基于卡尔曼滤波的目标跟踪研究_毕业设计

合集下载

基于卡尔曼滤波的动目标视觉跟踪方法研究

基于卡尔曼滤波的动目标视觉跟踪方法研究
In the aspect of moving target detection,in order to solve the disadvantages of three—frame difference method,i.e.the images after detection by this method have noises and partial region may be undetected,we utilize mathematical morphology to process the detection results,remove the noises in detection results and fill up the partial undetected region,and present an edge linking method which is based on gradient to optimize the results of edge detection of moving target,and detect the moving target by combining three·frame difference method and the improved edge detection method.This method can not only enhance the accuracy of target detection, but also preclude the occurrence of undetection of partial region of the moving target.
在运动目标跟踪方面,应用经典卡尔曼滤波算法实现了对运动目标的跟踪, 但经典卡尔曼滤波方法是线性的滤波算法,对于非线性问题的跟踪效果不好。本 文应用自适应无迹卡尔曼滤波方法,对序列图像中的单运动目标以及多运动目标 进行跟踪实验,实验结果表明自适应无迹卡尔曼滤波方法可以更好的对目标进行 跟踪。

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。

在目标跟踪定位中,它可以用于估计目标的运动轨迹。

下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。

算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。

2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。

3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。

4. 迭代:重复步骤2和3,直到达到终止条件。

MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。

实际应用中,您需要根据具体问题和数据调整模型和参数。

```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。

基于卡尔曼滤波的目标跟踪研究

基于卡尔曼滤波的目标跟踪研究

基于卡尔曼滤波的目标跟踪研究目标跟踪是计算机视觉中的重要研究领域之一,它的目标是根据视频序列中目标的运动轨迹来实现物体追踪和位置估计。

随着计算机视觉技术的不断发展,目标跟踪应用越来越广泛,涉及到了自动驾驶、监控系统、智能机器人等众多领域。

其中,基于卡尔曼滤波的目标跟踪是一种经典且有效的方法,本文将对其进行探讨。

卡尔曼滤波是一种用于通过噪声干扰的测量值来估计系统状态的数学方法。

它基于状态空间模型,通过对系统的状态进行预测和更新来实现估计。

在目标跟踪中,卡尔曼滤波算法可以用于估计目标的位置和速度等状态量,从而实现目标的运动轨迹预测和位置更新。

卡尔曼滤波的基本原理是通过对系统状态的线性组合来估计未来状态,同时通过将测量值与状态的估计值进行比较来更新状态估计。

它假设系统的状态和测量值都是线性的,并且系统的噪声满足高斯分布。

在目标跟踪中,系统状态可以表示为目标的位置、速度、加速度等变量,测量值可以表示为目标在图像中的位置或其他特征。

通过对这些变量进行预测和更新,可以实现目标的跟踪和定位。

在基于卡尔曼滤波的目标跟踪中,首先需要建立目标运动模型和观测模型。

目标运动模型描述了目标在连续时间上的运动规律,通常假设目标的运动是匀速直线运动或匀加速直线运动。

观测模型描述了目标在离散时间上的观测结果,通常假设观测结果是目标的位置或其他特征。

接下来,通过卡尔曼滤波算法对目标状态进行预测和更新。

预测步骤通过系统的状态转移矩阵和控制输入来估计目标的下一个状态。

更新步骤通过测量矩阵和测量值来修正目标状态的估计。

通过不断地进行预测和更新,可以实现对目标状态的连续估计,从而实现目标的跟踪和定位。

