初二年级几何证明例题精讲
八年级数学理科班讲义教学-几何证明

B CD AOB CE DA A CB ’ CA B C B ’ C 8、八年级数学理科班:直角三角形全等判定、性质姓名一、【直角三角形全等的特殊判定方法】知识要点:一条直角边和斜边对应相等的两个直角三角形全等。
简记为HL 。
1、【定理证明】已知:如图,在Rt △ABC 和Rt △A’B’C’中,∠C=∠C’=90°,AC=A’C’,AB=A’B’ 求证: Rt △ABC ≌Rt △A’B’C’2、【直角三角形全等判定方法梳理】如图,具有下列条件的Rt △ABC 和Rt △A’B’C’(其中∠C=∠C’=90°)是否全等?如果全等在( )里打“√”,并在“——”上填写判定三角形全等的理由,如果不全等,在( )里打“×”. (1)AC=A’C’,∠A=∠A’ ( ) _______ (2)AC=A’C’,BC=B’C’ ( ) _______ (3)AB=A’B’,BC=B’C’ ( ) _______ (4)∠A=∠A’,∠B=∠B’ ( ) ________3、【应用练习】 选择题1.下列说法正确的有( )① 斜边和一条直角边对应相等的两个直角三角形全等② 两条边分别相等的两个直角三角形全等 ③ 两条直角边对应相等的两个直角三角形全等 ④ 斜边相等的两个等腰直角三角形全等A .1个B .2个C .3个D .4个2.已知,如图,BD ⊥AC 于D,CE ⊥AB 于E,BD 与CE 相交于O , 且BD=CE ,则图中全等的三角形共有( )A .1对B .2对C .3对D .4对3.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边 所对的角( )A .相等B .不相等C .互余或相等D .相等或互补4.如图,已知:∠A=∠D=90°,AB=CD,求证:AC=DBBC F E DABC FE D AB C F E D A5.如图,已知:AB=CD,AE ⊥BC,DF ⊥BC,BF=CE.求证:AB ∥CD6.如图,已知:AB=AE, ∠B=∠E=90°,AF 垂直平分CD,求证:BC=DE7.如图,已知:AD 平分∠BAC,DB ⊥AB,DF ⊥AC 于点F ,ED=CD,求证:AC=AE+2BE.8.已知:AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F , 求证:CE=DF二、直角三角形的性质 1、【定理】①直角三角形的两个锐角互余(显然) ②直角三角形斜边上的中线等于斜边的一半 2、【定理证明】已知:在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 的中线.求证:AB CD 21例1.如图,△ABC中,BD⊥AC于D,CE⊥AB与E,连接DE,取BC的中点M,DE的中点N,问:MN与DE有什么样的位置关系,并说明理由。
初二几何证明题的解题思路

初二几何证明题的解题思路一、题目11. 题目- 已知:在平行四边形ABCD中,E、F分别是AB、CD的中点,连接DE、BF。
求证:四边形DEBF是平行四边形。
2. 解析- 思路:要证明四边形DEBF是平行四边形,根据平行四边形的判定定理,可以从对边平行且相等入手。
- 证明:因为四边形ABCD是平行四边形,所以AB = CD,AB∥ CD。
- 又因为E、F分别是AB、CD的中点,所以BE=(1)/(2)AB,DF=(1)/(2)CD。
- 所以BE = DF。
- 且BE∥ DF(因为AB∥ CD)。
- 根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,所以四边形DEBF是平行四边形。
二、题目21. 题目- 已知:在 ABC中,AD是BC边上的中线,E是AD的中点,连接BE并延长交AC于F。
求证:AF=(1)/(2)FC。
2. 解析- 思路:过点D作DG∥ BF交AC于G,利用中位线定理和平行线分线段成比例定理来证明。
- 证明:过点D作DG∥ BF交AC于G。
- 因为AD是BC边上的中线,所以D是BC中点。
- 又因为DG∥ BF,根据中位线定理,可得G是FC中点,即FG = GC。
- 因为E是AD的中点,DG∥ BF,根据平行线分线段成比例定理,可得AF = FG。
- 所以AF=(1)/(2)FC。
三、题目31. 题目- 已知:在矩形ABCD中,AC、BD相交于点O,AE平分∠ BAD交BC于E,∠ CAE = 15^∘。
求∠ BOE的度数。
2. 解析- 思路:先求出∠ BAE的度数,进而得出 ABE的形状,再求出∠ ACB的度数,最后根据三角形的内角和求出∠ BOE的度数。
- 证明:- 因为四边形ABCD是矩形,AE平分∠ BAD,所以∠ BAE = 45^∘。
- 又因为∠ CAE=15^∘,所以∠ BAC=∠ BAE +∠ CAE = 45^∘+15^∘=60^∘。
- 在矩形ABCD中,AC = BD,OA=OC=(1)/(2)AC,OB =OD=(1)/(2)BD,所以OA = OB。
八年级数学几何证明题技巧(含答案)

几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例 1. 已知:如图 1 所示,ABC 中, C 90 ,AC BC,AD DB,AE CF 。
求证: DE= DFAEDC F B图1分析:由 ABC 是等腰直角三角形可知, A B 45 ,由 D 是 AB 中点,可考虑连结CD ,易得 CD AD ,DCF 45 。
