胆固醇,分别是类固醇原路(mevalonate)途径、非类固醇原路(non-mevalonate)途径以及嗜氧呼吸(aerobic respiration)途径。
其中,类固醇原路途径是胆固醇合成的主要途径,它包括两个阶段:第一阶段是醋酸—丙酮酸—胆酸酰辅酶A(acetyl-CoA)途径,第二阶段是胆固醇合成途径。
在这个过程中,mRNA等因子的作用是必不可少的。
二、胆固醇的代谢调控胆固醇的合成与代谢调控主要由两种基础机制实现,分别是靶点反应和反馈抑制。
靶点反应是指正常代谢活动期间合成胆固醇的靶点反应机制。
在这个过程中,膳食胆固醇的摄入和肝脏胆固醇的合成从变量方面受到调节,从而控制胆固醇的代谢。
反馈抑制则是旨在降低细胞内胆固醇水平的机制。
在这个过程中,有三种非常重要的酶参与了胆固醇代谢调控,分别是胆固醇酰辅酶A还原酶(HMG-CoA reductase)、胆固醇酯酶(ACAT)和胆固醇7α-羟化酶(CYP7A1)。
HMG-CoA reductase是限制胆固醇合成的主要酶,因此可以作为一个“瓶颈”来调节胆固醇合成。
ACAT参与了胆固醇在细胞中的储存和利用,而CYP7A1则被认为是胆固醇代谢的限制因子。
三、胆固醇与健康胆固醇的含量过多会增加心血管疾病、脑血管疾病等的风险。
因此,通过改变饮食习惯、增加体育锻炼等方式来控制胆固醇含量是非常重要的。
此外,药物治疗也是控制胆固醇含量的有效手段之一。
胆固醇合成和代谢的调节机制研究

胆固醇合成和代谢的调节机制研究胆固醇是人体内非常重要的一种脂类物质,它是构成细胞膜的主要成分,同时还可以用来合成荷尔蒙和维生素D等物质。
然而,过多的胆固醇会积聚在体内,形成动脉粥样斑块,加速动脉硬化的进程,导致心脑血管疾病的发生。
因此,研究胆固醇的合成和代谢的调节机制,对于预防和治疗一系列心脑血管疾病具有非常重要的意义。
胆固醇的合成人体内的胆固醇有两个来源,一是通过摄入食物中的胆固醇,二是通过身体内的合成。
其中,身体内的胆固醇合成是体内胆固醇水平的主要控制点。
胆固醇合成的过程是由一系列多酶反应组成的,其中HMG-CoA还原酶是最为关键的调节酶。
HMG-CoA还原酶的活性会受到多种因素的影响,包括细胞内胆固醇水平的变化、胆固醇合成中间产物甲状腺素的水平、胆固醇转运蛋白的合成和活性等。
其中,细胞内胆固醇的变化是最为重要的调节因素。
当细胞内胆固醇水平过低时,会激活HMG-CoA还原酶的合成和活性,增加胆固醇的合成;反之,当细胞内胆固醇水平过高时,会抑制HMG-CoA还原酶的活性,减少胆固醇的合成。
此外,甲状腺素和一些内分泌物质(如胰岛素和睾丸素等)也可以通过调节HMG-CoA还原酶的合成和活性来影响胆固醇的合成。
胆固醇的代谢除了合成,胆固醇的代谢也是影响胆固醇水平的重要因素。
胆固醇可以通过肝脏运输到全身各个组织,同时也可以通过胆汁排泄出体外。
胆固醇排泄的主要途径是胆汁酸形成的循环通路,这也是胆固醇代谢中最为重要的环节之一。
胆汁酸是胆固醇代谢中的重要产物,它可以形成胆汁,促进脂肪的消化和吸收。
在肝脏中,胆汁酸的合成需要经过多个酶的参与,包括胆固醇7α-羟化酶、胆汁酸合成酶、胆汁酸脱羧酶等。
这些酶的活性受到多种因素的调节,如细胞内胆汁酸水平的变化、肝脏中其他代谢产物的积累等。
此外,一些药物(如胆汁酸树脂和他汀类药物)也可以通过调节胆汁酸代谢来影响胆固醇的代谢。
总结综上所述,胆固醇合成和代谢的调节机制非常复杂,涉及到多种酶和代谢产物的参与。
胆固醇代谢途径在脂质代谢调节中的作用及其机制

胆固醇代谢途径在脂质代谢调节中的作用及其机制脂质是人体中不可或缺的重要生化物质之一,它们在维持人体正常生理功能中扮演着重要角色。
然而,当脂质代谢紊乱时,会引发多种疾病,包括高脂血症、动脉粥样硬化和冠心病等,这些疾病对患者的健康造成了严重威胁。
因此,对脂质代谢调控的研究变得至关重要。
胆固醇是一种重要的脂类化合物,在人体中有着多种生理功能,然而其含量过高也会影响健康。
因此,研究胆固醇代谢途径在脂质代谢调节中的作用及其机制,有重要的临床意义。