在实际应用中,基于卡尔曼滤波的目标跟踪还可以与其他技术相结合,例如特征提取和关联算法。

特征提取可以从图像中提取目标的特征,例如颜色、纹理或形状等,以便更好地进行目标跟踪。

关联算法可以将目标的当前状态与之前的状态进行关联,从而提高跟踪的准确性和鲁棒性。

卡尔曼滤波在GPS中的应用

卡尔曼滤波在GPS中的应用

本科毕业论文 (设计)题目:卡尔曼滤波在GPS定位中的应用学院:自动化工程学院专业:自动化姓名:指导教师:2010年 6月 4日The Application of Kalman Filtering for GPS Positioning摘要本文提出了一种应用卡尔曼滤波的GPS滤波模型。

目前在提高GPS定位精度的自主式方法研究领域,普遍采用卡尔曼滤波算法对GPS定位数据进行处理。

由于定位误差的存在,在GPS动态导航定位中,为提高定位精度,必须对动态定位数据进行滤波处理。

文中在比较分析各种动态模型的基础上,提出了应用卡尔曼滤波的GPS滤波模型,并通过对实测滤波算例仿真,证实了模型的可行性和有效性。

最后提出了卡尔曼滤波在GPS定位滤波应用中的问题和改进思路。

关键词 GPS 卡尔曼滤波定位误差AbstractThis article proposed applies the GPS filter model of the Kalman filtering. At present, to improve GPS positioning accuracy in the autonomous areas of research methods, we commonly use Kalman filter algorithm to process GPS location data.As a result of the position error existence in the GPS dynamic navigation localization, we must carry on filter processing to the dynamic localization data for the enhancement pointing accuracy.In the base of comparing each kind of dynamic model, this article proposed applies the GPS filter model of the Kalman filtering,the actual examples of filter calculation are simulated, it confirmed that the model is feasibility and validity. Finally, this article also proposed the existing problems and improving the idea ofthe applications of Kalman filter in GPS positioning.Keywords GPS Kalman filtering Positioning error目录前言 (1)第1章绪论 (3)1.1GPS的简介及应用 (3)1.2本课题的背景及意义 (5)1.3国内外研究动态及发展趋势 (7)1.4目前GPS定位系统面临着新的困扰和挑战 (5)第2章 GPS全球定位系统及GPS定位误差分析 (8)2.1GPS全球定位系统组成部分 (8)2.1.1 GPS卫星星座 (8)2.1.2 地面支持系统 (9)2.1.3 用户部分 (10)2.2GPS定位原理和测速原理 (16)2.2.1 卫星无源测距定位和伪距测量定位原理 (17)2.2.2 多普勒测量定位原理 (193)2.2.3 GPS测速原理 (214)2.3GPS定位误差分析 (225)2.3.1 星钟误差 (225)2.3.2 星历误差 (225)2.3.3 电离层和对流层的延迟误差 (236)2.3.4 多路径效应引起的误差 (246)2.3.5 接收设备误差 (246)2.3.6 GPS测速误差 (257)第3章卡尔曼滤波理论 (27)3.1卡尔曼滤波理论的工程背景 (27)3.2卡尔曼滤波理论 (28)第4章卡尔曼滤波在GPS定位中的应用 (34)4.1卡尔曼滤波在GPS定位中的应用概述 (34)4.2运动载体的动态模型 (35)4.3卡尔曼滤波模型 (36)4.3.1 状态方程 (36)4.3.2系统的量测方程 (37)4.4滤波仿真和结论 (37)第5章卡尔曼滤波在GPS定位应用中的问题和改进思路 (40)5.1对野值的处理 (40)5.2对状态以及观测噪声方差阵的处理 (41)5.3对观测噪声和测量噪声的处理 (42)结论 (30)谢辞 (31)参考文献 (47)前言自从赫兹证明了麦克斯韦的电磁波辐射理论以后,人们便开始了对无线电导航定位系统研究。

基于卡尔曼滤波的目标跟踪研究

基于卡尔曼滤波的目标跟踪研究

