2018-2019学年河南省南阳市邓州市八年级(下)期末数学试卷(解析版)
河南省南阳市邓州市2023-2024学年八年级下学期期末数学试题

河南省南阳市邓州市2023-2024学年八年级下学期期末数学试题一、单选题 1.代数式 6x y+,2x ,1a b +,x π中分式有( ) A .1个B .2个C .3个D .4个2.神舟十八号载人飞船于2024年4月25日成功发射,经过大约6.5个小时的飞行,成功与距离地球400000米的中国空间站组合体完成了自主交会对接.数据“400000米”用科学记数法表示为( ) A .340010⨯米B .4410⨯米C .5410⨯米D .6410⨯米3.在平行四边形的复习课上,小明绘制了如下知识框架图,箭头处添加条件错误的是( )A .①:对角线相等B .②:对角互补C .③:一组邻边相等D .④:有一个角是直角4.已知2(5)a =-,1(5)b -=-,0(5)c =-那么a ,b ,c 之间的大小关系是( ) A .a b c >>B .a c b >>C .c b a >>D .c a b >>5.下列等式中,从左向右的变形正确的是( )A .44m m m n n m =--B .m mm n n m =-- C .m mm n m n=---D .21m m mn m n=--6.下图为某商家2023年1月至10月“人工智能机器人”的月销售量,下列说法错误的是( )A .这10个月的月销售量的众数为28B .这10个月中7月份的月销售量最高C .前5个月的月销售量的方差大于后5个月的月销售量的方差D .4月至7月的月销售量逐月增加7.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据如下:根据表格所得到的信息,下列说法正确的是( ) A .在这个变化中,自变量是声速,因变量是温度 B .温度越低,声速越快C .当温度每升高10℃时,声速增加6m/sD .当空气温度为40℃时,声音10s 可以传播354m8.植树节的起源可以追溯到中国古代“孟春之月,盛德在木”的传统观念,这体现了古人对树木的深深敬仰,某校在“植树节”期间带领学生开展植树活动,甲、乙两班同时开始植树,甲班比乙班每小时多植3棵树,植树活动结束时,甲、乙两班同时停止植树,甲班共植70棵树,乙班共植50棵树,设乙班每小时植x 棵树,依题意可列方程为( ) A .35070x x =- B .70503x x=- C .70503x x=- D .70503x x=+ 9.已知点()11,A x y ,()22,B x y 在一次函数()32y k x =-+的图象上,当12x x >时,12y y <,则k 的值可能为( ) A .2B .3C .4D .510.如图1,在矩形ABCD 中,点P 从点A 出发,匀速沿AB BD →向点D 运动,连接DP ,设点P 的运动距离为x ,DP 的长为y ,y 关于x 的函数图像如图2所示,则当点P 为AB 中点时,DP 的长为( )A .5B .8CD .二、填空题11.已知反比例函数1k y x-=的图象在每一个象限内,y 都随x 的增大而减小,则k 的取值范围是.12.若分式2x xx-的值为0,则x 的值是.13.2024年3月14日是第五个“国际数学日”,为庆祝这个专属于数学的节日,某校开展主题为“浸润数学文化”的演讲比赛,七位评委为某同学打出的分数如下:9.9,9.4,9.6,9.5,9.3,9.7,9.2(单位:分);若去掉一个最高分和一个最低分,则去掉前与去掉后没有改变的统计量是.(填“平均数”、“中位数”、“众数”或“方差”中的一项)14.如图所示,在边长为2的菱形ABCD 中,60DAB ∠=︒,点E 为AB 中点,点F 是AC 上一动点,则EF BF +的最小值为.15.如图,已知矩形ABCD ,10AB =,4AD =,E 为CD 边上一点,6CE =,点P 从B 点出发,以每秒1个单位的速度沿着BA 边向终点A 运动,连接PE ,设点P 运动的时间为t 秒,则当t 的值为时,PAE △是以PE 为腰的等腰三角形.三、解答题 16.计算与解方程:(1))1133-⎛⎫-- ⎪⎝⎭.(2)解方程:233111x xx x +-=+-.17.以下是某同学化简分式2113422x x x x +⎛⎫-÷⎪-+-⎝⎭的部分运算过程: 解:原式112(2)(2)23x x x x x ⎡⎤+-=-⋅⎢⎥+-+⎣⎦..........第一步 122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦..........第二步 122(2)(2)3x x x x x +---=⋅+-. .........第三步任务一:填空(1)以上化简步骤中,第______步是通分,通分的依据是______. (2)第______步开始出现错误,错误的原因是______. 任务二:(3)直接写出该分式化简后的正确结果.18.某校为了解七、八年级学生对中国传统文化知识的掌握情况,从两个年级中各随机抽取10名学生进行测试,并对测试成绩(百分制)进行收集、整理和分析. 数据收集:七年级:59 90 92 85 80 67 88 85 97 79; 八年级:57 95 80 96 83 69 92 78 66 83. 数据整理:数据分析:请根据如表信息,回答下列问题:(1)补全表中数据:=a ________,b =________;(2)萌萌同学参加了测试,他说:“这次测试我得了83分,在我们年级属于中游略偏上!”,你推测萌萌同学可能是_________(填“七”或“八”)年级的学生.(3)假如该校七年级800名学生均参加了本次测试,请你估计该校七年级学生本次测试成绩在80分以上(不包括80分)的人数.(4)为了丰富同学们的中国传统文化知识,请你提出一条合理化建议.19.如图,在四边形ABCD 中,对角线AC BD ,相交于点 O , AB CD P , BO DO =.(1)求证:四边形ABCD 是平行四边形;(2)当BD 平分68ABC AC BD ∠==,,时,求四边形ABCD 的周长.20.习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多2万元,用30万元购买甲种农机具的数量和用20万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过92万元,则甲种农机具最多能购买多少件?21.每年4月23 日是世界读书日,旨在推动更多的人去阅读和写作,某书店以读书日为契机,决定购进甲,乙两种图书,供消费者选择.经调查,乙种图书每本进价20元,甲种图书的总进价y 与购进甲种图书的数量x 之间的函数关系如图所示:(1)请求出当0120x ≤≤时,y 与x 的函数关系式;(2)若该书店准备购进甲,乙两种图书共300本,且每种图书数量都不少于120本,书店计划甲种图书以每本30元出售,乙种图书以每本25 元出售,如何购进两种图书,才能使书店所获利润最大,最大利润是多少? 22.阅读理解:在平面直角坐标系中,点P 的坐标为()11x y ,,点Q 的坐标为22x y (,),且12x x ≠,12y y ≠,若P 、Q 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为P 、Q 的“相关矩形”.如图①中的矩形为点P 、Q 的“相关矩形”.(1)已知点A 的坐标为()0,1.①若点B 的坐标为()3,5,则点A 、B 的“相关矩形”的面积为;②若点C 在直线6y =上,且点C 在y 轴左侧,当点A 、C 的“相关矩形”为正方形时,求过点C 的反比例函数关系式和直线AC 的解析式.(2)已知点M 的坐标为()2,4-,点N 的坐标为()5,2-,若使函数 ky x=的图象与点M 、N 的“相关矩形”有两个公共点,请直接写出k 的取值范围. 23.综合与实践:一数学兴趣小组探究勾股定理在折叠中的应用,如图,将一张长方形纸片ABCD 放在平面直角坐标系中,点A 与原点O 重合,顶点B 、D 分别在x 轴、y 轴上,4AB =,3AD =,P 为边CD 上一动点,连接BP ,将BCP V 沿BP 折叠,点C 落在点C '处.(1)如图1,连接BD ,当点C 在线段BD 上时,线段DC '的长度是;(2)如图2,当点P 与点D 重合时,沿BD 将BCD △折叠得BC D '△,DC '与x 轴交于点E ,求BDE △的面积;(3)是否存在点P ,使得点C '到矩形的两条较长边的距离之比为1:2,若存在,直接写出点C '的坐标,若不存在,请说明理由.。
【精编】2018-2019学年南阳市邓州市八年级上期中数学试卷((有答案)).doc

2018-2019学年河南省南阳市邓州市八年级(上)期中数学试卷一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.1.在下列实数中,无理数是()A.πB.C.D.2.下列各式正确的是()A.=±4B.=±4C.±=±4D.=23.下列运算正确的是()A.a12÷a3=a4B.(a3)4=a12C.(﹣2a2)3=8a5D.(a﹣2)2=a2﹣44.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1B.m=﹣2,n=1C.m=﹣1,n=1D.m=1,n=15.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16B.﹣16C.8D.46.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6B.﹣2C.2D.67.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()A.15°B.20°C.25°D.30°9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=4,AE=6,则CH的长为()A.1B.2C.3D.410.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()A.a+b=12B.a﹣b=2C.ab=35D.a2+b2=84二、填空题(每小题3分,共15分)11.的平方根为.12.若(a+5)2+=0,则a2018•b2019=.13.计算:20132﹣2014×2012=.14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.15.观察下列式子:22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律三、解答题.(共75分)16.(10分)计算或解答(1)﹣+|1﹣|﹣(2+)(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.17.(8分)分解因式.(1)4x3y﹣4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣1)(b﹣1)(2)a2+b2(3)a﹣b20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca的值.22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a 厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.2018-2019学年河南省南阳市邓州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.1.在下列实数中,无理数是()A.πB.C.D.【分析】根据无理数的定义逐个分析.【解答】解:A、π是无限不循环小数,即为无理数;B、是无限循环小数,即为有理数;C、=3,即为有理数;D、=4,即为有理数.故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各式正确的是()A.=±4B.=±4C.±=±4D.=2【分析】根据算术平方根,平方根和立方根的定义逐一计算可得.【解答】解:A.=4,此选项错误;B.=4,此选项错误;C.±=±4,此选项正确;D.≠2,=2,此选项错误;故选:C.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.3.下列运算正确的是()A.a12÷a3=a4B.(a3)4=a12C.(﹣2a2)3=8a5D.(a﹣2)2=a2﹣4【分析】根据同底数幂的除法、幂的乘方与积的乘方及完全平方公式逐一计算可得.【解答】解:A、a12÷a3=a9,此选项错误;B、(a3)4=a12,此选项正确;C、(﹣2a2)3=﹣8a6,此选项错误;D、(a﹣2)2=a2﹣4a+4,此选项错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、幂的乘方与积的乘方及完全平方公式.4.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1B.m=﹣2,n=1C.m=﹣1,n=1D.m=1,n=1【分析】直接利用多项式乘法运算法则去括号,进而得出关于m,n的等式,进而得出答案.【解答】解:∵(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,∴(x﹣1)(x2+mx+n)=x3+mx2+nx﹣x2﹣mx﹣n=x3+(m﹣1)x2﹣(m﹣n)x﹣n,∴,解得m=1,n=1,故选:D.【点评】此题主要考查了多项式乘以多项式,正确得出含x的二次项和一次项的系数是解题关键.5.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16B.﹣16C.8D.4【分析】根据题意求出2x+3y﹣z,根据同底数幂的乘除法法则计算即可.