2012年中考数学第二轮复习重难点专题讲座第五讲多种函数交叉综合问题

合集下载

2012年全国各地中考数学压轴题精选讲座(共8份)-6

2012年全国各地中考数学压轴题精选讲座(共8份)-6

2012年全国各地中考数学压轴题精选讲座五一次函数、反比例函数的图象与几何【知识纵横】一次函数、反比例函数与几何问题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。

这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。

考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。

解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。

解函数图象与几何的综合题,应善于运用坐标,线段长度,函数解析式三者关系,要充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。

【选择填空】1. (浙江义乌)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;(2)当AB为梯形的腰时,点P的横坐标是2. (浙江衢州)如图,已知函数y=2x和函数ky=x的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是.3. (浙江温州)如图,已知动点A在函数4y=x(x>o)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴,y轴于点P,Q.当QE:DP=4:9时,图中的阴影部分的面积等于 _.4. (浙江绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示)【典型试题】1. (浙江金华)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.2(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【考点】一次函数综合题,待定系数法,直线上点的坐标与方程的关系,勾股定理,锐角三角函数定义,全等三角形的判定和应用。

2012中考数学第二轮复习难点分类讲解(10讲)-6

2012中考数学第二轮复习难点分类讲解(10讲)-6

中考数学重难点专题讲座第三讲 动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

在这一讲,我们着重研究一下动态几何问题的解法,第一部分 真题精讲【例1】(2010,密云,一模)如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCMBA(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。

对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。

但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。

所以当题中设定MN//AB 时,就变成了一个静止问题。

由此,从这些条件出发,列出方程,自然得出结果。

【解析】解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.ABMCNED∵AB DE ∥,AB MN ∥.∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NCEC CD=. (这个比例关系就是将静态与动态联系起来的关键) ∴1021035t t -=-.解得5017t =.【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。

2012年全国各地中考数学压轴题精选讲座(共8份)-5

2012年全国各地中考数学压轴题精选讲座(共8份)-5

2012年全国各地中考数学压轴题精选讲座八操作与探究【知识纵横】操作型探究题作为考查学生分析、解决问题以及创新意识的良好载体,是近年中考的热点题型之一。

操作型探究题以几何图形为背景,通过平移、旋转构造出新图形,从图形的形状和位置的变化中去探求函数、方程、全等、相似、解直角三角形等知识间的关系。

探究性问题一般没有明确的条件或结论,没有固定的形式和方法,要求我们认真收集和处理问题的信息,通过观察、分析、综合、归纳、概括、猜想和论证等深层次的探索活动。

探索研究是通过对题意的理解,解题过程由简单到难,在承上启下的作用下,引导学生思考新的问题,大胆进行分析、推理和归纳,即从特殊到一般去探究,以特殊去探求一般从而获得结论,有时还要用已学的知识加以论证探求所得结论。

操作性问题是让学生按题目要求进行操作,考察学生的动手能力、想象能力和概括能力。

【选择填空】1. (浙江丽水、金华)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010 B.2012 C.2014 D.20162. (浙江绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为【】A.512532⨯B.69352⨯C.614532⨯D.711352⨯【典型试题】1. (浙江宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出ABCD是几阶准菱形.【考点】新定义理解,图形的剪拼,平行四边形、菱形的判定和性质,归纳(图形的变化类)。

2012年中考数学复习考点解密 分类讨论(含解析)

2012年中考数学复习考点解密 分类讨论(含解析)

2012年中考数学二轮复习考点解密 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y 点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

2012中考数学专题讲座 函数

2012中考数学专题讲座 函数

2009中考数学专题讲座 函数、方程、不等式问题【知识纵横】函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。

也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。

又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。

【典型例题】【例1】(天津市)已知抛物线,(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;(3)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【例2】(黄石市)如图,已知抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式及其顶点的坐标;(2)设直线交轴于点.在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;(3)过点作轴的垂线,交直线于点,将抛物线沿ABCOxy其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?【例3】(吉林长春)已知两个关于的二次函数与当时,;且二次函数的图象的对称轴是直线.(1)求的值;(2)求函数的表达式;(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由.【例4】(广西南宁)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。