基于卡尔曼滤波的目标跟踪研究摘要:随着计算机视觉和机器学习技术的发展,目标跟踪技术在许多领域中得到广泛应用。

卡尔曼滤波是一种经典的估计算法,可以用于目标跟踪,具有良好的估计性能和实时性。

本文主要介绍了卡尔曼滤波在目标跟踪领域的研究进展,包括基本原理、模型建立、算法优化等方面。

1.引言目标跟踪是计算机视觉和机器学习领域的一个重要研究方向。

在许多应用中,如视频监控、自动驾驶等,目标跟踪技术都扮演着重要的角色。

目标跟踪技术主要目的是在一段时间内通过图像或视频序列确定目标的位置、形状、尺寸等信息。

2.卡尔曼滤波的基本原理卡尔曼滤波是一种递归算法,用于估计线性系统的状态。

它基于贝叶斯滤波理论,将观测数据和系统动力学方程结合起来,通过迭代更新的方式获得对系统状态的估计。

卡尔曼滤波有两个主要的步骤:预测和更新。

预测步骤根据系统的动力学方程和上一时刻的状态估计,预测出当前时刻的状态。

更新步骤则根据观测数据和预测的状态,通过计算卡尔曼增益来更新状态估计。

3.卡尔曼滤波在目标跟踪中的应用目标跟踪问题可以看作是一个卡尔曼滤波问题,即通过观测数据预测目标的状态。

在目标跟踪中,系统动力学方程可以根据目标的运动模型来建立。

观测数据可以是目标在每一帧图像中的位置信息。

通过将这些信息输入到卡尔曼滤波器中,可以得到对目标状态的估计。

4.卡尔曼滤波在目标跟踪中的改进与优化尽管卡尔曼滤波在目标跟踪中取得了一定的成功,但还存在一些问题,如对目标运动模型的建模不准确、对观测数据的噪声假设过于理想等。

因此,研究者提出了许多改进和优化方法。

其中一种方法是引入非线性扩展的卡尔曼滤波,如扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。

另一种方法是使用深度学习技术来提取更准确的特征表示,进一步改善目标跟踪性能。

5.实验与结果分析本节主要介绍了一些使用卡尔曼滤波进行目标跟踪的实验研究,并对其结果进行了分析。

实验结果表明,卡尔曼滤波在目标跟踪中具有较好的稳定性和精度。

【优秀硕士博士论文】卡尔曼滤波在目标跟踪中应用仿真研究

【优秀硕士博士论文】卡尔曼滤波在目标跟踪中应用仿真研究

卡尔曼滤波在目标跟踪中应用仿真研究【摘要】目标跟踪问题的应用背景是雷达数据处理,即雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时 刻的位置进行预测。

本文简要讨论了用Kalman 滤波方法对单个目标航迹进行预测,并借助于Matlab 仿真工具,对实验的效果进行评估。

关键词:Kalman 滤波、目标跟踪、Matlab 仿真1.情景假设假定有一个二座标雷达对一平面上运动的目标进行观测,目标在0~400t =秒沿y 轴作恒速直线运动,运动速度为-15米/秒,目标的起始点为(2000米,10000米),在40~60t =秒向x 轴方向做090的慢转弯,加速度均为0.075米/秒2,完成慢转弯后加速度将降为零,从610t =秒开始做090的快转弯,加速度为0.3米/秒2,在660秒结束转弯,加速度降至零。

雷达扫描周期2T =秒,x 和y 独立地进行观测,观测噪声的标准差均为100米。

2.Kalman 滤波算法分析为了简单起见,仅对x 轴方向进行考虑。

首先,目标运动沿x 轴方向的运动可以用下面的状态方程描述: 2(1)()()(/2)()(1)()()x x x k x k Txk T u k xk x k Tu k +=+++=+(2.1)用矩阵的形式表述为,(1)()()X k X k W k +=Φ+Γ(2.2)在上式中,()()()x k X k x k ⎡⎤=⎢⎥⎣⎦ ,101T ⎡⎤Φ=⎢⎥⎣⎦,212T T ⎡⎤⎢⎥Γ=⎢⎥⎣⎦,()x W k u =。

考虑雷达的观测,得出观测方程为:()()()()Z k C k X k V k =+(2.3)在(2.3)中,[]()10C k =,()V k 为零均值的噪声序列,方差已知。

对目标进行预测,由相关理论可得到下面的迭代式:ˆˆ(/1)(1/1)Xk k X k k -=Φ-- (2.4)在(2.4)中,1ˆ(/1)[()|]k Xk k E X k Z --=,反映了由前1k -各观测值对目前状态的估计。

卡尔曼滤波器在运动目标中的跟踪研究

卡尔曼滤波器在运动目标中的跟踪研究

卡尔曼滤波器在运动目标中的跟踪研究引言:运动目标跟踪是计算机视觉和图像处理领域的一个重要研究方向,它在目标识别、自动驾驶、视频监控等领域有着广泛的应用。

卡尔曼滤波器作为一种经典的滤波器方法在运动目标跟踪问题中得到了广泛的应用。

本文将探讨卡尔曼滤波器在运动目标中的跟踪研究,介绍其基本原理、应用场景和研究现状。

一、卡尔曼滤波器的基本原理卡尔曼滤波器是一种递归最小均方估计滤波器,它可以有效地处理线性系统和高斯噪声。

其基本思想是通过融合观测值和状态估计值来计算下一时刻的状态估计值,并通过更新协方差矩阵来提高状态估计的准确性。

卡尔曼滤波器主要包括两个步骤:预测步骤和更新步骤。