【解答】解:∵2x﹣3y+z﹣2=0,∴2x﹣3y+z=2,则原式=(24)x÷(23)2y×(22)z=24x÷26y×22z=22(2x﹣3y+z)=24=16,故选:A.【点评】本题考查的是同底数幂的除法运算、幂的乘方,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.6.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6B.﹣2C.2D.6【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.【解答】解:※=4※(﹣2)=4×(﹣2)+4﹣(﹣2)=﹣8+4+2=﹣2,故选:B.【点评】此题考查了实数的混合运算,属于新定义题型,弄清题意的新定义与实数的运算顺序和运算法则是解本题的关键.7.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【分析】根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.【解答】解:①4x2﹣x=x(4x﹣1);②(x﹣1)2﹣4(x﹣1)=(x﹣1)(x﹣1﹣4)=(x﹣1)(x﹣5);③1﹣x2=(1﹣x)(1+x)=﹣(x﹣1)(x+1);④﹣4x2﹣1+4x=﹣(4x2﹣4x+1)=﹣(2x﹣1)2,∴②和③有相同因式为x﹣1,故选:D.【点评】本题主要考查提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()A.15°B.20°C.25°D.30°【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=70°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣70°)=15°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=15°.故选:A.【点评】本题主要利用全等三角形对应角相等的性质,解题时注意:全等三角形的对应边相等,对应角相等.9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=4,AE=6,则CH的长为()A.1B.2C.3D.4【分析】先利用等角的余角相等得到∠BAD=∠BCE,则可根据“AAS”证明△BCE≌△HAE,则CE =AE=6,然后计算CE﹣HE即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠BEC=∠ADB=90°,∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BAD=∠BCE,在△BCE和△HAE中,∴△BCE≌△HAE,∴CE=AE=6,∴CH=CE﹣HE=6﹣4=2.故选:B.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.10.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()A.a+b=12B.a﹣b=2C.ab=35D.a2+b2=84【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则a+b=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则a﹣b=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4ab=144﹣4=140,ab=35,故C选项正确;D、(a+b)2=a2+b2+2ab=144,所以a2+b2=144﹣2×35=144﹣70=74,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题(每小题3分,共15分)11.的平方根为±3.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.12.若(a+5)2+=0,则a2018•b2019=15.【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,进而利用积的乘方运算法则计算得出答案.【解答】解:∵(a+5)2+=0,∴a+5=0,5b=1,故a=﹣5,b=,则a2018•b2019=(ab)2018×b=1×=.故答案为:.【点评】此题主要考查了非负数的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.13.计算:20132﹣2014×2012=1.【分析】把2014×2012化成(2013+1)×(2013﹣1),根据平方差公式展开,再合并即可.【解答】解:原式=20132﹣(2013+1)×(2013﹣1)=20132﹣20132+12=1,故答案为:1.【点评】本题考查了平方差公式的应用,注意:(a +b )(a ﹣b )=a 2﹣b 2.14.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S = 50 .【分析】求出∠F =∠AGB =∠EAB =90°,∠FEA =∠BAG ,根据AAS 证△FEA ≌△GAB ,推出AG =EF =6,AF =BG =2,同理CG =DH =4,BG =CH =2,求出FH =14,根据阴影部分的面积=S 梯形EFHD ﹣S △EFA ﹣S △ABC ﹣S △DHC 和面积公式代入求出即可.【解答】解:∵AE ⊥AB ,EF ⊥AF ,BG ⊥AG ,∴∠F =∠AGB =∠EAB =90°,∴∠FEA +∠EAF =90°,∠EAF +∠BAG =90°,∴∠FEA =∠BAG ,在△FEA 和△GAB 中∵,∴△FEA ≌△GAB (AAS ),∴AG =EF =6,AF =BG =2,同理CG =DH =4,BG =CH =2,∴FH =2+6+4+2=14,∴梯形EFHD 的面积是×(EF +DH )×FH =×(6+4)×14=70,∴阴影部分的面积是S 梯形EFHD ﹣S △EFA ﹣S △ABC ﹣S △DHC=70﹣×6×2﹣×(6+4)×2﹣×4×2=50.故答案为50.【点评】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.15.观察下列式子:22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律(n+1)2﹣n2=2n+1【分析】根据已知等式得出序数加1与序数的平方差等于序数的2倍与1的和,据此可得.【解答】解:∵第1个式子为(1+1)2﹣12=2×1+1,第2个式子为(2+1)2﹣22=2×2+1,第3个式子为(3+1)2﹣32=2×3+1,第4个式子为(4+1)2﹣42=2×4+1,∴第n个式子为(n+1)2﹣n2=2n+1,故答案为:(n+1)2﹣n2=2n+1.【点评】本题主要考查数字的变化类,解题的关键是将已知等式与序数联系起来,得出普遍规律.三、解答题.(共75分)16.(10分)计算或解答(1)﹣+|1﹣|﹣(2+)(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.【分析】(1)首先利用算术平方根以及立方根和绝对值的性质分别化简得出答案;(2)利用算术平方根以及平方根的定义得出m的值进而得出答案.【解答】解:(1)原式=6+3+2﹣1﹣2﹣2=6;(2)由题意得:2m﹣6≥0,∴m≥3,∴m﹣2>0,因此2m﹣6=﹣(2﹣m),∴m=4,所以这个数是(2m﹣6)2=4.【点评】此题主要考查了实数运算,正确把握相关定义是解题关键.17.(8分)分解因式.(1)4x3y﹣4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)【分析】(1)多项式共3项且有公因式,应先提取公因式,再考虑用完全平方公式分解;(2)多项式变形为m3(x﹣2)﹣m(x﹣2),先提取公因式,再考虑用平方差公式分解.【解答】解:(1)原式=xy(4x2﹣4xy+y2)=xy(2x﹣y)2(2)原式=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m2﹣1)=m(x﹣2)(m+1)(m﹣1)【点评】本题考查了提公因式法与公式法分解因式,一般来说,多项式若有公因式先提取公因式,再考虑运用公式法分解.18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.【分析】(1)先算括号内的乘法,再合并同类项,最后算除法即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)=(﹣3a2b2﹣ab)÷(﹣ab)=3ab+1;(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣2时,原式=(﹣2)2+3=5.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣1)(b﹣1)(2)a2+b2(3)a﹣b【分析】(1)把式子展开,整体代入求出结果;(2)利用完全平方公式,把a2+b2变形为(a+b)2﹣2ab,整体代入求出结果;(3)根据已知和(2)的结果,先求出(a﹣b)2的值,再求它的平方根.【解答】解:(1)原式=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2﹣3+1=﹣4(2)原式=(a+b)2﹣2ab=9+4=13(3)∵(a﹣b)2=a2+b2﹣2ab=13+4=17∴a﹣b=±.【点评】本题考查了整体代入和完全平方公式的变形.解决本题的关键是利用转化的思想.20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AEB和Rt△CFD中,,∴Rt△AEB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca的值.【分析】(1)根据整式的混合运算的法则化简后,代入求值即可;(2)原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.【解答】(1)解:原式=a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ac+c2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;(2)解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]当a=2015x+2016,b=2015x+2017,c=2015x+2018,∴原式=×[(﹣1)2+(﹣1)2+22]=3.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a 厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?【分析】(1)依据点P点Q的运动速度相等,经过1秒,运用SAS即可得到△BPD和△CQP全等;(2)依据BP≠CQ,△BPD≌△CQP,可得BP=CP=4,进而得出t=2,a=3,即可得到当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.【解答】解:(1)△BPD和△CQP全等理由:∵t=1秒,∴BP=CQ=2,∴CP=8﹣BP=6,∵AB=12,∴BD=12×=6,∴BD=CP,又∠B=∠C,∴△BPD≌△CQP(SAS);(2)∵BP≠CQ,△BPD≌△CQP,∴BP=CP=4,∴t=2,∴BD=CQ=at=2a=6,∴a=3,∴当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的性质和判定,解一元一次方程的应用,能求出△BPD≌△CQP是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:EF=|BE﹣AF|.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠ACB=180°.,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF 即可.【解答】解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为=,EF=|BE﹣AF|.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为∠α+∠ACB=180°.(2)结论:EF=BE+AF.理由:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.【点评】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.。
2018-2019学年南阳市邓州市八年级上期中数学试卷((有答案))-精选