某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图①所示;种植花卉的利润与投资量成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?【学力训练】1、(广州)如图,一次函数的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.2、(江西省卷)已知:如图所示的两条抛物线的解析式分别是,(其中为常数,且).(1)请写出三条与上述抛物线有关的不同类型的结论;(2)当时,设与轴分别交于两点(在的左边),与轴分别交于两点(在的左边),观察四点坐标,请写出一个你所得到的正确结论,并说明理由;(3)设上述两条抛物线相交于两点,直线都垂直于轴,分别经过两点,在直线之间,且与两条抛物线分别交于两点,求线段的最大值.yxAOBB3、(四川自贡)抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于的一元二次方程有两个相等的实数根.(1)判断△ABM的形状,并说明理由.(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,求该圆的圆心坐标.4、(青海省卷)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间(单位:分钟)与学习收益量的关系如图甲所示,用于回顾反思的时间(单位:分钟)与学习收益量的关系如图乙所示(其中是抛物线的一部分,为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量与用于解题的时间之间的函数关系式,并写出自变量的取值范围;(2)求王亮回顾反思的学习收益量与用于回顾反思的时间之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量解题的学习收益量回顾反思的学习收益量)OOyyxxA2515图甲图乙425。

2012年全国各地中考数学压轴题精选讲座(共8份)

2012年全国各地中考数学压轴题精选讲座(共8份)

2012年全国各地中考数学压轴题精选讲座七阅读理解型【知识纵横】阅读理解问题是近年中考的热点题型之一。

重在考查阅读理解能力、分析能力、辨别判断能力以及生活经验是否丰富等,所给定的阅读材料,可能是新定义的概念、公式等,要求理解应用;或者是图象表格,从中提取有用的解题信息;或者是范例式呈现,去模仿解答新问题;或者是根据一些特殊信息探求规律等.常见的类型有猜想型、概括型、探索型、应用型等。

阅读理解的整体模式是:阅读—理解—应用。

重点是阅读,难点是理解,关键是应用,通过阅读,对所提供的文字、符号、图形等进行分析和综合,在理解的基础上制定解题策略。

【选择填空】1. (浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a ⊕b = (用a ,b 的一个代数式表示).2. (山东省临沂市)读一读:式子“1+2+3+4+……+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为∑=1001n n ,这里“∑”是求和符号,通过以上材料的阅读,计算∑=+20121n 1)(n 1n = .【典型试题】 1. (江苏盐城)知识迁移: 当0a >且0x >时,因为2≥0,所以ax x -+≥0,从而a x x +≥(当x =时取等号).记函数(0,0)ay x a x x=+>>,由上述结论可知:当x =,该函数有最小值为直接应用:已知函数1(0)y x x =>与函数21(0)y x x=>, 则当x =_________时,12y y +取得最小值为_________.变形应用:已知函数11(1)y x x =+>-与函数22(1)4(1)y x x =++>-,求21y y 的最小值,并指出取得该最小值时相应的x 的值.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低是多少元?【考点】二次函数的应用,几何不等式。

2012中考数学第二轮复习难点分类讲解(10讲)-2

2012中考数学第二轮复习难点分类讲解(10讲)-2

中考数学重难点专题讲座第九讲 几何图形的归纳,猜想,证明问题【前言】实行新课标以来,中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。

08年的中考填空压轴是一道代数归纳题,已经展现出了这种趋势。

09年的一模,二模也只是较少的区县出了这种归纳题,然而中考的时候就出了一道几何方面的n 等分点总结问题。

于是今年的一模二模,这种有关几何的归纳,猜想问题铺天盖地而来,这就是一个重要的风向标。

而且根据学生反映,这种问题一般较难,得分率很低,经常有同学选择+填空就只错了这一道。

对于这类归纳总结问题来说,思考的方法是最重要的,所以一下我们通过今年的一二模真题来看看如何应对这种新题型。

第一部分 真题精讲【例1】2010,海淀,一模如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……【思路分析】拿到这种题型,第一步就是认清所求的图形到底是什么样的。

本题还好,将阴影部分标出,不至于看错。

但是如果不标就会有同学误以为所求的面积是22B AC ∆,33B AC ∆这种的,第二步就是看这些图形之间有什么共性和联系.首先2S 所代表的三角形的底边2C 2D 是三角形2AC 2D 的底边,而这个三角形和△3AC 3B 是相似的.所以边长的比例就是2AC 与3AC 的比值.于是2122323233S ==.接下来通过总结,我们发现所求的三角形有一个最大的共性就是高相等,为3(连接上面所有的B 点,将阴影部分放在反过来的等边三角形中看)。