从而不难发现DCF DAE证明:连结 CDAC BCA BACB 90 ,AD DBCD BD AD,DCB B AAE CF, A DCB ,AD CDADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,理由是:过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC),即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;(2)解:结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,∴∠1=∠2=90°-∠3=∠4,∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中∴△EBC≌△HDC.∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,=,即(1)中的结论仍然成立;(3)解:连接BD,∵AB=,正方形ABCD,∴BD=2,∴cos∠DBE==,∴∠DBE=60°,∴∠ABE=∠DBE-∠ABD=15°,∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析:(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC 上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,∴∠EFG=∠GDH,而∠EGF=∠DGH,GF=GD,∴△GEF≌△GHD,∴EF=DH,而BE=EF,∴DH=BE;(2)连接DB,如图,∵△BEF为等腰直角三角形,∴∠EBF=45°,而四边形ABCD为正方形,∴∠DBC=45°,∴D,E,B三点共线.而∠BEF=90°,∴△FED为直角三角形,而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,∵G为DF的中点,O为BD的中点,M为BF的中点,∴OG∥BF,GM∥OB,∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF=90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.(1)探索EG、CG的数量关系和位置关系并证明;(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.解析:(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG ⊥CG.(3)首先证明:△BEC ≌△FEH ,即可证得:△ECH 为等腰直角三角形,从而得到:EG=CG 且EG ⊥CG .已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的数量关系为______;(2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.解:(1)GC=EG ,(1分)理由如下:∵△BEF 为等腰直角三角形, ∴∠DEF=90°,又G 为斜边DF 的中点, ∴EG=DF , ∵ABCD 为正方形, ∴∠BCD=90°,又G 为斜边DF 的中点,∴CG= DF , ∴GC=EG ;(2)成立.如图,延长EG 交CD 于M ,∵∠BEF=∠FEC=∠BCD=90°,∴EF ∥CD ,∴∠EFG=∠MDG ,又∠EGF=∠DGM ,DG=FG ,∴△GEF ≌△GMD ,∴EG=MG ,即G 为EM 的中点.∴CG 为直角△ECM 的斜边上的中线,∴CG=GE= EM ;(3)成立.取BF 的中点H ,连接EH ,GH ,取BD 的中点O ,连接OG ,OC .∵CB=CD ,∠DCB=90°,∴CO= BD1 2 1 21212.∵DG=GF,∴GH∥BD,且GH= BD,OG∥BF,且OG= BF,∴CO=GH.为等腰直角三角形.∵△BEF∴EH= BF∴EH=OG.∵四边形OBHG为平行四边形,∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.∴∠GOC=∠EHG.∴△GOC≌△EHG.∴EG=GC.此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)EG=CG,理由为:根据三角形BEF为等腰直角三角形,得到∠DEF为直角,又G为DF中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG为DF的一半,同理在直角三角形DCF中,得到CG也等于DF的一半,利用等量代换得证;(2)成立.理由为:延长EG交CD于M,如图所示,根据“ASA”得到三角形EFG与三角形GDM 全等,由全等三角形的对应边相等得到EG与MG相等,即G为EM中点,根据直角三角形斜边上的中线等于斜边的一半得到EG与CG相等都等于斜边EM的一半,得证;(3)成立.理由为:取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC,如图所示,1212因为直角三角形DCB中,O为斜边BD的中点,根据斜边上的中线等于斜边的一半得到OC等于BD 的一半,由HG为三角形DBF的中位线,根据三角形的中位线平行于第三边且等于第三边的一半,得到GH等于BD一半,OG等于BF的一半,又根据直角三角形斜边上的中线等于斜边的一半得到EH等于BF的一半,根据等量代换得到OG与EH相等,再根据OBHG为平行四边形,根据平行四边形的性质得到对边相等,对角相等,进而得到∠GOC与∠EHG相等,利用“SAS”得到△GOC与△EHG全等,利用全等三角形的对应边相等即可得证.。
专题五几何证明人教版八年级数学(上册)-【完整版】

∴△DAB≌△CBA(AAS). ∴BD=AC. ∴AD=BC. 在△ADC和△BCD中,
∴△ADC≌△BCD(SSS). ∴∠CDA=∠DCB.