2018-2019学年河南省南阳市邓州市八年级(上)期中数学试卷一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.1.在下列实数中,无理数是()A.πB.C.D.2.下列各式正确的是()A.=±4 B.=±4 C.±=±4 D.=23.下列运算正确的是()A.a12÷a3=a4B.(a3)4=a12C.(﹣2a2)3=8a5D.(a﹣2)2=a2﹣44.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1 B.m=﹣2,n=1 C.m=﹣1,n=1 D.m=1,n=15.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16 B.﹣16 C.8 D.46.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.67.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()A.15°B.20°C.25°D.30°9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=4,AE=6,则CH的长为()A.1 B.2 C.3 D.410.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=84二、填空题(每小题3分,共15分)11.的平方根为.12.若(a+5)2+=0,则a2018•b2019=.13.计算:20132﹣2014×2012=.14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.15.观察下列式子:22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律三、解答题.(共75分)16.(10分)计算或解答(1)﹣+|1﹣|﹣(2+)(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.17.(8分)分解因式.(1)4x3y﹣4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣1)(b﹣1)(2)a2+b2(3)a﹣b20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca 的值.22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.2018-2019学年河南省南阳市邓州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.1.在下列实数中,无理数是()A.πB.C.D.【分析】根据无理数的定义逐个分析.【解答】解:A、π是无限不循环小数,即为无理数;B、是无限循环小数,即为有理数;C、=3,即为有理数;D、=4,即为有理数.故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各式正确的是()A.=±4 B.=±4 C.±=±4 D.=2【分析】根据算术平方根,平方根和立方根的定义逐一计算可得.【解答】解:A.=4,此选项错误;B.=4,此选项错误;C.±=±4,此选项正确;D.≠2,=2,此选项错误;故选:C.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.3.下列运算正确的是()A.a12÷a3=a4B.(a3)4=a12C.(﹣2a2)3=8a5D.(a﹣2)2=a2﹣4【分析】根据同底数幂的除法、幂的乘方与积的乘方及完全平方公式逐一计算可得.【解答】解:A、a12÷a3=a9,此选项错误;B、(a3)4=a12,此选项正确;C、(﹣2a2)3=﹣8a6,此选项错误;D、(a﹣2)2=a2﹣4a+4,此选项错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、幂的乘方与积的乘方及完全平方公式.4.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1 B.m=﹣2,n=1 C.m=﹣1,n=1 D.m=1,n=1【分析】直接利用多项式乘法运算法则去括号,进而得出关于m,n的等式,进而得出答案.【解答】解:∵(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,∴(x﹣1)(x2+mx+n)=x3+mx2+nx﹣x2﹣mx﹣n=x3+(m﹣1)x2﹣(m﹣n)x﹣n,∴,解得m=1,n=1,故选:D.【点评】此题主要考查了多项式乘以多项式,正确得出含x的二次项和一次项的系数是解题关键.5.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16 B.﹣16 C.8 D.4【分析】根据题意求出2x+3y﹣z,根据同底数幂的乘除法法则计算即可.【解答】解:∵2x﹣3y+z﹣2=0,∴2x﹣3y+z=2,则原式=(24)x÷(23)2y×(22)z=24x÷26y×22z=22(2x﹣3y+z)=24=16,故选:A.【点评】本题考查的是同底数幂的除法运算、幂的乘方,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.6.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.【解答】解:※=4※(﹣2)=4×(﹣2)+4﹣(﹣2)=﹣8+4+2=﹣2,故选:B.【点评】此题考查了实数的混合运算,属于新定义题型,弄清题意的新定义与实数的运算顺序和运算法则是解本题的关键.7.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【分析】根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.【解答】解:①4x2﹣x=x(4x﹣1);②(x﹣1)2﹣4(x﹣1)=(x﹣1)(x﹣1﹣4)=(x﹣1)(x﹣5);③1﹣x2=(1﹣x)(1+x)=﹣(x﹣1)(x+1);④﹣4x2﹣1+4x=﹣(4x2﹣4x+1)=﹣(2x﹣1)2,∴②和③有相同因式为x﹣1,故选:D.【点评】本题主要考查提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()A.15°B.20°C.25°D.30°【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD 的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=70°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣70°)=15°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=15°.故选:A.【点评】本题主要利用全等三角形对应角相等的性质,解题时注意:全等三角形的对应边相等,对应角相等.9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=4,AE=6,则CH的长为()A.1 B.2 C.3 D.4【分析】先利用等角的余角相等得到∠BAD=∠BCE,则可根据“AAS”证明△BCE≌△HAE,则CE=AE=6,然后计算CE﹣HE即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠BEC=∠ADB=90°,∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BAD=∠BCE,在△BCE和△HAE中,∴△BCE≌△HAE,∴CE=AE=6,∴CH=CE﹣HE=6﹣4=2.故选:B.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.10.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=84【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则a+b=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则a﹣b=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4ab=144﹣4=140,ab=35,故C选项正确;D、(a+b)2=a2+b2+2ab=144,所以a2+b2=144﹣2×35=144﹣70=74,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题(每小题3分,共15分)11.的平方根为±3 .【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.12.若(a+5)2+=0,则a2018•b2019=15 .【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,进而利用积的乘方运算法则计算得出答案.【解答】解:∵(a+5)2+=0,∴a+5=0,5b=1,故a=﹣5,b=,则a2018•b2019=(ab)2018×b=1×=.故答案为:.【点评】此题主要考查了非负数的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.13.计算:20132﹣2014×2012= 1 .【分析】把2014×2012化成(2013+1)×(2013﹣1),根据平方差公式展开,再合并即可.【解答】解:原式=20132﹣(2013+1)×(2013﹣1)=20132﹣20132+12=1,故答案为:1.【点评】本题考查了平方差公式的应用,注意:(a+b)(a﹣b)=a2﹣b2.14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=50 .【分析】求出∠F=∠AGB=∠EAB=90°,∠FEA=∠BAG,根据AAS证△FEA≌△GAB,推出AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,求出FH=14,根据阴影部分的面积=S梯形EFHD ﹣S△EFA﹣S△ABC﹣S△DHC和面积公式代入求出即可.【解答】解:∵AE⊥AB,EF⊥AF,BG⊥AG,∴∠F=∠AGB=∠EAB=90°,∴∠FEA+∠EAF=90°,∠EAF+∠BAG=90°,∴∠FEA=∠BAG,在△FEA和△GAB中∵,∴△FEA≌△GAB(AAS),∴AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,∴FH=2+6+4+2=14,∴梯形EFHD的面积是×(EF+DH)×FH=×(6+4)×14=70,∴阴影部分的面积是S梯形EFHD ﹣S△EFA﹣S△ABC﹣S△DHC=70﹣×6×2﹣×(6+4)×2﹣×4×2=50.故答案为50.【点评】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.15.观察下列式子:22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律(n+1)2﹣n2=2n+1【分析】根据已知等式得出序数加1与序数的平方差等于序数的2倍与1的和,据此可得.【解答】解:∵第1个式子为(1+1)2﹣12=2×1+1,第2个式子为(2+1)2﹣22=2×2+1,第3个式子为(3+1)2﹣32=2×3+1,第4个式子为(4+1)2﹣42=2×4+1,∴第n个式子为(n+1)2﹣n2=2n+1,故答案为:(n+1)2﹣n2=2n+1.【点评】本题主要考查数字的变化类,解题的关键是将已知等式与序数联系起来,得出普遍规律.三、解答题.(共75分)16.(10分)计算或解答(1)﹣+|1﹣|﹣(2+)(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.【分析】(1)首先利用算术平方根以及立方根和绝对值的性质分别化简得出答案;(2)利用算术平方根以及平方根的定义得出m的值进而得出答案.【解答】解:(1)原式=6+3+2﹣1﹣2﹣2=6;(2)由题意得:2m﹣6≥0,∴m≥3,∴m﹣2>0,因此2m﹣6=﹣(2﹣m),∴m=4,所以这个数是(2m﹣6)2=4.【点评】此题主要考查了实数运算,正确把握相关定义是解题关键.17.(8分)分解因式.(1)4x3y﹣4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)【分析】(1)多项式共3项且有公因式,应先提取公因式,再考虑用完全平方公式分解;(2)多项式变形为m3(x﹣2)﹣m(x﹣2),先提取公因式,再考虑用平方差公式分解.【解答】解:(1)原式=xy(4x2﹣4xy+y2)=xy(2x﹣y)2(2)原式=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m2﹣1)=m(x﹣2)(m+1)(m﹣1)【点评】本题考查了提公因式法与公式法分解因式,一般来说,多项式若有公因式先提取公因式,再考虑运用公式法分解.18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.【分析】(1)先算括号内的乘法,再合并同类项,最后算除法即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)=(﹣3a2b2﹣ab)÷(﹣ab)=3ab+1;(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣2时,原式=(﹣2)2+3=5.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣1)(b﹣1)(2)a2+b2(3)a﹣b【分析】(1)把式子展开,整体代入求出结果;(2)利用完全平方公式,把a2+b2变形为(a+b)2﹣2ab,整体代入求出结果;(3)根据已知和(2)的结果,先求出(a﹣b)2的值,再求它的平方根.