那么既然是求面积,高相等,剩下的自然就是底边的问题了。

2012届高考数学二轮复习精品课件(大纲版)专题1_第5讲_函数、导数及不等式的综合应用

2012届高考数学二轮复习精品课件(大纲版)专题1_第5讲_函数、导数及不等式的综合应用

当 x∈-∞,-
-a3时,f′(x)>0.因此当
x∈-∞,-
-a3时,f′(x)g′(x)<0.故由题设得 a≥
- -a3且 b≥- -a3,从而-13≤a<0,于是-13≤b≤0,因此|a-b|≤13,且当 a=-13,b=0 时 等号成立.
第5讲 │ 要点热点探究
又当 a=-13,b=0 时,f′(x)g′(x)=6xx2-19,从而当 x∈-13,0 时 f′(x)g′(x)>0,故函数 f(x)和 g(x)在-13,0上单调性一致.因此|a- b|的最大值为13.
第5讲│ 要点热点探究
► 热点链接 3 构造函数证明不等式问题 利用导数证明不等式,就是把不等式恒成立的问题,通过构造函数,
转化为利用导数求函数最值问题.应用这种方法的难点是如何根据不等 式的结构特点或者根据题目目标的要求,构造出相应函数关系式.
如何构造函数关系式,破解的基本思路是从函数的角度分析和理解 要证明的不等式的结构特点,然后去构造函数式,或者从不等式证明的 方向上去构造函数式,使所构造出的函数是不等式所需要的最佳函数.
2x+1ax-1
x
.①若 a≤0,则 f′(x)>0,所以 f(x)在(0,+∞)单调增加.②
若 a>0,则由 f′(x)=0 得 x=1a,且当 x∈0,1a时,f′(x)>0,当 x>1a时,f′(x)
<0.所以 f(x)在0,1a单调增加,在1a,+∞单调减少.
(2)设函数 g(x)=f1a+x-f1a-x,则 g(x)=ln(1+ax)-ln(1-ax)-2ax, g′(x)=1+aax+1-aax-2a=12-a3ax22x2.当 0<x<1a时,g′(x)>0,而 g(0)
【分析】 (1)讨论函数的单调性,要对字母进行分类讨论; (2)对不等式的证明,可考虑构造函数法;(3)证明 f ′(x0)<0,即 证明 f(x)在 x0=x1+2 x2所在的区间内单调递减.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学重难点专题讲座第五讲多种函数交叉综合问题【前言】初中数学所涉及的函数无非也就一次函数,反比例函数以及二次函数。

二次函数基本上只会考和一次函数的综合问题,二次函数与反比例函数基本不会涉及。

所以如何掌握好一次函数与反比例函数的综合问题就成为了又一重点。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

所以在中考中面对这类问题,一定要做到避免失分。

【例1】2010,西城,一模『9 )将直线y=4x沿y轴向下平移后,得到的直线与x轴交于点 A -, 0,与双曲线y =k(x 0)交于点B •x⑴求直线AB的解析式;⑵若点B的纵标为m,求k的值(用含有m的式子表示).【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。

题目一般不难,设元以后计算就可以了。

本题先设平移后的直线,然后联立即可。

比较简单,看看就行•【解析】将直线y=4x沿y轴向下平移后经过x轴上点A(9,0),4设直线AB的解析式为y =4x b .9 则4 b=04 '解得b = -9 .•••直线AB的解析式为y =4x -9 .图3(2)设点B的坐标为X B , m ,•••直线AB经过点B ,m = 4x B-9 .i'm +9 I■■- B点的坐标为—^,m ,I 4丿k•••点B在双曲线y x 0 j上,xkm = —m 9 .4m2 +9m--k =.4【例2】2010,丰台,一模如图,一次函数y^kx b的图象与反比例函数y^m的图象相交于A、B两点.x(1) 求出这两个函数的解析式;y i ::: y2 (2) 结合函数的图象回答:当自变量x的取值范围满足什么条件时,【思路分析】第一问直接看图写出 A , B 点的坐标(一6,— 2) (4,3),直接代入反比例函 数中求m ,建立二元一次方程组求k,b 。

继而求出解析式。

第二问通过图像可以直接得出结论。

本题虽然简单,但是事实上却有很多变化。

比如不给图像,直接给出解析式求 y i ::: y 2的 区间,考生是否依然能反映到用图像来看区间。

数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。

【解析】m=12.(2)当 0<x<4 或 x< — 6 时,y i H .【例3】2010,密云,一模I yB3解:(1)由图象知反比例函数 y 2m的图象经过点xB(4 , 3),•••反比例函数解析式为 12 y 2 :x由图象知一次函数 y i =kx b 的图象经过点A( — 6,—2) ,B(4, 3),-6k b 二-2, 4k b =3.•一次函数解析式为1 k 二—,解得 2b =1.1 y x 1.已知:如图,正比例函数y 二ax 的图象与反比例函数 ky=—的图象交于点A3,)x(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M m, n是反比例函数图象上的一动点,其中0 ::: m ::: 3,过点M作直线MB // x 轴,交y轴于点B ;过点A作直线AC // y轴交x轴于点C,交直线MB于点D .当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.【思路分析】第一问由于给出了一个定点,所以直接代点即可求出表达式。