四、 证明线段垂直
15. 如图,点 C 在线段 AB 上,AD∥EB,AC=BE,
AD=BC,CF 平分∠DCE.求证:CF⊥DE.
∵F为CE的中点, ∴AF平分∠EAC. ∴AF⊥CE.即∠AFC=90°. 又∠FAC+∠ACE=180°-∠AFC=90°, ∠DAC=∠ACE, ∴∠DAC+∠FAC=90°. 即∠DAF=90°. ∴AF⊥AD.
五、 证明等边三角形
20. 如图,在△ABC 中,D 为 AC 边上一点,DE⊥AB
专题五 几何证明人教版八年级数学上册-精 品课件p pt(实 用版)
专题五 几何证明人教版八年级数学上册-精 品课件p pt(实 用版)
在△ACM和△DCN中,
∴△ACM≌△DCN(ASA). ∴CM=CN. 又∠DCN=60°, ∴△CMN为等边三角形.
专题五 几何证明人教版八年级数学上册-精 品课件p pt(实 用版)
证明:∵△ABC≌△EDC, ∴BC=DC,∠ACB=∠DCE.
在△BCF和△DCH中,
∴△BCF≌△DCH(SAS). ∴∠FBC=∠HDC. 在△FBC和△FDK中, ∵∠FBC=∠HDC,∠BFC=∠DFK, ∴∠DKF=∠ACB.
14. 如图,AC 与 BD 相交于点 O,∠DBA=∠CAB, ∠1=∠2. 求证:∠CDA=∠DCB.
点 F,连接 BE. 求证:BE⊥AF.
证明:∵AD∥BC, ∴∠DAE=∠F,∠ADE=∠FCE.
在△ADE和△FCE中,
(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。
求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。
从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。
人教版八年级数学上册:第三部分 专题探究 专题四 几何证明专题 ppt课件

〔2〕解:△ABE是等边三角形. 理由如下. ∵BC是线段AE的垂直平分线, ∴BA=BE,即△ABE是等腰三角形. 又∵∠CAB=60°, ∴△ABE是等边三角形.
5. 如图3-4-10,知:在△ABC中,∠B,∠C的平分线相交 于点D,过点D作EF∥BC交AB于点E,交AC于点F,求 证:BE+CF=EF. 证明:∵BD平分∠ABC, ∴∠EBD=∠DBC. ∵EF∥BC,∴∠EDB=∠DBC. ∴∠EDB=∠EBD. ∴DE=BE. 同理,CF=DF. ∴EF=DE+DF=BE+CF, 即BE+CF=EF.
第三部分 专题探求
专题四 几何证明专题
考点突破
考点一: 证明三角形全等 【例1】如图3-4-1所示,在△ABC中,AD⊥BC, CE⊥AB,垂足分别为点D,E,AD,CE相交于点H, 假设AE=CE,求证:△AEH≌△CEB. 证明:∵AD⊥BC,CE⊥AB,∴∠AEH=∠CEB=90°, ∠EAH=90°-∠B,∠ECB=90°-∠B. ∴∠EAH=∠ECB. 在△AEH和△CEB中, ∴△AEH≌△CEB〔ASA〕.
根底训练
6. 如图3-4-11,AB=CD,BC=DA,点E,F在AC上, 且AE=CF. 试阐明:△BCF≌△DAE. 证明:在△ABC和△CDA中, ∴△ABC≌△CDA〔SSS〕. ∴∠ACB=∠CAD. 在△BCF和△DAE中,
∴△BCF≌△DAE〔SAS〕.
7. 如图3-4-12,在Rt△ABC中,∠ABC=90°,CD平分 ∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点 F. 求证:DE=BF. 证明:∵CD平分∠ACB, ∴∠1=∠2. ∵DE⊥AC,∠ABC=90°,∴DE=BD. 可证△BCD≌△ECD, ∴∠3=∠4. ∵BF∥DE,∴∠4=∠5. ∴∠3=∠5. ∴BD=BF. ∴DE=BF.
