中考数学解答题重难点专题突破:简单几何图形的证明与计算试题(有答案)

中考数学解答题重难点专题突破:简单几何图形的证明与计算试题(有答案)
中考数学解答题重难点专题突破:简单几何图形的证明与计算试题(有答案)

中考数学解答题重难点专题突破---解答重难点题型突破

题型一 简单几何图形的证明与计算

类型一 特殊四边形的探究

1.(开封模拟)如图,在Rt △ABC 中,∠BAC =90°,∠B =60°,以边AC 上一点O 为圆心,OA 为半径作⊙O,⊙O 恰好经过边BC 的中点D ,并与边AC 相交于另一点F.

(1)求证:BD 是⊙O 的切线;

(2)若BC =23,E 是半圆AGF ︵

上一动点,连接AE 、AD 、DE. 填空:

①当AE ︵

的长度是__________时,四边形ABDE 是菱形; ②当AE ︵

的长度是__________时,△ADE 是直角三角形.

2.(商丘模拟)如图,已知⊙O 的半径为1,AC 是⊙O 的直径,过点C 作⊙O 的切线BC ,E 是BC 的中点,AB 交⊙O 于D 点.

(1)直接写出ED 和EC 的数量关系:;

(2)DE 是⊙O 的切线吗?若是,给出证明;若不是,说明理由;

(3)填空:当BC =__________时,四边形AOED 是平行四边形,同时以点O 、D 、E 、C 为顶点的四边形是__________.

3.如图,在菱形ABCD中,∠ABC=60°,BC=5 cm,点E从点A出发沿射线AD以1 cm/s的速度运动,同时点F从点B出发沿射线BC以2 cm/s的速度运动,设运动时间为t(s).

(1)连接EF,当EF经过BD边的中点G时,求证:△DGE≌△BGF;

(2)填空:

①当t为__________s时,△ACE的面积是△FCE的面积的2倍;

②当t为__________s时,四边形ACFE是菱形.

4.(新乡模拟)如图,AC是?ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.

(1)求证:AE=CF;

(2)连接AF,CE.

①当EF和AC满足条件__________时,四边形AFCE是菱形;

②若AB=1,BC=2,∠B=60°,则四边形AFCE为矩形时,EF的长是__________.

类型二几何问题的证明与计算

1.(周口模拟)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O 的切线,交BA的延长线于点E.

(1)求证:AC∥DE;

(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.

2.(湘潭)如图,在?ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.

(1)求证:△ADE≌△FCE;

(2)若AB=2BC,∠F=36°.求∠B的度数.

3.(山西)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.

(1)若AC=4,BC=2,求OE的长.

(2)试判断∠A与∠CDE的数量关系,并说明理由.

4.(杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC 于点F,连接AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;

(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.

简单几何图形的证明与计算参考答案

类型一 特殊四边形的探究

1.(1)证明:连接OD ,如解图, ∵∠BAC =90°,点D 为BC 的中点, ∴DB =DA =DC ,

∵∠B =60°,∴△ABD 为等边三角形,

∴∠DAB =∠ADB =60°,∠DAC =∠C =30°,而OA =OD , ∴∠ODA =∠OAD =30°,

∴∠ODB =60°+30°=90°, ∴OD ⊥BC ,又∵OD 是⊙O 的半径, ∴BD 是⊙O 的切线;

(2)解:①连接OD 、OE ,∵△ABD 为等边三角形, ∴AB =BD =AD =CD =3, 在Rt △ODC 中,OD =

3

3

CD =1, 当DE ∥AB 时,DE ⊥AC ,∴AD =AE , ∵∠ADE =∠BAD =60°, ∴△ADE 为等边三角形,

∴AD =AE =DE ,∠ADE =60°,∴∠AOE =2∠ADE =120°,∴AB =BD =DE =AE , ∴四边形ABDE 为菱形,

此时,的长度=120·π·1180=2

3

π,

②当∠ADE =90°时,AE 为直径,点E 与点F 重合,此时的长度=180·π·1

180=π,

当∠DAE =90°时,DE 为直径,∠AOE =2∠ADE =60°,此时的长度=60·π·1180=1

3π,

所以当的长度为1

3π或π时,△ADE 是直角三角形.