第二问则是利用图像去分析两个函数的大小关系,考生需要对坐标系有直观的认识。

第三问略有难度,一方面需要分析给出四边形OADM的面积是何用意,另一方面也要去看BM,DM和图中图形面积有何关系•视野放开就发现四边形其实就是整个矩形减去两个三角形的剩余部分,直接求出矩形面积即可•部分同学会太在意四边形的面积如何求解而没能拉出来看,从而没有想到思路,失分可惜•【解析】k解:(1)将3,2分别代入y=ax中厂\x得 2 =3a , 2 3,3a =— k =62正比例函数的表达式为 * a.3(2)观察图象得,在第一象限内,当0 :::x :::3时,反比例函数的值大于正比例函数的值.3,.反比例函数的表达式为:y =-;x (3) BM 二DM •理由:•••6 n = m1 m 2n =3,即S^BMO = 3 .•/ AC _0C ,…AOC二・:3 ■:2 = 3 .2• •• S oCDB ^4 3 ^12•(很巧妙的利用了和的关系求出矩形面积)BO 上=4 •36BO• DM =3 —BM 二BM2【例4】2010,石景山,一模已知:y=ax与y二―3两个函数图象交点为Pm ,n,且m :::n,m、n是关于x的一x元二次方程kx2 2k -7 x k *3=0的两个不等实根,其中k为非负整数.(1)求k的值;4线段AB二?,求c的值.【思路分析】本题看似有一个一元二次方程,但是本质上依然是正反比例函数交点的问题。

第一问直接用判别式求出k的范围,加上非负整数这一条件得出k的具体取值。

代入方程即可求出m, n,继而求得解析式。

注意题中已经给定m<n,否则仍然注意要分类讨论。

第三问联立方程代入以后将A,B表示出来,然后利用AB = 3构建方程即可。

2【解析】(1)也=(2k —7 2—4k(k+3)A0,4940(2)求a、—的值;K Q(3)如果y c = 0与函数y = ax和y = 交于A B两点(点A在点B的左侧),x•/ k为非负整数,••• k =0,12••• kx2^7 x k *3=0为一元二次方程• k =1⑵把k =1代入方程得x2 -5x • 4 =0 ,解得xi =1,冷=4•/ m ::: nm =1, n =4把m =1, n =4代入y二ax与y二鼻3x可得 a 二4, b 二1(3)把y 二c代入y 二4x与y 二4x可得 A C,c , B -,c,由AB =3,可得4 _C= 3U丿2丿2 c 4 2解得q =2 © - -8,经检验q =2, c^ - -8为方程的根。

• G = 2, c2 = -8【例5】2010,海淀,一模已知:如图,一次函数y = ——x • m与反比例函数y二——的图象在第-象限的交点为3 xA(1, n).(1)求m与n的值;(2)设一次函数的图像与x轴交于点B,连接OA,求/BAO的度数.【思路分析】如果一道题单纯考正反比例函数是不会太难的, 所以在中考中经常会综合直线卫与x 轴交于点B ,3 3 3 2 3门x0. 3 3解得x = -2 .点B 的坐标为(-2,0). OB =2 .••点A 的坐标为(1, J 3), ••• AM = .3,OM =1.在 Rt △ AOM 中,.AMO =90 ,AM一些其他方面的知识点。

比如本题求角度就牵扯到了勾股定理和特定角的三角函数方面, 要考生思维转换要迅速。

第一问比较简单,不说了。

第二问先求出 变化成了一道三角形内线段角的计算问题, 利用勾股定理发现 然后求出/ BAO 即可。

解:(1厂••点A(1,n)在双曲线y=_!上,xA,B 具体点以后本题就 OB=OA,从而/ BAO= /ABO,又• A(1,・.3)在直线y 二x m 上,(2)过点A 作AM 丄x 轴于点M.tan N AOM = ------ =\/3 .OM由勾股定理,得OA = 2.• OA =OB.•. OBA=/BAO.1• . BAO AOM =30 .—2【总结】中考中有关一次函数与反比例函数的问题一般都是成对出现的。

