2019高三一轮复习理科数学必刷题(集合)

合集下载

高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题

高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题

考点01 集合1.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )A.{0} B.{1}C.{0,1} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。

故答案为:B.3.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=( ) A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}【答案】D【解析】由题意可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0}.故选D.4.已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B中的元素个数为( )A.6 B.5C.4 D.3【答案】B【解析】集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},∴A∩B={1,2,3,4,5},∴A∩B中元素个数为5.故选B.5.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A .M =NB .M ⊆NC .M ∩N =∅D .N ⊆M【答案】D【解析】∵M ={x ||x |≤1}={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .故选D. 7.已知集合 ,,则( )A .B .C .D .【答案】C 【解析】由题意得,,.故选C.8.已知集合A ={1,a 2},B ={2a ,-1},若A ∩B ={4},则实数a 等于( ) A .-2 B .0或-2 C .0或2 D .2【答案】D【解析】因为A ∩B ={4},所以4∈A 且4∈B ,故⎩⎪⎨⎪⎧a 2=4,2a =4,a =2.故选D.9.已知集合,,则集合( )A .B .C .D .【答案】D 【解析】已知集合,,∴A∩B 中的元素满足:解得: 则A∩B=. 故选D.10.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1] C .(1,2]D .(-∞,-1]∪[1,2]【答案】C【解析】因为A={x||x|≤1}={x|-1≤x≤1},B={x|log2x≤1}={x|0<x≤2},所以∁U A={x|x>1或x<-1},则(∁U A)∩B=(1,2].11.已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为( )A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}【答案】A【解析】∵全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0}={x|x>2或x<0},∴∁U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(∁U B)={0,1,2}.故选A.12.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=M B.M∪(∁R N)=MC.N∪(∁R M)=R D.M∩N=N【答案】D【解析】由题意可得N=(0,2),M=(-∞,4),N⊆M.故选D.13.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0}.若A⊆B,则实数a的取值X围是( ) A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]【答案】B【解析】集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x-a>0}={x|x>a},因为A⊆B,所以a≤-1.14.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.15.已知集合A={x|x<1},B={x|x2-x-6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}【答案】D【解析】集合A={x|x<1},B=x{x|x2-x-6<0}={x|-2<x<3},则A∩B={x|-2<x<1},A∪B={x|x <3}.故选D.16.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值X围是( ) A.(-∞,1) B.(-∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】∵U=R,集合A={x|x≥1}=[1,+∞),∴∁U A=(-∞,1),由B={x|x>a}=(a,+∞)以及(∁U A)∪B=R可知实数a的取值X围是(-∞,1).故选A.17.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=.故答案为:A18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.1.A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A -B =( ) A .{2} B .{1,2} C .{-2,1,2} D .{-2,-1,0}【答案】C【解析】∵A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},∴A -B ={-2,1,2}.故选C.20.对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =________. 【答案】[-3,0)∪(3,+∞)【解析】由题意知A -B ={x |x >3},B -A ={x |-3≤x <0},所以A *B =[-3,0)∪(3,+∞). 21.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 【答案】{1}【解析】∵集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.22.(2018某某红色七校联考)集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 【答案】[-3,0)【解析】∵A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2},∴A ∩(∁R B )=[-3,0).23.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值X 围是________. 【答案】(-∞,-3]∪[3,2]【解析】由题意可得A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值X 围是(-∞,-3]∪[3,2]. 24.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填. 25.已知集合,.(1)若A∩B=,某某数m的值;(2)若,某某数m的取值X围.【答案】(1)2;(2)【解析】由已知得:,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值X围为.。