【解答】解:(1)原式=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2﹣3+1=﹣4(2)原式=(a+b)2﹣2ab=9+4=13(3)∵(a﹣b)2=a2+b2﹣2ab=13+4=17∴a﹣b=±.【点评】本题考查了整体代入和完全平方公式的变形.解决本题的关键是利用转化的思想.20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AEB和Rt△CFD中,,∴Rt△AEB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab﹣bc﹣ca 的值.【分析】(1)根据整式的混合运算的法则化简后,代入求值即可;(2)原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.【解答】(1)解:原式=a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ac+c2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;(2)解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)= [(a﹣b)2+(b﹣c)2+(c﹣a)2]当a=2015x+2016,b=2015x+2017,c=2015x+2018,∴原式=×[(﹣1)2+(﹣1)2+22]=3.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?【分析】(1)依据点P点Q的运动速度相等,经过1秒,运用SAS即可得到△BPD和△CQP全等;(2)依据BP≠CQ,△BPD≌△CQP,可得BP=CP=4,进而得出t=2,a=3,即可得到当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.【解答】解:(1)△BPD和△CQP全等理由:∵t=1秒,∴BP=CQ=2,∴CP=8﹣BP=6,∵AB=12,∴BD=12×=6,∴BD=CP,又∠B=∠C,∴△BPD≌△CQP(SAS);(2)∵BP≠CQ,△BPD≌△CQP,∴BP=CP=4,∴t=2,∴BD=CQ=at=2a=6,∴a=3,∴当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的性质和判定,解一元一次方程的应用,能求出△BPD≌△CQP是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:EF=|BE﹣AF| .②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠ACB=180°.,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE =AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为=,EF=|BE﹣AF|.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为∠α+∠ACB=180°.(2)结论:EF=BE+AF.理由:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.【点评】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.。
2018-2019学年度八年级下学期期末考试数学试卷(最新整理)

绝密★启用前2018-2019学年度八年级下学期期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是中心对称图形的是( )A.B.C.D.2.如果a>b,那么下列各式中正确的是( )A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.下列运算正确的是( )A.(x﹣y)2=x2﹣y2B.x3•x4=x12C.=x3D.(x3y2)2=x6y44.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为( )A.70°B.20°C.70°或20°D.40°或140°5.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )A.4B.6C.8D.不能确定6.某密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:中,爱,我,二,游,美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.二中游C.爱我二中D.美我二中二.填空题(本大题共6小题,每小题3分,共18分)7.分解因式:x2﹣4x= .8.用不等式表示“a与6的差不是正数”: .9.在Rt△ABC中,∠C=90°,∠A=30°,AB=6,则AC= .10.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是 .11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于 .12.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,点A、B、C 的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E是BC的中点,点P为线段AD 上的动点,若△BEP是以BE为腰的等腰三角形,则点P的坐标为 .三.(本大题共5小题,每小题6分,共30分)13.(1)化简:(a+2)2﹣2(2a﹣1);(2)解不等式组:.14.解不等式,并把解集表示在数轴上.15.先化简:()÷然后选取一个你认为合适的数作为x的值代入求值.16.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.17.如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.四.(本大题共3小题,每小题8分,共24分)18.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.19.如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.20.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,DC=BF,以BF 为边在△ABC外作等边三角形BEF.(1)求证:四边形EFCD是平行四边形.(2)△ABC的边长是6,当点D是BC三等分点时,直接写出平行四边形CDEF的面积.五.(本大题共2小题,每小题9分,共18分)21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.六.(本大题12题)23.小明同学在学习过程中得出两个结论,结论1:直角三角形中,60°内角的两夹边长是2倍的关系.结论2:在一个三角形中,如果60°内角的两夹边长是2倍的关系,那么这个三角形是直角三角形.(1)上述结论1 .(填写“正确”或“不正确”)(2)上述结论2正确吗?如果你认为正确,请你给出证明.如果你认为不正确,请你给出反例.(3)等边三角形ABC边长为4,点P、Q分别从A、B出发,分别沿边AB、BC运动,速度是每秒1个单位长度,当P点到达B点时停止运动.请问当运动时间是多少秒时△BPQ是直角三角形?请你给出解题过程.2018-2019学年度八年级下学期期末考试数学试卷参考答案一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.B.2.C.3.D.4.C.5.C.6.C.二.填空题(本大题共6小题,每小题3分,共18分)7. x(x﹣4) .8. a﹣6≤0 .9.310. (﹣3,﹣4) .11. 72° .12. (1,4)或(6,4)或(0,4) .三.(本大题共5小题,每小题6分,共30分)13.解:(1)原式=a2+4a+4﹣4a+2=a2+6;(2),由①得:x≥1,由②得:x<3,则不等式组的解集为1≤x<3.14.解:去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x>,15.解:原式=(﹣)÷=•=,∵x≠±1且x≠0,∴取x=4,则原式=1.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.四.(本大题共3小题,每小题8分,共24分)18.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.19.证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.20.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)解:过E作EH⊥BC交CB的延长线于H,∵△ABC和△BEF是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D是BC三等分点,∴当CD=BC=2时,平行四边形CDEF的面积=2×=2,当CD=BC=4时,平行四边形CDEF的面积=4×2=8,综上所述,平行四边形CDEF的面积为2或8.五.(本大题共2小题,每小题9分,共18分)21.解:(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后还能购进y本科普书.依题意得550×8+12y≤10000,解得,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.22.(1)解∵点M,N是线段AB的勾股分割点,且BN>MN>AM,AM=2,MN=3,∴BN2=MN2+AM2=9+4=13,∴BN=;(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点.六.(本大题12分)23.解:(1)上述结论1正确,如图1,∵∠C=90°,∠B=60°,∴∠A=30°,∴BC=AB,∴60°内角的两夹边长是2倍的关系;故答案为:正确;(2)正确,如图2,取AB的中点D,连接CD,∴BD=AD=AB,∵BC=AB,∴BC=BD,∵∠B=60°,∴△BDC是等边三角形,∴∠BCD=∠BDC=60°,∵AD=CD,∴∠A=∠ACD=BDC=30°,∴∠ACB=90°,∴在一个三角形中,如果60°内角的两夹边长是2倍的关系,那么这个三角形是直角三角形正确.(3)分两种情况考虑:(i)当PQ⊥BC时,如图3所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC为等边三角形,∴∠B=60°,在Rt△BPQ中,cos60°==,即=,解得:t=秒;(ii)当QP⊥AB时,如图4所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC为等边三角形,∴∠B=60°,在Rt△BPQ中,cos60°==,即=,解得:t=秒,综上所述,t的值是秒或秒.。
2018-2019学年度八年级下学期期末考试数学试卷(可编辑修改word版)

绝密★启用前2018-2019 学年度八年级下学期期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本大题共6 小题,每小题3 分,共18 分,每小题只有一个正确选项)1.下列图形是中心对称图形的是()A.B.C.D.2.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2 B.< C.﹣2a<﹣2b D.﹣a>﹣b3.下列运算正确的是()A.(x﹣y)2=x2﹣y2 B.x3•x4=x12C.=x3 D.(x3y2)2=x6y44.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为()A.70°B.20°C.70°或20°D.40°或140°5.如图,P 为平行四边形ABCD 边AD 上一点,E、F 分别为PB、PC 的中点,△PEF、△PDC、△PAB 的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定6.某密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2 分别对应下列六个字:中,爱,我,二,游,美,现将(x2﹣y2)a2﹣(x2﹣y2)b2 因式分解,结果呈现的密码信息可能是()A.我爱美B.二中游C.爱我二中D.美我二中二.填空题(本大题共6 小题,每小题3 分,共18 分)7.分解因式:x2﹣4x=.8.用不等式表示“a 与6 的差不是正数”:.9.在Rt△ABC 中,∠C=90°,∠A=30°,AB=6,则AC=.10.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是.11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于.12.如图,在平面直角坐标系中,O 为坐标原点,四边形ABCD 是平行四边形,点A、B、C的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E 是BC 的中点,点P 为线段AD 上的动点,若△BEP 是以BE 为腰的等腰三角形,则点P 的坐标为.