2.解:(1)连接CD ,如解图,

∵AC 是⊙O 的直径,∴∠ADC =90°, ∵E 是BC 的中点, ∴DE =CE ;

(2)DE 是⊙O 的切线.理由如下: 连接OD ,如解图,

∵BC 为切线,∴OC ⊥BC ,

∴∠OCB =90°,即∠2+∠4=90°,

∵OC =OD ,ED =EC ,∴∠1=∠2,∠3=∠4,

∴∠1+∠3=∠2+∠4=90°,即∠ODE =90°,∴OD ⊥DE , ∴DE 是⊙O 的切线; (3)当BC =2时,

∵CA =CB =2,∴△ACB 为等腰直角三角形,∴∠B =45°, ∴△BCD 为等腰直角三角形,∴DE ⊥BC ,DE =1

2

BC =1,

∵OA =DE =1,AO ∥DE ,∴四边形AOED 是平行四边形; ∵OD =OC =CE =DE =1,∠OCE =90°, ∴四边形OCED 为正方形. 3.(1)证明:∵G 为BD 的中点, ∴BG =DG ,

∵四边形ABCD 是菱形, ∴AD ∥BC ,

∴∠EDG =∠FBG ,∠GED =∠GFB , ∴△DGE ≌△BGF(AAS );

(2)解:①分两种情况考虑:当点F 在线段BC 上时,如解图①,连接AC ,EC ,设菱形ABCD 边BC 上的高为h ,由题意知S △ACE =12AE·h,S △FCE =12CF·h,∵△ACE 的面积是△FCE 的面积的2倍,∴12AE·h=2×1

2CF·h,

∴AE =2CF ,∵AE =t ,CF =5-2t ,∴t =2(5-2t),解得t =2;当点F 在线段BC 的延长线上时,如解图②,

连接AC ,EC ,AE =t ,CF =2t -5,∵△ACE 的面积是△FCE 的面积的2倍,∴AE =2CF ,∴t =2(2t -5),解得t =103

②∵四边形ABCD 为菱形,∴AB =BC ,∵∠ABC =60°,∴△ABC 为等边三角形,∴AC =AB =5,当四边形ACFE 为菱形时,则AE =AC =CF =5,即t =5.

4.(1)证明:∵AD ∥BC ,∴∠EAO =∠FCO. ∵O 是AC 的中点,∴OA =OC , 在△AOE 和△COF 中, ????

?∠EAO =∠FCO OA =OC

∠AOE =∠COF

, ∴△AOE ≌△COF(ASA ). ∴AE =CF.

(2)解:①当EF 和AC 满足条件EF ⊥AC 时,四边形AFCE 是菱形; 如解图所示,

∵AE ∥CF ,AE =CF ,

∴四边形AFCE 是平行四边形,

又∵EF ⊥AC ,∴四边形AFCE 是菱形; ②若四边形AFCE 为矩形,

则EF =AC ,∠AFB =∠AFC =90°,

∵AB =1,BC =2,∠B =60°,∴∠BAF =30°, ∴BF =12AB =12,

∴AF =3BF =

32,CF =2-12=3

2

, ∴AC =AF 2

+CF 2

32)2+(32

)2

=3, ∴EF = 3.

类型二 几何问题的证明与计算 1.证明:(1)∵F 为弦AC 的中点, ∴AF =CF ,∴OD ⊥AC ,

∵DE 切⊙O 于点D ,∴OD ⊥DE , ∴AC ∥DE ;

(2)∵AC ∥DE ,且OA =AE , ∴F 为OD 的中点,即OF =FD , 又∵AF =CF , ∠AFO =∠CFD ,

∴△AFO ≌△CFD(SAS ),∴S △AFO =S △CFD ,∴S 四边形ACDE =S △ODE .

在Rt △ODE 中,OD =OA =AE =2, ∴OE =4,

∴DE =OE 2

-OD 2

=42

-22

=23,

∴S 四边形ACDE =S △ODE =12·OD·DE=1

2×2×23=2 3.

2.(1)证明:∵四边形ABCD 是平行四边形,

∴AD ∥BC ,AD =BC , ∴∠D =∠ECF ,

在△ADE 和△FCE 中, ????