2019版高考数学(理)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-2a Word版含解析

2019版高考数学(理)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-2a Word版含解析

[基础送分提速狂刷练]一、选择题1.下列命题中是真命题的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若x-312是有理数,则x是无理数”的逆否命题.A.①②B.①③C.②③D.①②③答案 B解析对于①,其否命题是“若x2+y2=0,则x,y全为零”,这显然是正确的,故①为真命题;对于②,其逆命题是“若两多边形相似,则它们一定是正多边形”,这显然是错误的,故②为假命题;对于③,原命题为真,故逆否命题也为真.因此是真命题的是①③.故选B.2.(2018·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c答案 A解析否命题是将原命题的条件和结论都否定,故命题“若a>b,则a+c>b+c”的否命题是“若a≤b,则a+c≤b+c”.故选A.3.(2018·曲阜模拟)已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,q:函数g(x)=log a(x+1)(a>0且a≠1)在(-1,+∞)上是增函数,则綈p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析 易知p 成立⇔a ≤1,q 成立⇔a >1,所以綈p 成立⇔a >1,则綈p 是q 的充要条件.故选C.4.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“b a +a b ≥2”的充分必要条件C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0”D .命题p :∃x ∈R ,x 2+x -1<0,则綈p :∀x ∈R ,x 2+x -1≥0 答案 D解析 若p ∨q 为真命题,则p ,q 中至少有一个为真,那么p ∧q 可能为真,也可能为假,故A 错误;若a >0,b >0,则b a +a b ≥2,又当a <0,b <0时,也有b a +a b ≥2,所以“a >0,b >0”是“b a +a b ≥2”的充分不必要条件,故B 错误;命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,故C 错误,易知D 正确.故选D.5.“a <-1”是“∃x 0∈R ,a sin x 0+1<0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案 B解析 由题意知“∃x 0∈R ,a sin x 0+1<0”等价于“(a sin x +1)min <0”,即“当a >0时,-a +1<0,即a >1;当a <0时,a +1<0,即a <-1”,所以“a <-1”是“∃x 0∈R ,a sin x 0+1<0”的充分不必要条件,故选B.6.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题, 即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.7.(2017·衡水联考)“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x ,f (-x )=sin(-x )-1-x=-sin x +1x =-⎝ ⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数;反之,当f (x )=sin x -1x +a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x+a +sin x -1x +a =2a ,故a =0, 所以“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的充要条件.故选C.8.(2018·天津模拟)已知f (x )=2x +3(x ∈R ),若|f (x )-1|<a 的必要条件是|x +1|<b (a ,b >0),则a ,b 之间的关系是( )A .b ≥a 2B .b <a 2C .a ≤b 2D .a >b 2答案 A解析 ∵f (x )=2x +3,且|f (x )-1|<a ,∴|2x +2|<a .∴-a <2x +2<a ,∴-2-a 2<x <-2+a 2.∵|x +1|<b ,∴-b <x +1<b ,∴-b -1<x <b -1.∵|f (x )-1|<a 的必要条件是|x +1|<b (a ,b >0),∴⎝ ⎛⎭⎪⎫-2-a 2,-2+a 2⊆(-b -1,b -1), ∴⎩⎨⎧-b -1≤-2-a 2,b -1≥-2+a 2,解得b ≥a 2.故选A. 9.(2018·江西一联)已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >0”是“点M 在第四象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 复数z =(1-2i)(a +i)=a +2-2a i +i =a +2+(1-2a )i 在复平面内对应的点为M (a +2,1-2a ).