三.(本大题共5 小题,每小题6 分,共30 分)13.(1)化简:(a+2)2﹣2(2a﹣1);(2)解不等式组:.14.解不等式,并把解集表示在数轴上.15.先化简:()÷然后选取一个你认为合适的数作为x 的值代入求值.16.如图,平行四边形ABCD 中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1 中,作出∠DAE 的角平分线;(2)在图2 中,作出∠AEC 的角平分线.17.如图,已知∠BAC=60°,D 是BC 边上一点,AD=CD,∠ADB=80°,求∠B 的度数.四.(本大题共3 小题,每小题8 分,共24 分)18.已知关于x 的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m 的值.19.如图,在Rt△ABC 中,∠ACB=90°,点D、E 分别在AB、AC 上,且CE=BC,连接CD,将线段CD 绕点C 按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.20.如图,已知△ABC 是等边三角形,点D、F 分别在线段BC、AB 上,DC=BF,以BF为边在△ABC 外作等边三角形BEF.(1)求证:四边形EFCD 是平行四边形.(2)△ABC 的边长是6,当点D 是BC 三等分点时,直接写出平行四边形CDEF 的面积.五.(本大题共2 小题,每小题9 分,共18 分)21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4 元,用12000 元购进的科普书与用8000 元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000 元再购进一批文学书和科普书,问购进文学书550 本后至多还能购进多少本科普书?22.定义:如图1,点M,N 把线段AB 分割成AM,MN 和BN,若以AM,MN,BN 为边的三角形是一个直角三角形,则称点M,N 是线段AB 的勾股分割点.请解决下列问题:(1)已知点M,N 是线段AB 的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN 的长;(2)如图2,若点F、M、N、G 分别是AB、AD、AE、AC 边上的中点,点D,E 是线段BC 的勾股分割点,且EC>DE>BD,求证:点M,N 是线段FG 的勾股分割点.六.(本大题12 题)23.小明同学在学习过程中得出两个结论,结论1:直角三角形中,60°内角的两夹边长是2倍的关系.结论2:在一个三角形中,如果60°内角的两夹边长是2 倍的关系,那么这个三角形是直角三角形.(1)上述结论1 .(填写“正确”或“不正确”)(2)上述结论2 正确吗?如果你认为正确,请你给出证明.如果你认为不正确,请你给出反例.(3)等边三角形ABC 边长为4,点P、Q 分别从A、B 出发,分别沿边AB、BC 运动,速度是每秒1 个单位长度,当P 点到达B 点时停止运动.请问当运动时间是多少秒时△ BPQ 是直角三角形?请你给出解题过程.2018-2019 学年度八年级下学期期末考试数学试卷参考答案一.选择题(本大题共6 小题,每小题3 分,共18 分,每小题只有一个正确选项)1.B.2.C.3.D.4.C.5.C.6.C.二.填空题(本大题共6 小题,每小题3 分,共18 分)7.x(x﹣4).8.a﹣6≤0 .9. 3 10.(﹣3,﹣4).11. 72°.12.(1,4)或(6,4)或(0,4).三.(本大题共5 小题,每小题6 分,共30 分)13.解:(1)原式=a2+4a+4﹣4a+2=a2+6;(2),由①得:x≥1,由②得:x<3,则不等式组的解集为1≤x<3.14.解:去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x>,15.解:原式=(﹣)÷=•=,∵x≠±1 且x≠0,∴取x=4,则原式=1.16.解:(1)连接AC,AC 即为∠DAE 的平分线;如图 1 所示:(2)①连接AC、BD 交于点O,②连接EO,EO 为∠AEC 的角平分线;如图2 所示.17.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.四.(本大题共3 小题,每小题8 分,共24 分)18.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4 时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1 是原方程的解.(2)∵分式方程无解,∴m+1=0 或(x+2)(x﹣1)=0,当m+1=0 时,m=﹣1;当(x+2)(x﹣1)=0 时,x=﹣2 或x=1.当x=﹣2 时m=;当x=1 是m=﹣6,∴m=﹣1 或﹣6 或时该分式方程无解.19.证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC 和△EFC 中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.20.证明:(1)∵△ABC 是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD 是平行四边形;(2)解:过E 作EH⊥BC 交CB 的延长线于H,∵△ABC 和△BEF 是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D 是BC 三等分点,∴当CD=BC=2 时,平行四边形CDEF 的面积=2×=2 ,当CD=BC=4 时,平行四边形CDEF 的面积=4×2 =8 ,综上所述,平行四边形CDEF 的面积为2或8.五.(本大题共2 小题,每小题9 分,共18 分)21.解:(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8 是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8 元和12 元.②设购进文学书550 本后还能购进y 本科普书.依题意得550×8+12y≤10000,解得,∵y 为整数,∴y 的最大值为466∴至多还能购进466 本科普书.22.(1)解∵点M,N 是线段AB 的勾股分割点,且BN>MN>AM,AM=2,MN=3,∴BN2=MN2+AM2=9+4=13,∴BN=;(2)证明∵点F、M、N、G 分别是AB、AD、AE、AC 边上的中点,∴FM、MN、NG 分别是△ABD、△ADE、△AEC 的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E 是线段BC 的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N 是线段FG 的勾股分割点.六.(本大题12 分)23.解:(1)上述结论1 正确,如图1,∵∠C=90°,∠B=60°,∴∠A=30°,∴BC=AB,∴60°内角的两夹边长是2 倍的关系;故答案为:正确;(2)正确,如图2,取AB 的中点D,连接CD,∴BD=AD=AB,∵BC=AB,∴BC=BD,∵∠B=60°,∴△BDC 是等边三角形,∴∠BCD=∠BDC=60°,∵AD=CD,∴∠A=∠ACD=BDC=30°,∴∠ACB=90°,∴在一个三角形中,如果60°内角的两夹边长是2 倍的关系,那么这个三角形是直角三角形正确.(3)分两种情况考虑:(i)当PQ⊥BC 时,如图3 所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC 为等边三角形,∴∠B=60°,在Rt△BPQ 中,cos60°==,即=,解得:t=秒;(ii)当QP⊥AB 时,如图4 所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC 为等边三角形,∴∠B=60°,在Rt△BPQ 中,cos60°==,即=,解得:t=秒,综上所述,t 的值是秒或秒.第11 页(共10 页)。
2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
2019年邓州裴营乡一初中初二下年末数学试卷及解析.doc.doc
2019年邓州裴营乡一初中初二下年末数学试卷及解析一、选择题〔共8小题,每题3分,共24分〕〕 1、以下计算正确的选项是【】A 、632632x x x =⋅B 、330x x ÷=C 、()33326xy x y =D 、()m m mx x x =÷232、在实数10.5180.673233π∙∙---,,中,无理数的个数是【】A 、1B 、2C 、3D 、43、等腰三角形两边长是8cm 和4cm ,那么它的周长是【】A 、12cmB 、16cmC 、16cm 或20cmD 、20cm4、∠AOB ,求作射线OC ,使OC 平分∠AOB ,那么作法的合理顺序是【】 ①作射线OC ;②在射线OA 和OB 上分别截取OD 、OE ,使OD=OE ;③分别以D 、E 为圆心,大于12DE 的长为半径在∠AOB 内作弧,两弧交于点C 、 A 、①②③B 、②①③C 、②③①D 、③①②5、在平面直角坐标系中,□ABCD 的顶点A 〔0,0〕,B 〔5,0〕,D 〔2,3〕,那么顶点C 的坐标是【】A 、〔3,7〕B 、〔5,3〕C 、〔7,3〕D 、〔8,2〕 6、假设y=〔a+1〕x a2-2是反比例函数,那么a 的取值为〔〕 A 、1 B 、-l C 、±l D 、任意实数 7、如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,那么AB 的长为【】A 、4B 、3C 、52D 、2 8、如图,将一个长为,宽为的矩形纸片对折两次后,沿所得矩形两邻边中点的连线〔虚线〕剪下,再打开,得到的菱形的面积为【】 A 、B 、C 、D 、二、填空题〔共7小题,每题3分,共21分〕9、计算:()011221---+⎪⎭⎫ ⎝⎛-π=________、10、长度单位1纳米910-=米,目前发现一种新型病毒直径为23150纳米,用科学记数法表示该病毒直径是米〔保留两个有效数字〕。
2018-2019学年八年级下期末数学试卷2(含答案解析)
2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案
2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。
2019-2020学年河南省南阳市邓州市八年级下学期期末数学试卷(Word版 含解析)
2019-2020学年河南省南阳市邓州市八年级第二学期期末数学试卷一、选择题(共10小题).1.(3分)下列各数中最小的数是()A.﹣1 B.﹣C.20D.2﹣12.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣53.(3分)下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形4.(3分)下列等式成立的是()A.B.C.D.5.(3分)学校志愿者队的6位同学在一次垃圾分类活动中捡废弃塑料袋的个数分别为6,4,5,10,15,15,这组数据的中位数、众数分别为()A.15,15 B.10,15 C.8,8 D.8,156.(3分)已知点P(m,2m﹣4)在x轴上,则点Q(1﹣m,﹣m)在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2 9.(3分)如图,在矩形ABCD中,分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于点M,N作直线MN,交BC于点E,交AD于点F,若BE=3,AF=5,则矩形的周长为()A.24 B.12 C.8 D.3610.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)若分式有意义,则实数a的取值范围是.12.(3分)如图▱ABCD,点M是边AD上的一点,且BM平分∠ABC,MN⊥CD于点N,若∠DMN=30°,则∠BMN的度数为.13.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是.14.(3分)如图,四边形ABCD是边长为2的正方形,△BPC是等边三角形,则图中阴影部分的面积为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE 沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为.三.解答题(本大题共8个小题,满分75分)16.(8分)先化简:(1﹣)÷,再从﹣1,0,1和2中选一个你认为合适的数作为x的值代入求值.17.(9分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如图所示的统计图和统计表:组别分数/分频数A60<x≤7038B70<x≤8072C80<x≤9060D90<x≤100m(1)这次接受调查的学生总人数是人.(2)频数分布表中m=,扇形统计图中n=.(3)这次测试成绩的中位数落在组.(4)若该校共有3000名学生,请计算成绩在80~100分的人数.18.(9分)如图,在△ABC中,D是BC边上的中点,F,E分别是AD及其延长线上的点,CF∥BE,连结BF,CE.(1)求证:四边形BECF是平行四边形;(2)填空:①若AB=5,则AC的长为时,四边形BECF是菱形;②若AB=5,BC=6且四边形BECF是正方形,则AF的长为.19.(9分)已知反比例函数y=(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0).