?∠D =∠ECF DE =CE

∠AED =∠FEC

∴△ADE ≌△FCE(ASA );

(2)解:∵△ADE ≌△FCE ,∴AD =FC , ∵AD =BC ,AB =2BC ,∴AB =FB ,

∴∠BAF =∠F =36°,∴∠B =180°-2×36°=108°. 3.解:(1)∵AB 为⊙O 的直径,∴∠ACB =90°,

在Rt △ABC 中,由勾股定理得:AB =AC 2

+BC 2

=42

+22

=25,

∴OA =1

2AB =5,

∵OD ⊥AB ,

∴∠AOE =∠ACB =90°, 又∵∠A =∠A , ∴△AOE ∽△ACB , ∴

OE BC =OA AC ,即OE 2=54

解得:OE =

5

2

; (2) ∠CDE =2∠A ,理由如下:连接OC ,如解图所示: ∵OA =OC ,∴∠1=∠A ,

∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCD =90°, ∴∠2+∠CDE =90°,

∵OD ⊥AB ,∴∠2+∠3=90°,∴∠3=∠CDE , ∵∠3=∠A +∠1=2∠A , ∴∠CDE =2∠A.

4.解:(1)结论:AG 2=GE 2+GF 2

. 理由:如解图,连接CG.

∵四边形ABCD 是正方形,∴A 、C 关于对角线BD 对称, ∵点G 在BD 上,∴GA =GC ,

∵GE ⊥DC 于点E ,GF ⊥BC 于点F , ∴∠GEC =∠ECF =∠CFG =90°, ∴四边形EGFC 是矩形,∴CF =GE ,

在Rt △GFC 中,∵CG 2=GF 2+CF 2,∴AG 2=GF 2+GE 2

; (2)如解图,作AH ⊥BG 于点H ,

由题意得∠AGB =60°,∠ABH =45°,∴△ABH 是等腰直角三角形,

2 2,HG=

6

6

,∴BG=

32+6

6

.

∵AB=1,∴AH=BH=

2017重庆中考数学第25题几何专题训练

G F E D C B A M 证明题 1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD⊥BC,垂足是D ,AE 平分∠BAD,交BC 于点E .在△ABC 外有一点F ,使FA⊥AE,FC⊥BC. (1)求证:BE=CF ; (2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME⊥BC;②DE=DN. 2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。 求证:(1)AF =CG ; (2)CF =2DE 3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC。 (1)求证:OE=OF ; (2)若BC=23,求AB 的长。 4.已知,如图,在?ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2. (1)若CF=2,AE=3,求BE 的长; (2)求证:∠CEG=∠AGE .

5.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。 (1)如图1,若点H是AC的中点,AC= 23 ,求AB,BD的长。 (2)如图1,求证:HF=EF。 (3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由。 6.如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE. (1)若AF是△ABE的中线,且AF=5,AE=6,连结DF,求DF的长; (2)若AF是△ABE的高,延长AF交BC于点G. ①如图2,若点E是AC边的中点,连结EG,求证:AG+EG=BE; ②如图3,若点E是AC边上的动点,连结DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变, 如果不变,请求出∠DFG的度数;如果要变,请说明理由. 7.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC (或AC的延长线)相交于点F. (1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证: 1 CF 2 BE AB +=; (3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:3() BE CF BE CF +=-. 8.已知在四边形ABCD中,180 ABC ADC ∠+∠=?,AB=BC. A B F D C E 25 B A F D C E G 25 A F D C E G 25

中考数学几何证明经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线 EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

中考数学要点难点分析整理复习总结

初一上册 有理数、整式的加减、一元一次方程、图形的初步认识。 (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。 考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。 (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。 考察内容: ①整式的概念和简单的运算,主要是同类项的概念和化简求值 ②完全平方公式,平方差公式的几何意义 ③利用提公因式发和公式法分解因式。 (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。 考察内容: ①方程及方程解的概念 ②根据题意列一元一次方程 ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。 (4)几何:角和线段,为下册学三角形打基础 初一下册