在预测步骤中,通过状态转移方程和控制输入预测下一时刻的状态和状态协方差矩阵,然后通过观测模型和观测值校正状态预测值得到更新后的状态和状态协方差矩阵。

二、卡尔曼滤波器在运动目标跟踪中的应用场景1.目标位置跟踪:利用卡尔曼滤波器可以预测目标的位置,并校正预测值,从而实现目标位置的准确跟踪。

2.目标速度跟踪:通过观测目标的位置变化,利用卡尔曼滤波器可以估计目标的速度,并实现目标速度的实时跟踪。

3.目标形状跟踪:利用卡尔曼滤波器可以估计目标的形状变化,并实现目标形状的准确跟踪。

4.目标运动轨迹跟踪:通过融合目标的位置、速度和形状信息,利用卡尔曼滤波器可以实现目标运动轨迹的连续跟踪。

三、卡尔曼滤波器在运动目标跟踪中的研究现状目前1.非线性系统的处理:传统的卡尔曼滤波器只适用于线性系统,对于非线性系统需要进行扩展或改进。

研究者们提出了一系列的非线性滤波器方法,如扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)等,以处理非线性系统中的目标跟踪问题。

2.观测模型的建模:观测模型的建模是目标跟踪中的一个关键问题。

研究者们提出了各种各样的观测模型,如基于颜色、纹理、形状等特征的观测模型,并将其应用于卡尔曼滤波器中来实现目标跟踪。

3.运动模型的建模:运动模型的建模是目标跟踪中的另一个重要问题。

开题报告--基于卡尔曼滤波的目标跟踪算法的研究

开题报告--基于卡尔曼滤波的目标跟踪算法的研究
目标跟踪属于视频分析的内容,而视频分析则融合了计算机视觉研究领域的中层和 高层处理阶段,即对图像序列进行处理,从而研究运动目标的规律,或者为系统的决策 报警提供语义和非语义的信息,包括运动检测、目标分类、目标根性、行为理解、时间 检测等。视频目标跟踪方法的研究和应用作为计算机视觉领域的一个重要分支,正日益 广泛地应用到科学技术、国防建设、航空航天、医药卫生以及国民经济的各个领域。目 前,目标跟踪技术已经被广泛应用于众多生活和工作领域。主要用于:电视监控,视频 压缩编码,智能交通系统以及人机交互等方面。因而研究目标跟踪技术有着重大的实用 价值和广阔发展前景。
CHINA-M ay 30 to June 1,2007:1004-1008. 【15】Huang Shenzhi,Sun Bin. An Algorithm for Real-time Human Tracking Under Dynamic Scene [C]. 2010 2nd International Conference on Signal Processing
相关的文献资料
4 撰写论文初稿,制作 PPT,准备预答辩 2015.4.2-2015.4.18
5 根据论文初稿进行修改,准备正式答辩 2015.4.21-2015.5.20
毕 业 论 文(设 计)开 题 报 告
5、已查阅参考文献:
【1】章毓晋.图像理解与计算机视觉[M ].北京:清华大学出版社.2004:1-3,45-58 【 2 】 Tinku Acharya , Ajoy K. Ray. Image Processing : Principles and Applications[M ]. Wiley -Int erscience:2005. 【3】黄飞泉.序列图像中运动目标检测与跟踪技术研究[D].哈尔滨:哈尔滨工程大学,2006. 【4】KALM AN R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineer in g,1960,82(1):35-45. 【5】王宇,程耀瑜,基于卡尔曼滤波原理的运动目标跟踪[1],信息技术,2008,48(3):48-51 【6】栗素娟,王纪,阎保定,叶宇程. 卡尔曼滤波在跟踪运动目标上的应用[J]. 自动化技术, 2007:110-112. 【7】 朱习军,隋思涟,张宾,刘尊年.MATLAB 在信号与图像处理中的应用[M ].北京:电子 工业出版社,2009:235-331. 【8】 郑阿奇,曹弋.MATLAB 实用教程[M ].2 版.北京:电子工业出版社,2007:115-124 【9】权太范,目标跟踪新理论与技术,国防工业出版社,2009:101-120 【10】刘静等,卡尔曼滤波在目标跟踪中的研究与应用,信息技术,2011:20-40 【11】周琳娜,卡尔曼滤波在目标跟踪中的应用,伺服控制,2011:1-20 【12】孙维广,卡尔曼滤波算法在目标跟踪中的应用研究,科技信息,2009:1-20 【13】胡鹏,Kalman 滤波在视频目标跟踪中的应用研究,学术论文,2010
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计设计题目:基于卡尔曼滤波的目标跟踪研究姓名院系信息与电气工程学院专业电气工程及其自动化年级学号指导教师2012年4月24 日独创声明本人郑重声明:所呈交的毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