若a >0,则a +2>0,但1-2a 的正负不确定,所以点M 是否在第四象限也是不确定的;若点M 在第四象限,则⎩⎪⎨⎪⎧a +2>0,1-2a <0,解得a >12,此时可推出a >0.所以“a >0”是“点M在第四象限”的必要不充分条件.故选B.10.(2017·湖北七市联考)已知圆C:(x-1)2+y2=r2(r>0).设p:0<r<3,q:圆C上至多有2个点到直线x-3y+3=0的距离为1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析圆C:(x-1)2+y2=r2的圆心(1,0)到直线x-3y+3=0的距离d=|1-3×0+3|2=2.当r∈(0,1)时,直线与圆相离,圆上没有到直线的距离为1的点;当r=1时,直线与圆相离,圆上只有一个点到直线的距离为1;当r∈(1,2)时,直线与圆相离,圆上有两个点到直线的距离为1;当r=2时,直线与圆相切,圆上有两个点到直线的距离为1;当r∈(2,3)时,直线与圆相交,圆上有两个点到直线的距离为1.综上,当r∈(0,3)时,圆上至多有2个点到直线的距离为1,又由圆上至多有两个点到直线的距离为1可得0<r<3,故p是q的充分必要条件.故选C.二、填空题是“A∩B≠∅”的充分条件,则实数b的取值范围是________.答案(-1,+∞)解析12.已知条件p :x ∈A ,且A ={x |a -1<x <a +1},条件q :x ∈B ,且B ={x |y =x 2-3x +2}.若p 是q 的充分条件,则实数a 的取值范围是________.答案 (-∞,0]∪[3,+∞)解析 易得B ={x |x ≤1或x ≥2},且A ={x |a -1<x <a +1},由p 是q 的充分条件,可知A ⊆B ,故a +1≤1或a -1≥2,即a ≤0或a ≥3.即所求实数a 的取值范围是(-∞,0]∪[3,+∞).13.(2018·泰安模拟)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,若p 是q 的必要不充分条件,则实数a 的取值范围是________.答案 (1,2]解析 ∵p 是q 的必要不充分条件,∴q ⇒p ,且p ⇒/ q .设A ={x |p (x )},B ={x |q (x )},则B A .又B ={x |2<x ≤3},当a >0时,A ={x |a <x <3a };当a <0时,A ={x |3a <x <a }.故当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2; 当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是(1,2].14.(2017·长沙模拟)r (x ):已知r (x )=sin x +cos x >m ;s (x ):x 2+mx +1>0.如果∀x ∈R ,r (x )与s (x )有且仅有一个是真命题,则实数m的取值范围是________.答案 (-∞,-2]∪[-2,2)解析 由sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4, 得sin x +cos x 的最小值为- 2.若∀x ∈R 时,命题r (x )为真命题,则m <- 2.若命题s (x )为真命题,即∀x ∈R ,不等式x 2+mx +1>0恒成立,则Δ=m 2-4<0,解得-2<m <2.若命题r (x )为真命题,命题s (x )为假命题,则m ≤-2;若命题r (x )为假命题,命题s (x )为真命题,则-2≤m <2.综上所述,实数m 的取值范围是(-∞,-2]∪[-2,2).三、解答题15.(2017·沂水模拟)已知f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.解 (1)逆命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.是真命题.(用反证法证明)假设a +b <0,则有a <-b ,b <-a .∵f (x )在(-∞,+∞)上是增函数,∴f (a )<f (-b ),f (b )<f (-a ).∴f (a )+f (b )<f (-a )+f (-b ),这与题设中f (a )+f (b )≥f (-a )+f (-b )矛盾,故假设不成立.从而a +b ≥0成立.逆命题为真.(2)逆否命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )<f (-a )+f (-b ),则a +b <0.是真命题.原命题为真,证明如下:∵a +b ≥0,∴a ≥-b ,b ≥-a .又∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ).∴原命题为真命题,∴其逆否命题也为真命题.16.(2017·江苏兴化月考)已知命题:“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解 (1)由题意知,方程x 2-x -m =0在(-1,1)上有解,即m 的取值范围就为函数y =x 2-x 在(-1,1)上的值域,易知M ={m ⎪⎪⎪⎭⎬⎫-14≤m <2. (2)因为x ∈N 是x ∈M 的必要条件,所以M ⊆N .当a =1时,解集N 为空集,不满足题意;当a >1时,a >2-a ,此时集合N ={x |2-a <x <a },则⎩⎨⎧ 2-a <-14,a ≥2,解得a >94; 当a <1时,a <2-a ,此时集合N ={x |a <x <2-a }, 则⎩⎨⎧ a <-14,2-a ≥2,解得a <-14.综上,a >94或a <-14.。