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。 (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。 考察内容: ①平行线的性质(公理) ②平行线的判别方法 ③构造平行线,利用平行线的性质解决问题。 (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。 考察主要内容: ①考察平面直角坐标系内点的坐标特征 ②函数自变量的取值范围和球函数的值 ③考察结合图像对简单实际问题中的函数关系进行分析。 (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。 考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。 (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。 主要考察内容: ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。 ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。 ③留意不等式(组)和函数图像的结合问题。

中考数学超好几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状, 并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于 G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中 点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在与地 面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60. E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

几何证明与计算(解析版)

几何证明与计算 考向1以圆为背景的特殊四边形的动态探究题 1.(2019年河南省中原名校中考第三次大联考数学试卷)如图,AB为⊙O的直径,射线AG为⊙O的切线,点A为切点,点C为射线AG上任意一点,连接OC交⊙O于点E,过点B作BD∥OC交⊙O于点D,连接CD,DE,O D. (1)求证:△OAC≌△ODC; (2)①当∠OCA的度数为时,四边形BOED为菱形; ②当∠OCA的度数为时,四边形OACD为正方形. 【答案】(1)证明见解析;(2)①∠OCA=30°,②∠OCA=45°. 【解析】 (1)依据SAS可证明△OAC≌△ODC; (2)①依据菱形的四条边都相等,可得△OBD是等边三角形,则∠AOC=∠OBD=60°,求出∠OCA=30°;②由正方形的性质得出∠ACD=90°,则∠ACO=45°. 【详解】(1)证明:∵OB=OD, ∴∠B=∠ODB, ∵BD∥OC, ∴∠AOC=∠B,∠DOC=∠ODB,

∴∠AOC=∠COD, ∵OA=OD,OC=OC, ∴△OAC≌△ODC(SAS); (2)①∵四边形BOED是菱形, ∴OB=D B. 又∵OD=OB, ∴OD=OB=D B. ∴△OBD为等边三角形, ∴∠OBD=60°. ∵CO∥DB, ∴∠AOC=60°, ∵射线AG为⊙O的切线, ∴OA⊥AC, ∴∠OAC=90°, ∴∠OCA=∠OAC﹣∠AOC=90°﹣60°=30°, ②∵四边形OADC是正方形, ∴∠ACD=90°, ∵∠ACO=∠DCO, ∴∠OCA=45°, 故答案30°,45°. 【点睛】本题主要考查的是切线的性质、全等三角形的判定和性质、菱形的性质、等边三角

初中数学重难点

初中数学重难点 姓名:__________ 指导:__________ 日期:__________

1. 函数(一次函数、反比例函数、二次函数)[点击可查看]中考占总分的15%左右。 函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。 特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。 而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。 2.整式、分式、二次根式的化简运算 整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。 中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。 3.应用题,中考中占总分的30%左右 包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。 一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。 现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,因为

这样更能让学生感受学习数学在自己生活中的运用,以激发其学习兴趣。 应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。 4.三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。 三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。 因为几何思维更灵活,定理、定义及辅助线的添加往往都是解决问题的关键,这就要求学生的思维更灵活,能多维度的思考问题,形成自己的解题思路和方法。也只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。因此在初中数学学习中也是一个重点,而且在以后的高中数学学习中会将此知识点挖深,拓宽。成为高考的一个重点,因此,初中的同学们应将此知识点熟练掌握。 四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。 5.圆,中考中占总分的10%左右

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

七年级数学下册几何证明计算简单型复习题

七年级数学下册几何证明计算简单型复习题 1.(2020春?安陆市期中)已知:如图1,∠1+∠2=180°,∠AEF=∠HLN; (1)判定图中平行的直线,并给予证明; (2)如图2,∠PMQ=2∠QMB,∠PNQ=2∠QND,请判定∠P与∠Q的数量关系,并证明. 2.(2020春?邗江区期末)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F. (1)CD与EF平行吗?什么缘故? (2)假如∠1=∠2,且∠3=100°,求∠ACB的度数. 3.(2020春?密云县期末)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°. (1)求证:DC∥AB. (2)求∠AFE的大小. 4.(2020秋?江都市校级期末)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F. (1)CD与EF平行吗?什么缘故? (2)假如∠1=∠2,且∠3=105°,求∠ACB的度数.