①求出该反比例函数的解析式;②若点P在x轴上,当S△ODP=3时,则点P的坐标为.20.(9分)某运动鞋专卖店通过市场调研,准备销售A、B两种运动鞋,其中A种运动鞋的进价比B运动鞋的进价高20元,已知鞋店用3200元购进A运动鞋的数量与用2560元购进B运动鞋的数量相同.(1)求两种运动鞋的进价;(2)若A运动鞋的售价为250元/双,B运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设A运动鞋进货m双,且90≤m≤105,要使该专卖店获得最大利润,应如何进货?21.(10分)某校八年级”数学兴趣小组”尝试对函数y=x2的图象和性质进行探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3 ﹣2 ﹣1 0 1 2 3 …y…m0 2 …其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画该函数图象的另一部分.(3)若直线y=kx+b与函数y=x2的图象交于点A(﹣1,)、B(3,),请结合图象直接写出:①方程组的解为;②不等式kx+b>x2的解集为.22.(10分)已知四边形ABCD和AEFG均为正方形.(1)观察猜想如图①,当点A,B,G三点在一条直线上时,连结BE,DG,则线段BE与DG的数量关系是,位置关系是.(2)类比探究如图②,将正方形AEFG在平面内绕点A逆时针旋转到图②时,则(1)的结论是否成立,若成立,请证明,若不成立,请说明理由;(3)拓展延伸在(2)的条件下,将正方形AEFG在平面内绕点A任意旋转,若AE=2,AB=5,则BE 的最大值为,最小值为.23.(11分)如图,在平面直角坐标系中,一次函数y=kx+b与x轴交于点A(4,0)与y 轴交于点B(0,8).(1)求这个一次函数的解析式;(2)若点P是线段AB上一动点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,当四边形PCOD的邻边之比为2:1时,求线段PC的长.(3)若点Q是平面内任意一点,是否存在以A,O,B,Q为顶点的四边形是平行四边形,若存在请直接写出点Q的坐标,若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.(3分)下列各数中最小的数是()A.﹣1 B.﹣C.20D.2﹣1解:∵20=1,2﹣1=,∴20>2﹣1>﹣>﹣1.故最小的数为:﹣1.故选:A.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5解:0.0000046=4.6×10﹣6.故选:C.3.(3分)下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意;C、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意;D、菱形既是中心对称图形,又是轴对称图形,故本选项正确.故选:B.4.(3分)下列等式成立的是()A.B.C.D.解:A.,故不成立;B.,故成立;C.,故不成立;D.,故不成立.故选:B.5.(3分)学校志愿者队的6位同学在一次垃圾分类活动中捡废弃塑料袋的个数分别为6,4,5,10,15,15,这组数据的中位数、众数分别为()A.15,15 B.10,15 C.8,8 D.8,15解:将这组数据重新排列为4,5,6,10,15,15,所以这组数据的中位数为=8,众数为15,故选:D.6.(3分)已知点P(m,2m﹣4)在x轴上,则点Q(1﹣m,﹣m)在()A.第一象限B.第二象限C.第三象限D.第四象限解:由点P(m,2m﹣4)在x轴上,得2m﹣4=0,解得m=2,∴1﹣m=﹣1,﹣m=﹣2,∴Q(1﹣m,﹣m)在第三象限.故选:C.7.(3分)函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.解:A、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx ﹣k的图象经过一、二、四象限,故本选项正确;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;故选:A.8.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.9.(3分)如图,在矩形ABCD中,分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于点M,N作直线MN,交BC于点E,交AD于点F,若BE=3,AF=5,则矩形的周长为()A.24 B.12 C.8 D.36解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠FAC=∠ECA,根据作图过程可知:MN是AC的垂直平分线,∴∠FOA=∠EOC=90°,AO=CO,在△AFO和△CEO中,,∴△AFO≌△CEO(AAS),∴AF=CE,连接AE,∵AE=CE,∴AE=CE=AF=5,∴BC=BE+CE=3+5=8,在Rt△ABE中,根据勾股定理,得AB==4,∴矩形的周长为2(AB+BC)=2(4+8)=24.故选:A.10.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.二.填空题(每小题3分,共15分)11.(3分)若分式有意义,则实数a的取值范围是a≠4.解:由题意可知:a﹣4≠0,∴a≠4,故答案是:a≠4.12.(3分)如图▱ABCD,点M是边AD上的一点,且BM平分∠ABC,MN⊥CD于点N,若∠DMN=30°,则∠BMN的度数为120°.解:∵MN⊥CD于点N,∠DMN=30°,∴∠D=90°﹣30°=60°,∵四边形ABCD是平行四边形,∴∠A=120°,∠ABC=60°,∵BM平分∠ABC,∴∠ABM=30°,∴∠AMB=180°﹣120°﹣30°=30°,∴∠BMN=180°﹣30°﹣30°=120°,故答案为:120°.13.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是y3<y1<y2.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故答案为y3<y1<y2.14.(3分)如图,四边形ABCD是边长为2的正方形,△BPC是等边三角形,则图中阴影部分的面积为﹣1.解:如图,过P作PE⊥CD,PF⊥BC,∵正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=2,∴∠PCE=30°,∴PF=PB•sin60°=2×=,PE=PC•sin30°=1,S阴影=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×2×+×1×2﹣×2×2=+1﹣2=﹣1.故答案为:﹣1.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE 沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为或10.解:分两种情况:①如图1,当点F在矩形内部时,∵点F在AB的垂直平分线MN上,∴AN=4;∵AF=AD=5,由勾股定理得FN=3,∴FM=2,设DE为y,则EM=4﹣y,FE=y,在△EMF中,由勾股定理得:y2=(4﹣y)2+22,∴y=,即DE的长为.②如图2,当点F在矩形外部时,同①的方法可得FN=3,∴FM=8,设DE为z,则EM=z﹣4,FE=z,在△EMF中,由勾股定理得:z2=(z﹣4)2+82,∴z=10,即DE的长为10.综上所述,点F刚好落在线段AB的垂直平分线上时,DE的长为或10故答案为:或10.三.解答题(本大题共8个小题,满分75分)16.(8分)先化简:(1﹣)÷,再从﹣1,0,1和2中选一个你认为合适的数作为x的值代入求值.解:(1﹣)÷===,∵当x=1,2或﹣2时,原分式无意义,∴x=0或﹣1,当x=0时,原式==﹣2.17.(9分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如图所示的统计图和统计表:组别分数/分频数A60<x≤7038B70<x≤8072C80<x≤9060D90<x≤100m(1)这次接受调查的学生总人数是200人.(2)频数分布表中m=30,扇形统计图中n=19%.(3)这次测试成绩的中位数落在B组.(4)若该校共有3000名学生,请计算成绩在80~100分的人数.解:(1)这次接受调查的学生总人数是72÷36%=200(人),故答案为:200;(2)频数分布表中m=200×15%=30,扇形统计图中n=×100%=19%,故答案为:30,19%;(3)∵19%+36%=55%>50%,∴第100、101个数据均落在B组,∴这次测试成绩的中位数落在B组,故答案为:B;(4)成绩在80~100分的人数为3000×(30%+15%)=1350(人).18.(9分)如图,在△ABC中,D是BC边上的中点,F,E分别是AD及其延长线上的点,CF∥BE,连结BF,CE.(1)求证:四边形BECF是平行四边形;(2)填空:①若AB=5,则AC的长为5时,四边形BECF是菱形;②若AB=5,BC=6且四边形BECF是正方形,则AF的长为1.解:(1)∵D是BC边的中点,∴BD=CD,∵CF∥BE,∴∠CFD=∠BED,在△CFD和△BED中,,∴△CFD≌△BED(AAS),∴CF=BE,∴四边形BFCE是平行四边形;(2)①当AC=5时,四边形BECF是菱形;理由如下:∵AB=5,∴AB=AC,∵D是BC边的中点,∴AD⊥BC,∴EF⊥BC,∵四边形BECF为平行四边形,∴四边形BECF是菱形.故答案为5;②∵四边形BEFC是正方形,∴EF=BC=6,EF⊥BC,∵点D是BC的中点,∴BD=CD=DF=DE=3,∴AD=,∴AF=AD﹣DF=4﹣3=1,故答案为1.19.(9分)已知反比例函数y=(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0).①求出该反比例函数的解析式;②若点P在x轴上,当S△ODP=3时,则点P的坐标为(2,0)或(﹣2,0).解:(1)∵反比例函数y=(m为常数)的图象在第一、三象限,∴1﹣2m>0,∴m<;(2)①∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∵A的坐标为(0,3),∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=;②∵S△ODP=OP×3=3,∴OP=2,∴点P的坐标为(2,0)或(﹣2,0).故答案为:(2,0)或(﹣2,0).20.(9分)某运动鞋专卖店通过市场调研,准备销售A、B两种运动鞋,其中A种运动鞋的进价比B运动鞋的进价高20元,已知鞋店用3200元购进A运动鞋的数量与用2560元购进B运动鞋的数量相同.(1)求两种运动鞋的进价;(2)若A运动鞋的售价为250元/双,B运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设A运动鞋进货m双,且90≤m≤105,要使该专卖店获得最大利润,应如何进货?解:(1)设A种运动鞋的进价为x元,,解得x=100,经检验,x=100是原分式方程的解,∴x﹣20=80,答:A运动鞋的进价价为100元/双,B运动鞋的进价是80元/双;(2)设总利润为w元,则w=(250﹣100)m+(180﹣80)(200﹣m)=50m+20000,∵50>0,w随m的增大而增大,又∵90≤m≤105,∴当m=105时,w取得最大值,200﹣m=95,答:要使该专卖店获得最大利润,此时应购进甲种运动鞋105双,购进乙种运动鞋95双.21.(10分)某校八年级”数学兴趣小组”尝试对函数y=x2的图象和性质进行探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3 ﹣2 ﹣1 0 1 2 3 …y…m0 2 …其中,m=2.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画该函数图象的另一部分.(3)若直线y=kx+b与函数y=x2的图象交于点A(﹣1,)、B(3,),请结合图象直接写出:①方程组的解为或;②不等式kx+b>x2的解集为﹣1<x<3.解:(1)把x=﹣2代入函数解析式便得y=x2=2,∴m=2,故答案为2;(2)用描点法画出函数图象如下:(3)根据题意作出函数图象如下:①由函数图象可知,方程组的解为或,故答案为:或;②根据函数图象可知,当﹣1<x<3时,直线y=kx+b在抛物线的上方,∴不等式kx+b>x2的解集为﹣1<x<3,故答案为:﹣1<x<3.22.(10分)已知四边形ABCD和AEFG均为正方形.(1)观察猜想如图①,当点A,B,G三点在一条直线上时,连结BE,DG,则线段BE与DG的数量关系是BE=DG,位置关系是BE⊥DG.(2)类比探究如图②,将正方形AEFG在平面内绕点A逆时针旋转到图②时,则(1)的结论是否成立,若成立,请证明,若不成立,请说明理由;(3)拓展延伸在(2)的条件下,将正方形AEFG在平面内绕点A任意旋转,若AE=2,AB=5,则BE 的最大值为7,最小值为3.