尽我所知,除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

此声明的法律后果由本人承担。

作者签名:二〇一年月日毕业论文(设计)使用授权声明本人完全了解鲁东大学关于收集、保存、使用毕业论文(设计)的规定。

本人愿意按照学校要求提交论文(设计)的印刷本和电子版,同意学校保存论文(设计)的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文(设计);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文(设计)的部分或全部内容,允许他人依法合理使用。

(保密论文在解密后遵守此规定)论文作者(签名):二〇一年月日目录引言1.绪论1.1研究背景1.1.1卡尔曼滤波提出背景1.1.2 应用范围1.2本文研究的主要内容2 2.初步认识卡尔曼滤波 22.1关于卡尔曼2.2滤波及滤波器问题浅谈 22.3 卡尔曼滤波起源及发展3.估计原理和卡尔曼滤波 24.卡尔曼滤波的实现4.1卡尔曼滤波的基本假设 54.2卡尔曼滤波的特点 54.3卡尔曼滤波基本公式 64.4卡尔曼滤波参数的估计和调整5.卡尔曼滤波的相关知识5.1 85.2 85.3 96.卡尔曼滤波器的设计7.目标跟踪模型的建立8.结合数学模型进行matlb编程9.目标跟踪仿真10.结论1111.参考文献1112.致谢12131516基于卡尔曼滤波的目标跟踪研究杨倩倩(信息与电气工程学院电气工程及其自动化 2008级2班 083515586)摘要:卡尔曼滤波是Kalman 在线性最小方差估计的基础上,提出的在数学结构上比较简单的而且是最优线性递推滤波方法,具有计算量小、存储量低,实时性高的优点。

在很多工程应用中都可以找到它的身影,包括航空器轨道修正、机器人系统控制、雷达系统与导弹追踪等。

利用卡尔曼滤波预测物体移动的速度、角度,确定物体下一时刻的位置,控制摄像机跟踪物体。

同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题,具有重要的工程实践意义。

此论文主要是通过介绍卡尔曼滤波的原理,结合实际建立卡尔曼滤波数学模型,设计关于目标追踪的卡尔曼滤波器。

关键词:卡尔曼滤波;目标跟踪;最优Research on Object Tracking Based on Kalman FilterYang Qianqian(College of Information and Electrical Engineering, Electrical Engineering and Automation, Class2Grade2008,083515586)Abstract: Kalman Filter is easy and optimal Linear recursive filtering method In the mathematical structure,which is raised by Kalman based on linear minimum variance estimation.It has the advantages of small amount of calculation ,low storage capacity and high real-time.It can be found in many engineering application , including aircraft rail correction, robot control system, radar and missile tracking system, ing Kalman filter to predict the object moving speed,angle,identification of objects in the next time location,controlling the camera tracking object.At the same time,Kalman filter is an important topic of control theory and control engineering with important practical significance for engineering.This paper mainly introduces the principle of Kalman filter,combined with reality to establish Kalman filter mathematical model to design object tracking about the kalman filter.Key Words: Kalman Filter ; Object Tracking ; Optimal;引言本文首先介绍了卡尔曼滤波的基本原理,分析现有的跟踪算法,重点讨论卡尔曼滤波算法,行驶中的汽车所处的道路环境是相当复杂的,而安装车载雷达的汽车本身也是不时的处于机动状态之中,因此车载雷达所探测的目标也是在不停的变化当中,邻近车道上的车辆,车道间的护拦,路旁的树木和各种标识牌以及空中和远处的高大建筑等物体会产生虚警问题。