5.(2020春?沙河市期中)如图,已知直线AB,CD被直线EF,EG,MH所截,直线AB,EG,MH相交于点B,∠EAB=∠BNA,∠FAN=∠FNM,AN∥EG. (1)∠ABE与∠EGF相等吗? (2)试判定∠AFN与∠EBH之间的数量关系,并说明理由. 6.(2020春?高坪区校级期中)如图,已知∠1=∠BDC,∠2+∠3=180°. (1)请你判定AD与EC的位置关系,并说明理由; (2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数. 7.(2020春?东昌府区期中)如图,在△ABC中,AD⊥BC,垂足为D,点E在AB上,EF⊥BC,垂足为F. (1)AD与EF平行吗?什么缘故? (2)假如∠1=∠2,且∠3=115°,求∠BAC的度数. 8.(2020秋?道外区期末)如图(1),直线AB、CD被直线EF所截,EG平分∠AEF,FG 平分∠CFE,且∠GEF+∠GFE=90°

几何计算与证明

几何计算与证明 学校_______ 5别______ 姓名________ 号__________ 一、选择题:(每题3分,共15分) 1、已知三角形两边a=3, b=7,第三边是c且av bvc,则c的取值范 围是( ) (A) 4 v c v 7 (B) 7 v c v 10 (C)4 v c v 10 (D)7 v cv 13 2、若梯形中位线的长是高的2倍,面积是18cm2,则这个梯形的 高等于( ) (A)6 3 cm (B)6cm (C)3 2 (D)3cm 3、在RtAABC 中,/ C=90° 若AB=2AC,贝S cosA 等于() (A)、3 (B)1 (C) 2 2 3 4、已知:等圆O O和O O'外切,过O作O O'的两条切线OA OB A、B是切点,则/ AOB等于( ) -.A 5、如果圆柱的母线长为6cm,侧面积是48n cm2,B 那么这个圆柱的底面直径为( ) (A)4cm (B)4 n cm (C)8cm (D)8 n cm 二、填空题:(每题4分,共24分) 1、三角形三内角的度数之比为1:2:3,最大边约长是8cm

则最小边的长是_______ cm 2、一个n边形的内角和等于外角和的3倍,则n二_________ 。

r 「 2 2 3、 _______________________________________ 若 tan a +cot a =3,贝y tan a +cot a - _______ 4、 已知:如图,O O 的弦AB 平分弦CD AB=1Q CD=8 且 PA < PB 贝S PB-PA 二 _____ 如图,在厶 ABC 中,/ BAC=9Q , AB=AC=2 以AB 为直径的圆交BC 于D,则图中阴影部分 面积为 6、 AB 是斜靠在墙壁上的长梯,梯脚 梯上点D 距墙1.4米,BD 长Q.55米。 则梯子等于 ______ 。 三、解答题:(每题7分,共35分) 1、已知:如图,D E 是厶ABC 的边AB 上 的点,/ A=35°, / C=85 , / AED=60,求证:ADAB=AEAC 5、 C B O D C

中考数学重难点专题

- 1 - 中考数学重难点专题 一元二次方程与二次函数 第一部分 真题精讲 【例1】 已知:关于x 的方程2 3(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根; ⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式; ②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立; ⑶在⑵条件下,若二次函数2 3y ax bx c =++的图象 经过点(50)-,,且在实数范围内,对于x 的同一个 值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式. 【例2】 关 于 x 的一元二次方程 22(1)2(2)10m x m x ---+=. (1)当m 为何值时,方程有两个不相等的实数根; ( 2)点 () 11A --,是抛物线 22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由. 【解析】:

- 2 - 【例3】 已知P (3,m -)和Q (1, m )是抛物线 221y x bx =++上的两点. (1)求b 的值; (2)判断关于x 的一元二次方程2 21x bx ++=0是 否有实数根,若有,求出它的实数根;若没有,请说明理由; (3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值. 【解析】 【例4】已知抛物线2442y ax ax a =-+-,其中a 是常数. (1)求抛物线的顶点坐标; (2)若2 5 a > ,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式. 【例5】 已知:关于x 的一元二次方程 ()()21210m x m x -+--=(m 为实数) (1)若方程有两个不相等的实数根,求m 的取值范围; (2)在(1)的条件下,求证:无论m 取何值,抛 物线()()2 121y m x m x =-+--总过x 轴上的一个 固定点; (3)若m 是整数,且关于x 的一元二次方程 ()()21210m x m x -+--=有两个不相等的整数根, 把抛物线()()2 121y m x m x =-+--向右平移3个 单位长度,求平移后的解析式.