解:(1)如图1,延长BE交DG于H,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴△ABE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∵∠ADG+∠DGA=90°,∴∠ABE+∠DGA=90°,∴∠GHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)(1)的结论仍然成立,理由如下:设BE交AD于O,DG于N,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;∠ABE=∠ADG,∵∠ABE+∠AOB=90°,∴∠ADG+∠AOB=∠ADG+∠DON=90°,∴∠DNO=90°,∴BE⊥DG;(3)∵将正方形AEFG在平面内绕点A任意旋转,∴当点E在线段AB上时,BE有最小值=AB﹣AE=5﹣2=3,当点E在线段BA的延长线上时,BE有最大值=AB+AE=5+2=7,故答案为:7,3.23.(11分)如图,在平面直角坐标系中,一次函数y=kx+b与x轴交于点A(4,0)与y 轴交于点B(0,8).(1)求这个一次函数的解析式;(2)若点P是线段AB上一动点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,当四边形PCOD的邻边之比为2:1时,求线段PC的长.(3)若点Q是平面内任意一点,是否存在以A,O,B,Q为顶点的四边形是平行四边形,若存在请直接写出点Q的坐标,若不存在,请说明理由.解:(1)∵一次函数y=kx+b与x轴交于点A(4,0)与y轴交于点B(0,8),∴,解得:,∴一次函数的解析式为y=﹣2x+8;(2)设点P(x,﹣2x+8),∴OC=x,PC=﹣2x+8,∵四边形PCOD的邻边之比为2:1,∴OC=2PC或PC=2OC,∴x=2(﹣2x+8)或﹣2x+8=2x,∴x=或x=2,∴PC=4或;(3)设点Q(m,n),当AB是对角线时,∵四边形AOBQ是平行四边形,∴AB与OQ互相平分,∴,,∴m=4,n=8,∴点Q(4,8);当AO是对角线时,∵四边形ABOQ是平行四边形,∴AO与BQ互相平分,∴,,∴m=4,n=﹣8,∴点Q(4,﹣8);当OB是对角线时,∵四边形AOQB是平行四边形,∴AQ与BO互相平分,∴,,∴m=﹣4,n=8,∴点Q(﹣4,8),综上所述:点Q的坐标为(4,8)或(4,﹣8)或(﹣4,8).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年河南省南阳市邓州市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.(3分)使分式有意义的x的取值范围是()A.x≠1B.x≠﹣1C.x<1D.x>12.(3分)下列变形正确的是()A.=B.=C.=﹣D.=13.(3分)将直线y=﹣2x﹣3怎样平移可以得到直线y=﹣2x()A.向上平移2个单位B.向上平移3个单位C.向下平移2个单位D.向下平移3个单位4.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.(3分)如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.36.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386 S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁7.(3分)如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A.B.C.D.8.(3分)如图,在▱ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F.若AE:AF=2:3,▱ABCD的周长为20,则AB的长为()A.4B.5C.6D.89.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分别为1,2,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.1B.C.2D.10.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)二、填空题(每小题3分,共15分)11.(3分)计算:3﹣1×()﹣2+30=.12.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.13.(3分)如图,点P是正比例函数y=x与反比例函数y=又在第一象限内的交点,PA ⊥OP交x轴于点A,则△POA的面积为.14.(3分)如图,正方形ABCD的面积等于25cm2,正方形DEFG的面积等于9cm2,则阴影部分的面积S=cm2.15.(3分)如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC 上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为.三、解答题(本大题共计75分)16.(8分)先化简再求值:,其中a满足与2和3构成△ABC的三边,且a为整数.17.(9分)西安市某中学九年级组织了一次数学计算比赛(禁用计算器),每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,数学教研组将九年级一班和二班的成绩整理并绘制成如下的统计图,请根据提供的信息解答下列问题.(1)把一班竞赛成绩统计图补充完整.(2)填表:平均数(分)中位数(分)众数(分)一班85二班8475(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:①从平均数、众数方面来比较一班和二班的成绩;②从B级以上(包括B级)的人数方面来比较一班和二班的成绩.18.(9分)如图在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF(1)四边形AFCD是什么特殊的四边形?请说明理由(2)填空:①若AB=AC则四边形AFCD是形;②当△ABC满足条件时,四边形AFCD是正方形.19.(9分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间(1)求甲、乙两名工人每天各制作多少个宣传牌?(2)现在需要这两名工人合作完成44个宣传牌制作任务,应如何分配,才能让两名工人同时完成任务?20.(9分)如图在平面直角坐标系中,一次函数y=﹣2x﹣4的图象与反比例函数y=的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足△MAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式在<﹣2x﹣4的解集21.(10分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由.22.(10分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现:如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是.(2)归纳证明:证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用:如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.23.(11分)已知矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),点Q为线段AC上一点,其坐标为(5,n).(1)求直线AC的表达式;(2)如图,若点P为坐标轴上一动点,动点P沿折线AO→OC的路径以每秒1个单位长度的速度运动,到达C处停止,求△OPQ的面积S与点P的运动时间t(秒)的函数关系式;(3)若点P为坐标平面内任意一点,是否存在这样的点P,使以O,C,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标,若不存在,请说明理由.2018-2019学年河南省南阳市邓州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.(3分)使分式有意义的x的取值范围是()A.x≠1B.x≠﹣1C.x<1D.x>1【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故选:A.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.2.(3分)下列变形正确的是()A.=B.=C.=﹣D.=1【分析】依据分式的基本性质进行判断,即可得到结论.【解答】解:A.,故本选项错误;B.,故本选项错误;C.=﹣,故本选项正确;D.≠1,故本选项错误;故选:C.【点评】本题主要考查了分式的基本性质,分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.3.(3分)将直线y=﹣2x﹣3怎样平移可以得到直线y=﹣2x()A.向上平移2个单位B.向上平移3个单位C.向下平移2个单位D.向下平移3个单位【分析】根据上加下减,左加右减的平移原则,即可得出答案.【解答】解:根据上加下减的平移原则,直线y=﹣2x可以看作是由直线y=﹣2x﹣3向上平移3个单位得到的;故选:B.【点评】本题考查了一次函数图象与几何变换,属于基础题,关键是掌握上加下减,左加右减的平移原则.4.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5.(3分)如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.3【分析】根据反比例函数图象上点的坐标特征,将(﹣1,﹣2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】解:根据题意,得﹣2=,即2=k﹣1,解得,k=3.故选:D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.6.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386 S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进,故选:B.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A.B.C.D.【分析】设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据路程=总费用÷每千米所需费用结合路程相等,即可得出关于x的分式方程,此题得解.【解答】解:设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据题意得:=.故选:C.【点评】本题考查了由实际问题抽象出分式方程以及函数的图象,找准等量关系,正确列出分式方程是解题的关键.8.(3分)如图,在▱ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F.若AE:AF=2:3,▱ABCD的周长为20,则AB的长为()A.4B.5C.6D.8【分析】根据平行四边形的对边相等,可知一组邻边的和就是其周长的一半.根据平行四边形的面积,可知平行四边形的一组邻边的比和它的高成反比.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC+CD=20÷2=10,根据平行四边形的面积公式,得BC:CD=AF:AE=3:2.∴BC=6,CD=4,∴AB=CD=4,故选:A.【点评】本题主要考查了平行四边形的性质,平行四边形的一组邻边的和等于周长的一半,平行四边形的一组邻边的比和它的高的比成反比.9.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分别为1,2,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.1B.C.2D.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且横坐标分别为1,2,∴A,B纵坐标分别为2,1,∴AE=1,BE=1,∴AB=,S=BC•AE=×1=,菱形ABCD故选:B.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.10.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.二、填空题(每小题3分,共15分)11.(3分)计算:3﹣1×()﹣2+30=4.【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:3﹣1×()﹣2+30=×9+1=4.故答案为:4.【点评】此题主要考查了负整数幂的性质以及零指数幂的性质,正确化简各数是解题关键.12.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.(3分)如图,点P 是正比例函数y =x 与反比例函数y =又在第一象限内的交点,PA ⊥OP 交x 轴于点A ,则△POA 的面积为 4 .【分析】P 在y =x 上可知△POA 为等腰直角三角形,过P 作PC ⊥OA 于点C ,则可知S △POC =S △PCA =k =2,进而可求得△POA 的面积为4.【解答】解:过P 作PC ⊥OA 于点C ,∵P 点在y =x 上,∴∠POA =45°,∴△POA 为等腰直角三角形,则S △POC =S △PCA =k =2,∴S △POA =S △POC +S △PCA =4,故答案为4.【点评】本题考查了反比例函数y =(k ≠0)系数k 的几何意义:从反比例函数y =(k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k |.