胆固醇代谢途径包括胆固醇合成途径、胆固醇摄取途径和胆固醇转运途径。
这些代谢途径紧密相连,共同影响着胆固醇在人体中的生物学作用。
胆固醇合成途径主要发生在肝脏和肠道,其中最为重要的酶是 HMG-CoA 还原酶。
在体内,多数胆固醇以形式结合到载脂蛋白中进行转运,其中最重要的载脂蛋白是 LDL 和 HDL。
通过这些载脂蛋白,胆固醇可以被转运到不同的组织细胞中,发挥其生物学作用。
胆固醇代谢途径在脂质代谢调节中的作用机制主要体现在两个方面:一是通过谷固醇代谢途径的调节,二是通过基因表达和信号传导的调节。
首先,谷固醇代谢途径是人体内调节血液胆固醇水平的重要途径之一。
这一代谢途径不仅可以抑制 HMG-CoA 还原酶转录和翻译,也能够通过降低 LXR 活性,抑制由HMG-CoA 还原酶产生的胆固醇合成。
同样,谷固醇在人体内也能够作为胆汁酸的前体物,进一步调节胆固醇的代谢过程。
其次,胆固醇代谢途径通过基因表达和信号传导调节脂质代谢。
研究表明,多种激素和核受体可以通过调节胆固醇合成途径和胆固醇转运途径来影响脂质代谢。
例如,LXR 可以促进 ABCG1、ABCA1等基因的表达,从而促进胆固醇转运。
而HMG-CoA 还原酶的表达与 Insig-1 和 Insig-2 的相互作用、LXR 的拮抗剂等多种因素有关,这些因素通过多重信号传递途径调节 HMG-CoA 还原酶表达与活性,从而影响血液中胆固醇的含量。
胆固醇合成代谢的调控

胆固醇合成代谢的调控展开全文人体每天从膳食中摄入胆固醇,自身也在不断合成。
这些胆固醇主要用于胆汁酸的合成,其次为类固醇激素合成。
正常情况下,人体会控制自身合成速率,使其与摄入和消耗达成三方平衡,保证血液中的胆固醇含量稳定在150-200 mg / dL范围内。
HMGR(HMG辅酶A还原酶)是胆固醇合成的限速酶,所以它的活性和数量调控是胆固醇合成调控的主要手段。
酶活性调控主要是可逆磷酸化修饰和胆固醇的反馈抑制,数量调控主要是固醇调节元件结合蛋白(SREBP)的转录调节,以及酶的泛素化降解。
HMGR的结构域及功能。
引自Semin Cell Dev Biol. 2018 Sep; 81: 121-128.HMGR的共价修饰主要是被AMP激活的蛋白激酶(AMPK)磷酸化失活,而HMGR磷酸酶(PP2A)可将其水解恢复活性。
AMPK本身通过磷酸化激活。
负责激活的主要激酶是LKB1(肝激酶B1),其次为钙调蛋白依赖性蛋白激酶激酶β(CaMKKβ)。
负责去磷酸化灭活的还是PP2A。
HMGR的活性调控,引自磷蛋白磷酸酶(PPP)家族包括PP1、PP2A、PP2B(也称PP3)、PP4-PP7。
其中的PP1我们在糖原代谢调控中接触过。
PPP 都含有催化亚基(C)和调节亚基(R)。
调节亚基一般有多种,负责酶的底物特异性、细胞定位和调控等,可以与催化亚基形成多种组合,从而与多种多样的激酶互相调节。
蛋白激酶和磷蛋白磷酸酶在有丝分裂期间的相互调节,引自Front Cell Dev Biol. 2018 Mar 22;6:30.PP2A还需要一种支架亚基,所以是异三聚体。
其中支架亚基(最初称为A亚基,基因为PPP2R1)和催化亚基组成核心酶,再与调节亚基组装成全酶。
理论上说,PP2A通过亚基的组合,可以产生上百种不同全酶,每个都有潜在不同的底物特异性等(Front Cell Dev Biol. 2018 Mar 22;6:30.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.胆固醇合成途径
胆固醇合成负反馈调控: SREBPs-膜结合的转录因子
Wang X, Briggs MR, Hua X, Yokoyama C, Goldstein JL, Brown MS. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem. 1993 Jul 5;268(19):14497-504.