结合路面目标跟踪的实际,卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻的估计值和现时刻的观测值来更新对状态变量的估计,求出现在时刻的估计值。

进而建立数学模型并进行matlab编程仿真最后的出结论,具有一定的实践意义。

1 绪论1.1 研究背景1.1.1 卡尔曼滤波提出背景关于最优估计问题,在20世纪40年代初,维纳提出最优线性滤波,称为维纳滤波。

这种滤波是在信号和干扰都表示为有理谱密度的情况下,找出最优滤波器,使得实际输出与希望输出之间的均方误差最小。

维纳滤波问题的关键是推导出维纳-霍夫积分方程,解这一积分方程可得最优滤波器的脉冲过渡函数,从脉冲过渡函数可得滤波器的传递函数。

通常解维纳-霍夫积分方程是很困难的,即使对少数情况能得到解析解,但在工程上往往难以实现。

特别对于非平稳过程,维纳滤波问题变得更为复杂。

Wiener 滤波要求信号是平稳随机过程,要求存贮全部历史数据,且滤波器是非递推的,计算量和存贮量大,不便于实时应用,基于以上缺点,改进滤波器设计就有了更进一步的要求。

1960年,卡尔曼提出了在数学结构上比较简单的最优线性滤波方法,实质上这是一种数据处理方法。

维纳滤波属于整段滤波,即把整个一段时间内所获得的测量数据存储起来,然后同时处理全部数据,估计出系统状态。

卡尔曼滤波是递推滤波,由递推方程随时间给出新的状态估计。

因此对计算机来说,卡尔曼滤波的计算量和存储量大为减少,从而比较容易满足实时计算的要求。

因而卡尔曼滤波在工程实践中迅速得到广泛应用。

1.1.2 应用范围卡尔曼滤波器最初是专为飞行器导航而研发的,目前已成功应用在许多领域中。

卡尔曼滤波器主要用来预估那些只能被系统本身间接或不精确观测的系统状态。

许多工程系统和嵌入式系统都需要卡尔曼滤波。

比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。

这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计。

卡尔曼滤波器是一个最优化自回归数据处理算法(optimal recursive data processing algorithm),它的广泛应用已经超过 30 年,包括航空器轨道修正、机器人系统控制、雷达系统与导弹追踪等。

近年来更被应用于组合导航与动态定位,传感器数据融合、微观经济学等应用研究领域。

特别是在图像处理领域如头脸识别、图像分割、图像边缘检测等当前热门研究领域占有重要地位。

基本卡尔曼滤波(KF)器限定在线性的条件下,在大多数的非线性情形下,我们使用扩展的卡尔曼1滤波(EKF)器来对系统状态进行估计。

随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。

其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞ 波)。

卡尔曼滤波作为一种数值估计优化方法,与应用领域的背景结合性很强。

因此在应用卡尔曼滤波解决实际问题时,重要的不仅仅是算法的实现与优化问题,更重要的是利用获取的领域知识对被认识系统进行形式化描述,建立起精确的数学模型,再从这个模型出发,进行滤波器的设计与实现工作。

由于其具有实时递推、存储量小和简单易行的特点,在工程应用中受到了重视,广泛应用于信号处理、控制、通信、航天、制导、目标跟踪、石油勘探、故障诊断、卫星测控、GPS定位、检测与估计、多传感器信息融合、机器人及生物医学等领域。

卡尔曼滤波器应用领域:·自动驾驶仪·动态定位系统·经济学,特别是宏观经济学,时间序列模型,以及计量经济学·惯性引导系统·雷达跟踪器·卫星导航系统1.2 本文研究的主要内容此论文主要是通过详细介绍卡尔曼滤波的发展背景和应用原理,并介绍各种最优估计原理和不同的滤波器,着重分析卡尔曼滤波的优点和和在工程实践中的优良特性,结合实际建立卡尔曼滤波数学模型,对数学模型进行分析计算,结合数学模型进行matlb编程,分析改进程序并进行仿真应用,设计关于目标追踪的卡尔曼滤波器。

2 初步认识卡尔曼滤波2.1 关于卡尔曼鲁道夫·卡尔曼(Rudolf Emil Kalman),匈牙利裔美国数学家,1930年出生于匈牙利首都布达佩斯。

1953年于麻省理工学院获得电机工程学士,翌年硕士学位。

1957年于哥伦比亚大学获得博士学位。

1964年至1971年任职斯坦福大学。

1971年至1992年任佛罗里达大学数学系统理论中心(Center for Mathematical System Theory)主任。

1972起任瑞士苏黎世联邦理工学院数学系统理论中心主任直至退休。

现居住于苏黎世和佛罗里达。

相关文档
最新文档