也考查了等腰直角三角形的性质.14.(3分)如图,正方形ABCD 的面积等于25cm 2,正方形DEFG 的面积等于9cm 2,则阴影部分的面积S=cm2.【分析】直接利用二次根式的性质结合三角形面积求法得出答案.【解答】解:∵正方形ABCD的面积等于25cm2,正方形DEFG的面积等于9cm2,∴正方形ABCD的边长为5cm,正方形DEFG的边长为3cm,∴阴影部分的面积S=25+9﹣×3×(5+3)﹣×5×5=(cm2).故答案为:.【点评】此题主要考查了二次根式的应用,正确得出线段长是解题关键.15.(3分)如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC 上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为或.【分析】如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.【解答】解:如图,作GH⊥BC于H.则四边形ABHG是矩形.∵G是AD的三等分点,∴AG=4或8,由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.∵AD∥BC,∴∠FEG=∠EFB=∠GFE,∴EG=FG=x,在Rt△FGH中,∵FG2=GH2+FH2,∴x2=22+(4﹣x)2或x2=22+(8﹣x)2解得:x=或,故答案为或.【点评】本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本大题共计75分)16.(8分)先化简再求值:,其中a满足与2和3构成△ABC的三边,且a为整数.【分析】先根据分式混合运算的法则把原式进行化简,再根据三角形的三边关系判断出a 的取值范围,选取合适的a的值代入进行计算即可.【解答】解:原式=•+=+==,∵a与2、3构成△ABC的三边,∴3﹣2<a<3+2,即1<a<5,∵a为整数,∴a=2、3、4,当a=2时,分母2﹣a=0,舍去;当a=3时,分母a﹣3=0,舍去;故a的值只能为4.∴当a=4时,原式==1.【点评】本题考查的是分式的化简求值,在选取a的值时要保证分式有意义.17.(9分)西安市某中学九年级组织了一次数学计算比赛(禁用计算器),每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,数学教研组将九年级一班和二班的成绩整理并绘制成如下的统计图,请根据提供的信息解答下列问题.(1)把一班竞赛成绩统计图补充完整.(2)填表:平均数(分)中位数(分)众数(分)一班82.68585二班8475100(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:①从平均数、众数方面来比较一班和二班的成绩;②从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【分析】(1)根据题意和表格中的数据可以求得一班C等级的学生数,从而可以解答本题;(2)根据表格中的数据可以求得一班的平均数和中位数,以及二班的众数;(3)根据表格中的数据,可以从两方面比较一班和二班成绩的情况.【解答】解:(1)一班C等级的学生有:25﹣6﹣12﹣5=2,补全的条形统计图如右图所示;(2)一班的平均数是:=82.8,中位数是85,二班的众数是100,故答案为:82.8、85、100;(3)①从平均数、众数方面来比较,二班成绩更好;②从B级以上(包括B级)的人数方面来比较,一班成绩更好.【点评】本题考查条形统计图、扇形统计图、众数、中位数、加权平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.(9分)如图在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF(1)四边形AFCD是什么特殊的四边形?请说明理由(2)填空:①若AB=AC则四边形AFCD是矩形;②当△ABC满足AB=AC,∠BAC=90°条件时,四边形AFCD是正方形.【分析】(1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;(2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.【解答】解:(1)四边形AFCD是平行四边形理由如下:∵AF∥BC,∴∠AFE=∠DBE,且AE=DE,∠AEF=∠DEB∴△AEF≌△DEB(AAS)∴AF=BD,∵AD是BC边上的中线∴CD=BD∴AF=CD,且AF∥BC∴四边形AFCD是平行四边形(2)①∵AB=AC,AD是BC边上的中线∴AD⊥BC,且四边形AFCD是平行四边形∴四边形AFCD是矩形故答案为:矩②当△ABC满足AB=AC,∠BAC=90°条件时,四边形AFCD是正方形.理由为:∵AB=AC,∠BAC=90°,AD是BC边上的中线∴AD=CD=BD,AD⊥BC∵四边形AFCD是平行四边形,AD⊥BC∴四边形AFCD是矩形,且AD=CD∴四边形AFCD是正方形故答案为:AB=AC,∠BAC=90°【点评】本题主要考查了正方形的判定,平行四边形的判定以及全等三角形的判定与性质、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.19.(9分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间(1)求甲、乙两名工人每天各制作多少个宣传牌?(2)现在需要这两名工人合作完成44个宣传牌制作任务,应如何分配,才能让两名工人同时完成任务?【分析】(1)设甲工人每天完成x个宣传牌,则乙工人每天完成1.2x个宣传牌,根据完成30个宣传牌工作,乙工人比甲工人节省了一天时间列出方程解答即可;(2)根据(1)中求得的数据,设甲完成a个宣传牌,则乙完成(44﹣a)个宣传牌,根据所用时间相等列出方程解答即可.【解答】解:(1)设甲工人每天完成x个宣传牌,由题意得:﹣1=解得:x=5,经检验x=5是原分式方程的解,则(1+20%)x=6,答:甲工人每天完成5个宣传牌,乙工人每天完成6个宣传牌;(2)设甲完成a个宣传牌,则乙完成(44﹣a)个宣传牌,由题意得:=,解得:a=20,44﹣a=24,答:甲完成20个宣传牌,乙完成24个宣传牌,才能让两名工人同时完成任务.【点评】此题考查了分式方程的实际运用、一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键20.(9分)如图在平面直角坐标系中,一次函数y=﹣2x﹣4的图象与反比例函数y=的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足△MAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式在<﹣2x﹣4的解集【分析】(1)把A(1,n),B(m,2)代入y=﹣2x﹣2即可求得m、n的值,从而得到A(1,﹣6),然后利用待定系数法即可即可求得反比例函数的表达式;(2)设M(m,0),因为△MAB的面积为16,直线AB交x轴于(﹣2,0),可得|m+2|×8=16,解方程即可;(3)根据图象,结合A、B的坐标即可求得.【解答】解:(1)∵一次函数y=﹣2x﹣4的图象过点A(1,n),B(m,2)∴n=﹣2﹣4,2=﹣2m﹣4∴n=﹣6,m=﹣3,∴A(1,﹣6)把A(1,﹣6)代入y=得,k=﹣6,∴反比例函数关系式为y=﹣;(2)设直线AB与x轴交于N点,则N(﹣2,0),设M(m,0),m>0,∵S△MAB =S△BMN+S△AMN,△MAB的面积为16,∴|m+2|×(2+6)=16,解得m=2或﹣6(不合题意舍去),∴M(2,0);(3)由图象可知:不等式在<﹣2x﹣4的解集是x<﹣3或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程解决问题,属于中考常考题型.21.(10分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由.【分析】(1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100﹣m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设购买A型号足球x个,B型号足球y个,依题意,得:,解得:.答:该校A型号足球60个,B型号足球40个.(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100﹣m)个,依题意,得:w=200m+250(100﹣m)=﹣50m+25000.∵购进A型号足球的数量不多于B型号足球数量的9倍,∴m≤9(100﹣m),∴m≤90.∵﹣50<0,∴w随m的增大而减小,∴当m=90时,w取得最小值,∴最省钱的购买方案为:购买A型号足球90个、B型号足球10个.【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.22.(10分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现:如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是BP=CE,CE与AD的位置关系是CE⊥AD.(2)归纳证明:证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用:如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.【分析】(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.(2)证明过程同(1).(3)由AB=5即△ABC为等边三角形可求得BD的长.连接CE,由(2)可求∠BCE =90°,故在Rt△BCE中,由勾股定理可求CE的长.又由(2)可得BP=CE,由DP =BP﹣BD即求得DP的长.【解答】解:(1)∵菱形ABCD中,∠ABC=60°∴AB=BC=CD=AD,∠ADC=∠ABC=60°∴△ABC、△ACD是等边三角形∴AB=AC,AC=CD,∠BAC=∠ACD=60°∵△APE是等边三角形∴AP=AE,∠PAE=60°∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE在△BAP与△CAE中∴△BAP≌△CAE(SAS)∴BP=CE,∠ABP=∠ACE∵BD平分∠ABC∴∠ACE=∠ABP=∠ABC=30°∴CE平分∠ACD∴CE⊥AD故答案为:BP=CE;CE⊥AD.(2)BP=CE,CE⊥AD仍成立,证明如下:∵菱形ABCD中,∠ABC=60°∴AB=BC=CD=AD,∠ADC=∠ABC=60°∴△ABC、△ACD是等边三角形∴AB=AC,AC=CD,∠BAC=∠ACD=60°∵△APE是等边三角形∴AP=AE,∠PAE=60°∴∠BAC+∠PAC=∠PAE+∠PAC即∠BAP=∠CAE在△BAP与△CAE中∴△BAP≌△CAE(SAS)∴BP=CE,∠ABP=∠ACE∵BD平分∠ABC∴∠ACE=∠ABP=∠ABC=30°∴CE平分∠ACD∴CE⊥AD(3)连接CE,设AC与BD相交于点O∵AB=5∴BC=AC=AB=5∴AO=AC=∴BO=∴BD=2BO=5∵∠BCE=∠BCA+∠ACE=90°,BE=13∴CE==12由(2)可知,BP=CE=12∴DP=BP﹣BD=12﹣5【点评】本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.23.(11分)已知矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),点Q为线段AC上一点,其坐标为(5,n).(1)求直线AC的表达式;(2)如图,若点P为坐标轴上一动点,动点P沿折线AO→OC的路径以每秒1个单位长度的速度运动,到达C处停止,求△OPQ的面积S与点P的运动时间t(秒)的函数关系式;(3)若点P为坐标平面内任意一点,是否存在这样的点P,使以O,C,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标,若不存在,请说明理由.【分析】(1)由矩形的性质可得出点C的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式;(2)利用一次函数图象上点的坐标特征可求出点Q的坐标,分点P在OA和点P在OC 上两种情况,利用三角形的面积公式可找出S与t之间的函数关系式;(3)分OC为对角线、OQ为对角线以及CQ为对角线三种情况,利用平行四边形的性质(对角线互相平分)即可求出点P的坐标.【解答】解:(1)由题意,可知:点C的坐标为(0,8).设直线AC的解析式为y=kx+b(k≠0),将A(10,0),C(0,8)代入y=kx+b,得:,解得:,∴直线AC的解析式为y=﹣x+8.(2)∵点Q(5,n)为线段AC上一点,∴n=﹣×5+8=4,∴点Q的坐标为(5,4).当点P在OA上,即0≤t<10时,OP=10﹣t,S=×4•OP=﹣2t+20;当点P在OC上,即10<t≤18时,OP=t﹣10,S=×5•OP=t﹣25.∴△OPQ的面积S与点P的运动时间t(秒)的函数关系式为S=.(3)设点P的坐标为(a,c),分三种情况考虑(如图2):①当OC为对角线时,∵O(0,0),C(0,8),Q(5,4),∴,解得:,∴点P1的坐标为(﹣5,4);②当OQ为对角线时,∵O(0,0),C(0,8),Q(5,4),∴,解得:,∴点P2的坐标为(5,﹣4);③当CQ为对角线时,∵O(0,0),C(0,8),Q(5,4),∴,解得:,∴点P3的坐标为(5,12).。