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

2021年温州市中考数学重难点复习:二次函数

2021年温州市中考数学 重难点复习:二次函数 目录 一、历年真题 二、知识点讲解 三、各地真题及模拟题精讲

一、历年真题 一.选择题(共8小题) 1.将抛物线y =x 2﹣2向上平移1个单位后所得新抛物线的表达式为( ) A .y =x 2﹣1 B .y =x 2﹣3 C .y =(x +1)2﹣2 D .y =(x ﹣1)2﹣2 【解答】解:将抛物线y =x 2﹣2向上平移1个单位后所得新抛物线的表达式为y =x 2﹣2+1,即y =x 2﹣1. 故选:A . 2.如图,抛物线y =﹣(x +m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( ) A .5 2 B . 114 C .3 D . 134 【解答】解:将抛物线y =﹣(x +m )2+5向右平移3个单位后得到y =﹣(x +m ﹣3)2 +5, 根据题意得:{y =?(x +m)2+5y =?(x +m ?3)2+5, 解得:{x =3 2?m y =114, ∴交点C 的坐标为(3 2?m , 114 ), 故选:B . 3.已知点A (﹣3,a ),B (﹣2,b ),C (1,c )均在抛物线y =3(x +2)2+k 上,则a ,b ,c 的大小关系是( ) A .c <a <b B .a <c <b C .b <a <c D .b <c <a 【解答】解:函数的对称轴为:x =﹣2, a =3>0,故开口向上, x =1比x =﹣3离对称轴远,故c 最大,b 为函数最小值, 故选:C .

4.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是() A.abc>0B.2a﹣b<0C.b2﹣4ac<0D.a﹣b+c>﹣1【解答】解:A、如图所示,抛物线经过原点,则c=0,所以abc=0,故不符合题意; B、如图所示,对称轴在直线x=﹣1的左边,则?b 2a<?1,又a>0,所以2a﹣b<0, 故符合题意; C、如图所示,图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故不符合题意; D、如图所示,当x=﹣1时y<0,即a﹣b+c<0,但无法判定a﹣b+c与﹣1的大小,故 不符合题意. 故选:B. 5.抛物线y=x2+6x+9与x轴交点的个数是() A.0B.1C.2D.3 【解答】解:∵b2﹣4ac=36﹣4×1×9=0 ∴二次函数y=x2+6x+9的图象与x轴有一个交点. 故选:B. 6.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()

中考数学24题 几何证明

重庆中考数学第24题专题训练 【典题1】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长. (1)证明:∵HE=HG, ∴∠HEG=∠HGE, ∵∠HGE=∠FGC,∠BEH=∠HEG, ∴∠BEH=∠FGC, ∵G是HC的中点, ∴HG=GC, ∴HE=GC, ∵∠HBE=∠CFG=90°. ∴△EBH≌△GFC; (2)解:过点H作HI⊥EG于I, ∵G为CH的中点, ∴HG=GC, ∵EF⊥DC, HI⊥EF, ∴∠HIG=∠GFC=90°, ∠FGC=∠HGI, ∴△GIH≌△GFC, ∵△EBH≌△EIH(AAS), ∴FC=HI=BH=1, ∴AD=4-1=3. 【典题2】已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE. (1)如图1,连接线段BE、CD.求证:BE=CD; (2)如图2,连接DE交AB于点F.求证:F为DE中点. 证明:(1)∵△ABD和△ACE是等边三角形, ∴AB=AD,AC=AE,∠DAB=∠EAC=60°, ∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE, 在△DAC和△BAE中, AC=AE ∠DAC=∠BAE AD=AB ,