初二年级几何证明例题精讲

初二年级几何证明例题精讲【例1】.已知:如图6,△BCE、△ACD分别是以BE、AD为斜边的直角三角形,且BE AD=,△CDE是等边三角形.求证:△ABC是等边三角形.证明:∵∠BCE=90°∠ACD=90°在△ECB和△ACD中∠BCE=∠BCA+∠ACE BE=AD∠ACD=∠ACE+∠ECD ∠BCE=∠ACD∴∠ACB=∠ECD EC=CD∵△ECD为等边三角形∴△ECB≌△DCA( HL )∴∠ECD=60° CD=EC ∴BC=AC即ACB==60°∵∠ACB=60°∴△ABC是等边三角形【例2】、如图,已知BC > AB,AD=DC。
BD平分∠ABC。
求证:∠A+∠C=180°.证明:在BC上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE∵BD平分∠BAC ∵AD=DC∴∠ABD = ∠EBD ∴DE=DC在△ABD和△EBD中得∠DEC=∠CAB=EB ∵∠BED+∠DEC=180°∠ABD = ∠EBD ∴∠A+∠C=180°BD=BD△ABD ≌△EBD(SAS)1、线段的数量关系:通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
①倍长中线【例. 3】如图,已知在△ABC中,90C︒∠=,30B︒∠=,AD平分BAC∠,交BC 于点D.求证:2BD CD=证明:延长DC到E,使得CE=CD,联结AE ∵∠ADE=60°AD=AE ∵∠C=90°∴△ADE为等边三角形∴AC⊥CD ∴AD=DE∵CD=CE ∵DB=DA ∴AD=AE ∴BD=DE第3题D CBA图6CBEADBAE第 1 页共12 页∵∠B=30°∠C=90°∴BD=2DC∴∠BAC=60°∵AD平分∠BAC∴∠BAD=30°∴DB=DA ∠ADE=60°【例4.】如图,D是ABC∆的边BC上的点,且CD AB=,ADB BAD∠=∠,AE是ABD∆的中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二年级几何证明例题精讲【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形. 证明:∵∠BCE=90°∠ACD=90° 在△ECB 和△ACD 中 ∠BCE=∠BCA+∠ACE BE=AD ∠ACD=∠ACE+∠ECD ∠BCE=∠ACD ∴∠ACB=∠ECD EC=CD∵△ECD 为等边三角形 ∴△ECB ≌△DCA( HL ) ∴∠ECD=60° CD=EC ∴BC=AC 即ACB==60° ∵∠ACB=60°∴△ABC 是等边三角形【例2】、如图,已知BC > AB ,AD=DC 。
BD 平分∠ABC 。
求证:∠A+∠C=180°.证明:在BC 上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE ∵BD 平分∠BAC ∵AD=DC ∴∠ABD = ∠EBD ∴DE=DC在△ABD 和△EBD 中 得 ∠DEC=∠CAB=EB ∵∠BED+∠DEC=180° ∠ABD = ∠EBD ∴∠A+∠C=180° BD=BD△ABD ≌ △EBD (SAS )1、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
①倍长中线【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D .求证:2BD CD =证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60° AD=AE ∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA ∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC第3题 D CB A图6CBEA∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°【例4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDABE =DE ∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 证明:延长AE 到点F,使得EF=AE 联结DF在△ACE 和△FDE 中 ∴∠ADB=∠ACD+∠CDA CE =DE ∵∠ACE=∠FDE∠AEC=∠FED ∴∠ADB=∠ADC+∠FDEAE=FE 即 ∠ADB = ∠ADF∴△ACE ≌ △FDE (SAS ) 在△ADF 和△ADB 中 ∴AC=FD ∠ACE=∠FDE AD=AD∵DB=AC ∠ADF = ∠ADB ∴DB = DF D F =DB∵∠ADB=∠ACD+∠CAD ∴△ ADF ≌ ADB(SAS) ∵ AC=DC ∴∠FAD=∠BAD ∴ ∠CAD=∠CDA ∴AD 平分∠DAE【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
AFOEB【变式练习】:如图所示,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AC=BF 。
求证:AE=EF 。