家族性高胆固醇血症(低密度脂蛋白受体突变) (Familial Hypercholesterolemia, FH)
杂合子患者血清人高出6~8倍
杂合子患者发生率为1/500
纯合子患者发生率为1/1,000,000
杂合子患者男性30~40岁时,患CAD, 23% 患者在50岁以前 死于CAD,>50% 患者在60岁时明显的CAD症状; 纯合子患者十几岁时,有严重的心血管事件甚至死亡
胆固醇代谢平衡调控
胆固醇的化学结构式
Nobel laureates:
1928 Windans 阐明胆固醇的结构 1964 Bloch & Lynen 阐明胆固醇从头合成途径
1985 Michael S. Brown & Joseph L. Goldstein
发现低密度脂蛋白受体,阐明胆固醇代谢的调节机制
+ Sterol
泛素蛋白酶体途径
甾醇调控HMGCR降解的分子机制
Cao, J., Wang, J., et al., Cell Metab, 2007
二.胆固醇吸收途径
细胞内胆固醇的动态运输平衡
Frederick R. Maxfield and Ira Tabas, Nature, 2005
Abnormal of cholesterol metabolism
Gall-stone
Obesity
脂肪肝-Fatty liver
胆固醇代谢平衡
Acetyl CoA
600-900 mg
Bile Acids
500-600 mg
300-500 mg
Cholesterol Pool ~100 g
600 mg
NPC疾病 (Niemann-Pick Disease Type C)临床表型
NPC is one of several inherited diseases of cholesterol metabolism.
Symptom: 1) Enlarged liver and spleen 2) Progressive loss of motor skills, learning problems, feeding difficulties, dementia, and seizures 3) Progressive central nervous system degeneration
Dietary Cholesterol
Biliary Cholesterol
胆固醇代谢平衡调控途径
1. SREBPs转录水平调控 一.胆固醇合成途径 (负反馈调控) 2. 胆固醇合成关键限速酶HMGCR蛋白降解调控
1. 低密度脂蛋白受体(LDLR)介导的胆固醇吸收
二.胆固醇吸收途径 2. NPC1L1介导的肝肠内游离胆固醇的吸收 三.胆固醇外排途径
LDLR突变----黄色瘤
LDLR突变----眼底脂质渗出
FH患者
正常人
LDL来源胆固醇在溶酶体中的运输
Hyock Joo Kwon, et al., Cell, 2009
NPC1的拓扑结构
Joanna P. Davies, JBC, 2000
NPC疾病的细胞学表型
Eugene D. Carstea, et al, Science, 1997
胆固醇的生物学功能
Polar head group
Phospholipid
Saturated Unsaturated
Modified from Molecular Biology of the Cell, 1994
Fatty Acid
caveolae
胆固醇代谢异常与疾病
Cardiovascular disease
SREBPs调控的目的基因
胆固醇合成途径限速酶-HMGCR
(HMGCR)
HMGCR
Lanosterol是调节HMGCR的内源分子
Song BL et al, Cell Metab, 2005
HMGCR通过泛素蛋白酶体途径降解
A C
B
Sever N*, Song BL*, Yabe D* et al., JBC, 2003 Song and Debose-boyd, JBC, 2004 No Addition
Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. SREBP-1, a basic-helixloop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187-97. Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8;77(1):53-62.
NPC1L1介导的胆固醇在小肠中的吸收过程
NPC1L1的拓扑结构
Wang, J., Chu, B.B., et, al., JLR, 2009
NPC1L1在细胞内循环转运与介导胆固醇吸收的分子机制
Wang and Song, 2012, BBA
Xie et al., 2012, JLR Ge et al., 2011, PNAS Xie et al., 2011, JBC Zhang et al., 2011, JBC Chu et al., 2009, JBC Wang et al., 2009, JLR Ge et al., 2008, Cell Metabolism
谢 谢!
The majority (~95%) of the patients have been classified as npc1.
NPC1L1在胆固醇吸收过程中发挥重要作用
A B
C
Xie et al., JLR, 2012
Scott W. Altmann, et al, Science, 2004