∴△DAC≌△BAE(SAS), ∴DC=BE; (2)如图,作DG∥AE,交AB于点G, 由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°, ∴∠DGF=∠FAE=90°, 又∵∠ACB=90°,∠CAB=30°, ∴∠ABC=60°, 又∵△ABD为等边三角形,∠DBG=60°,DB=AB, ∴∠DBG=∠ABC=60°, 在△DGB和△ACB中, ∠DGB=∠ACB ∠DBG=∠ABC DB=AB , ∴△DGB≌△ACB(AAS), ∴DG=AC, 又∵△AEC为等边三角形,∴AE=AC, ∴DG=AE, 在△DGF和△EAF中, ∠DGF=∠EAF ∠DFG=∠EFA DG=EA , ∴△DGF≌△EAF(AAS), ∴DF=EF,即F为DE中点. 【典题3】如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F (1)求证:BF=AD+CF; (2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长. (1)证明:如图(1),延长AD交FE的延长线于N ∵∠NDE=∠FCE=90° ∠DEN=∠FEC DE=EC ∴△NDE≌△FCE ∴DN=CF ∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形 ∴BF=AD+DN=AD+FC (2)解:∵AB∥EF, ∴∠ABN=∠EFC,即∠1+∠2=∠3, 又∵∠2+∠BEF=∠3, ∴∠1=∠BEF,∴BF=EF,

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

2018届中考数学复习《几何证明与计算》专题训练有答案

2018届初三数学中考复习几何证明与计算专题复习训练题 1.如图,在△ABC中,AD⊥BC于点D,BD=AD,DG=DC,点E,F分别是BG,AC 的中点. (1)求证:DE=DF,DE⊥DF; (2)连接EF,若AC=10,求EF的长. 2. 如图,在?ABCD中,DE=CE,连接AE并延长交BC的延长线于点F. (1)求证:△ADE≌△FCE; (2)若AB=2BC,∠F=36°.求∠B的度数.

3. 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E. (1)求证:AG=CG; (2)求证:AG2=GE·GF. 4. 如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA 交AC于点E,DF∥CA交AB于点F,已知CD=3. (1)求AD的长; (2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)

5. 如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF. (1)求证:△BCE≌△DCF; (2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由. 6. 如图,点E 是正方形ABCD 的边BC 延长线上一点,连接DE ,过顶点B 作BF⊥DE,垂足为F ,BF 分别交AC 于点H ,交CD 于点G. (1)求证:BG =DE ; (2)若点G 为CD 的中点,求HG GF 的值.

7. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG. (1)写出线段AG,GE,GF长度之间的数量关系,并说明理由; (2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长. 8. 如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F. (1)求证:△ACD∽△BFD;

中考数学重点难点:易错知识点梳理

2019中考数学重点难点:易错知识点梳理初三学期的学习知识范围更广,课程的内容更加抽象,更加难以理解,尽快地掌握科学知识,迅速提高学习能力,由小编为您提供的2019中考数学重点难点,希望给您带来启发! ●失分点集中在以下几个方面: 考查简单二次根式的化简求值,函数中自变量取值范围,易出错。 考查点和圆、直线和圆的位置关系,易将其判定相混,或不审题误把圆直径当半径。 考查简单直角三角形的应用,失分点在于对括号中给出精确度忽略而错选。视图时,考生由于缺乏空间想象力而易失分。考查一元二次方程的实际应用,特别是均变速运动有关问题是难点。 以图表形式提供信息考查统计知识,由于信息量及阅读量大,线索多,要求小伙伴们冷静、细心审题,否则易失分。考查几何变换中点的坐标及点或线段在变换中经过的路线,考生容易在三个方面失分,旋转中的旋转方向,坐标与线段转化过程中忽略点所在位置或者是弧长公式、扇形面积公式相混。 考查概率在实际问题中应用,用频率估分概率时考生容易出错。

策略:从往年的试卷可以看出,小伙伴们卷面上一般会出现大量“会而不对”、“对而不全”的现象。小伙伴们应注意以下三个问题。 解题速度慢,导致后面的解答题没有时间做,连看题都没有时间了。解题速度缓慢原因就是不熟练,基础知识不熟练,基本方法不熟练,这是平时训练不够所致,所以我们经常说回归课本,目的就是要让考生全面、系统地掌握课本中的基础知识和基本方法,吃透课本中的例题和习题。 语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。运算错误多。答卷的时候,经常会犯一些低级的错误,这是运算能力的问题,

相关文档
最新文档