证明:延长AD 至点G ,使得DG=AD ,联结BD 在△ADC 和△GDB 中 ∴BG= BFAD=GD ∴ ∠BFG=∠BGF ∠ADC=∠GDB ∵∠CAD =∠BGD BD=DC ∴∠BFG= ∠CAD ∴△ADC ≌△GDB (SAS ) ∵∠BFG=∠AFE 得 AC= BG ∠CAD =∠BGD ∴∠AFE=∠FAE ∵AC=BF ∴AE =AF ②、借助角平分线造全等【例5】如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD证明:在AC 上截取AF=AE ,联结OF 在△AOE 和△AOF中在△ABC 中,∠B+∠BAD+∠ACB=180° AE=AF ∵∠B =60 ° ∠EAO=∠FAO ∴∠BAD+∠ACB=120° AO = AO∵AD 平分∠BAC ∴△AOE ≌△AOF (ASA ) 在△COD 和 △COF 中∴∠BAC= 2∠OAC ∴∠AOE=∠AOE OE=OF ∠DCO =∠FCO∵CE 平分∠ACB ∵∠AOE=60° CO=COGF∴∠ACB= 2∠ACO ∠AOE+∠AOE+∠FOC=180°∠DOC=∠FOC∴2∠OAC+2∠ACO=120°∠FOC=6O°∴△COD ≌△COF(ASA)∴∠OAC+∠ACO=60°∵∠AOE=∠COD ∴OD =OF∵∠AOE=∠OAC+∠ACO ∴∠COD=60°∵OE=OF∴∠AOE=60°∴OE=OD【例6】.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于BD=2CE.证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。
又∠1+∠F=∠3+∠F=90°,故∠1=∠3。
在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。
【小结】解题后的思考:①_x0001_于角平行线的问题,常用两种辅助线;②见中点即联想到中位线。
③旋转【例7】正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,DEBDA求∠EAF的度数.∴∠GAE=∠FAE延长EB到点G,使得BG =BE ∠DAF+∠BAF=90°先证明△ADF ≌△ABE ∠GAB =∠FAD可得到 AF =AG ∠ DAF = ∠GAB ∴∠GAF = 90°∵EF =BE +DF ∴∠EAF = 45°∴ EF = BE+BG =GE∴△GAE ≌△FAEG【例8】. 将一张正方形纸片按如图的方式折叠,,BC BD为折痕,则CBD的大___90°;小为【例9】.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE (2)若△DBE绕点B旋转到△ABC外部,其他条件不变,则(1)中结论是否仍成立?请证明提示:∠ABC=∠DBE =90°∴∠ECB+∠AHB=90°∴∠ABC-∠DBC=∠DBE -∠DBC ∴∠ECB+∠CHF=90°即∠ABD=∠CBE ∴∠HFC=90°∴△ABD ≌△CBE ∴AD⊥CE HAD=CE∠BAD=∠ECB∵∠BAD+∠AHB=90°【例10】.如图在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点. (1)写出O点到△ABC三个顶点A、B、C的距离关系(不要求证明) (2)如果M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△O M N的形状,并证明你的结论.F EDCBA联结OA则△OAC 和△OABD 都为等腰直角三角形 ∴OA=0B=0C△ANO ≌ △BMO (∠NOA=∠OBM ) 可得ON=OM ∠ NOA=∠MOB 可得到∠NOM=∠AOB=90°【例11】如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程. AE=BF =CD AF=BD =CEABC ∆等边三角形 DEF ∆也是等边三角形 得到∠EFD=60° ∠ABC=60° ∵∠AFD=∠FBD+∠FDB ∠AFD=∠AFE+∠EFD ∴∠AFE=∠BDF ∴△AEF ≌ △BFD 同理:△AEF ≌ △CDE④、截长补短【例12】、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC【例13】如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BDCDBAEDCBA【例14】如图,已知在ABC V 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP 证明:如图(1),过O 作OD ∥BC 交AB 于D , ∴∠ADO=∠ABC=180°-60°-40°=80°, 又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO , ∴OD=OQ ,AD=AQ , 又∵OD ∥BP , ∴∠PBO=∠DOB , 又∵∠PBO=∠DBO , ∴∠DBO=∠DOB ,∴BD=OD ,又∵∠BPA=∠C+∠PAC=70°, ∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO , ∴BP=OB , ∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ 。
【例15】.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .方法同【例5】PQCB【例16】已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC延长FD 至点G ,联结CG先证明 △FDE ≌ GDC 得 ∠EFD = ∠CGD FE = CG ,EF//AB ∠ EFD =∠1 ∠CGD=∠1 ∵∠1=∠2, ∴∠2=∠CGD ∴ AC= CG ∵FE = CG ∴EF=AC【例17】 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。