无非也就一下这么几个考点:1、给交点求解析式;2,y的比较,3,夹杂进其他几何问题。

除了注意计算方面的问题以外,还需要考生对数形结合,分类讨论的思想掌握熟练。

例如y的比较这种问题,纯用代数方式通常需要去解一个一元二次不等式,但是如果用图像去做就会比较简单了。

总体来说这类问题不难,做好细节就可以取得全分。

第二部分发散思考【思考1】2009,北京如图, A、B两点在函数y = —x 0的图象上x(1)求—的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

【思路分析】由于已经给出了点,第一问没有难度。

第二问在于要分析有哪些格点在双曲线的边界上,哪些格点在其中。

保险起见直接用 1 —6的整数挨个去试,由于数量较少, 所以可以很明显看出。

【思考2】2009,宣武,一模AD(2)求的值.CD【思路分析】第一问一样是用代点以及列二元一次方程组去求解析式。

第二问看到比例关系,考生需要第一时间想到是否可以用相似三角形去分析。

但是图中并未直接给出可能的三角形,所以需要从A引一条垂线来构成一对相似三角形,从而求解。

【思考3】2009,崇文,一模已知:关于x的一元二次方程kx2+(2k —3)x+k — 3 = 0有两个不相等实数根(k<0).(I)用含k的式子表示方程的两实数根;(II)设方程的两实数根分别是x1, x2(其中为AX2),若一次函数y=(3k —1)x+b与K反比例函数y =-的图像都经过点(xl, kx2),求一次函数与反比例函数的解析式.x【思路分析】本题是一道多种函数交叉的典型例题,一方面要解方程,另一方面还要求函数解析式。

第一问求根,直接求根公式去做。

第二问通过代点可以建立一个比较繁琐的二元一次方程组,认真计算就可以。

【思考4】2009,东城,一模8如图,反比例函数y 的图象过矩形OABC的顶点B , OA、0C分别在x轴、y轴的x正半轴上,OA : 0C=2: 1.(〔)设矩形OABC的对角线交于点E,求出E点的坐标;(2)若直线y =2x • m平分矩形OABC面积,求m的值【思路分析】本题看似麻烦,夹杂了一次函数与反比例函数以及图形问题。

但是实际上画出图,通过比例可以很轻易发现B点的横纵坐标关系,巧妙设点就可以轻松求解。

第二问更不是难题,平分面积意味着一定过B点,代入即可。

第三部分 思考题解析【思考1解析】(1)由图象可知,函数 y=m ( x ■ 0 )的图象经过点A(1,6),x可得m = 6 .••• A(1,6) , B(6,,)两点在函数y =kx • b 的图象上,k b =6, k =1,解得6k b =1.b =7.•••直线AB 的解析式为y =-x 7 .(2)图中阴影部分(不包括边界)所含格点的个数是【思考2解析】 (1)把 x - -3 ,y =1代入 y=m ,得:m--3.x 3-反比例函数的解析式为 y 二x 33 把x = 2 , y = n 代入y 得n =x23把x = -3 , y =:1; x=2 , y分别代入2-3k b =1y =kx b 得32k+b = —— L 2解得 -一次函数的解析式为设直线AB 的解析式为y 二kx • b .3(第16题答图)(2)过点A 作AE _ x 轴于点E •A 点的纵坐标为1 , AE =1 •y^-^x-丄得c 点的坐标为 0,-1 , 22 I 2 丿在 Rt △ OCD 和 Rt △ EAD 中,.COD = AED = Rt , CDO 二 ADE ,.Rt △ OCD s Rt △ EAD •【思考3解析】 解:(I ) ; kx2+ (2k — 3)x+k — 3 = 0是关于x 的一元二次方程.••• & -(2k -3)2 -4k(k -3) =9由求根公式,得3(II ) k <0 ,• 3-1 ::: -1.k3 X 21 •kh _3k b,__b-1.\ = —5解之,得」•jb = -8• 一次函数的解析式为 y = -16x -8,反比例函数的解析式为 y =「8•x(第 22 题)由一次函数的解析式为AD CDAE CO=2 •(3-2k) 3 2k3x - -1 或 x 1由题意,有••• B在第一象限,.a =2.B( 4 ,2 )•••矩形OABC对角线的交点E为(2,1) (2)v直线y=2x m平分矩形OABC必过点(2,1)2•.仁2x2+mm= —3。

相关文档
最新文档