山东省2019届理科数学一轮复习试题选编(1):集合

山东省2019届理科数学一轮复习试题选编(1):集合

山东省2019届理科数学一轮复习试题选编1:集合一、选择题1 .(2009高考(山东理))集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( ) A .0 B .1C .2D .4【答案】【解析】:∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选 D .答案:D2 .(2013山东高考数学(理))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是( ) A .1 B .3 C .5 D .9【答案】C 【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选 C .3 .(山东省临沂市2019届高三第三次模拟考试 理科数学)已知集合{}{}221=log 1A x x B x x =>,<,则()A B =R ð ( )A .(0,1]B .(0,1)C .[0,1]D .[1,1]-【答案】A4 .(山东省2019届高三高考模拟卷(一)理科数学)已知集合}6|{2--==x x y x A ,集合12{|log ,1}B x x a a ==>,则( )A .}03|{<≤-x xB .}02|{<≤-x xC .}03|{<<-x xD .}02|{<<-x x【答案】D 【解析】由题意得集合2|{-≤=x x A 或}3≥x ,故}32|{<<-=x x ,又集合}0|{<=x x B ,所以}02|{<<-=x x .5 .(山东省曲阜市2019届高三11月月考数学(理)试题)已知集合{0,1,2,3}M =,{1,1}N =-,则下列结论成立的是 ( ) A .N M ⊆ B .M N M = C .M N N = D .{1}M N = 【答案】D 6 .(山东省青岛市2019届高三上学期期中考试数学(理)试题)已知全集R U =,集合{}{}237,7100A x x B x x x =≤<=-+<,则()U A B ⋂=ð( )A .()()+∞⋃∞-,53,B.(]()+∞⋃∞-,53, C .(][)+∞⋃∞-,53, D .()[)+∞⋃∞-,53,【答案】D 7 .(山东省莱芜市第一中学2019届高三12月阶段性测试数学(理)试题)已知集合{}{}23,log 1M x x N x x =<=≤,则N M 等于( )A .∅B .{}20<<x x C .{}32<<x xD .{}02x x <≤【答案】D . {}{}{}30202.MN x x x x x x =<<≤=<≤8 .(山东师大附中2019届级高三12月第三次模拟检测理科数学)若全集为实数集R ,集合A =12{|log (21)0},R x x C A ->则= ( )A .1(,)2+∞B .(1,)+∞C .1[0,][1,)2+∞ D .1(,][1,)2-∞+∞【答案】D 【解析】121{|log (21)0}{0211}{1}2x x x x xx ->=<-<=<<,所以1{1}2R A x x x =≥≤或ð,即1(,][1,)2R A =-∞+∞ð,选 D .9 .(山东师大附中2019届高三第四次模拟测试1月理科数学)设全集()()2,{|21},{|ln 1}x x U R A x B x y x -==<==-,则右图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤【答案】B 【解析】()2{|21}{(2)0}{02}x x A x x x x x x -=<=-<=<<,(){|ln 1}{10}{1}B x y x x x x x ==-=->=<,图中阴影部分为集合()U A B ð,所以{1}U B x x ==≥ð,所以(){12}U A B x x =≤<ð,选B .10.(山东省兖州市2018高三9月入学诊断检测数学(理)试题)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B,则集合()U C A B ⋂中的元素共有 ( ) A .3个 B .4个 C .5个 D .6个 【答案】 ( ) A . 11.(山东省烟台市莱州一中2019届高三第二次质量检测数学(理)试题)已知全集U R =,集合{0A x =<2x <}1,{3log B x x =>}0,则()U A C B ⋂=( )A .{x x >}1B .{x x >}0C .{0x <x <}1D .{x x <}0【答案】D 【解析】{021}{0}x A x x x =<<=<,3{log 0}={1}B x x x x =>>,所以{1}U B x x =≤ð,所以(){0}U A C B x x ⋂=<,选D .12.(山东省烟台市2019届高三上学期期中考试数学试题(理科))已知函数()()lg 1f x x =-的定义域为M ,函数1y x=的定义域为N ,则M N =( )A .{}10x x x <≠且B .{}10x x x ≤≠且C .{}1x x >D .{}1x x ≤【答案】A 【解析】}01|{},0|{},1|{≠<=≠=<=x x x N M x x N x x M 且 ,故选 ( ) A .13.(山东省潍坊市四县一校2019届高三11月期中联考(数学理))设集合}31|{},23|{≤<-∈=<<-∈=n N n B m Z m A ,则=⋂B A( ) A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2}【答案】A 【解析】因为{|32}{21,0,1}A m Z m =∈-<<=--,,{0,1,2,3}B =,所以{01}A B ⋂=,,选 ( ) A .14.(山东省日照市2019届高三12月份阶段训练数学(理)试题)已知集合{{},sin ,M N y y x x R =-==∈,则集合M N ⋂等于( )UA .∅B .{}0C .{}1,0-D .{-【答案】C 【解析】{}sin ,{11}N y y x x R y y ==∈=-≤≤,所以{1,0}M N ⋂=-,选 C . 15.(山东省德州市乐陵一中2019届高三十月月考数学(理)试题)已知全集R U =,集合11{20},{2}4x A x x B x -=-≤<=<,则)()(=⋂B A C R( )A .),1[)2,(+∞-⋃--∞B .),1(]2,(+∞-⋃--∞C .),(+∞-∞D .),2(+∞-【答案】A【解析】集合11{2}{1}4x B x x x -=<=<-,所以{21}A B x x =-≤<-,(){21}R A B x x x =<-≥-或ð,选( )A .16.(山东省淄博市2019届高三复习阶段性检测(二模)数学(理)试题)集合{}{}1,0,1,,x A B y y e x A =-==∈,则A B ⋂=( )A .{}0B .{}1C .{}0,1D .{}1,0,1-【答案】B {}1,{1,,}xB y y e x A e e==∈=,所以{1}A B ⋂=,选B .17.(山东省临沂市2019届高三5月高考模拟理科数学)集合{}{}32,log ,,,M a N a b ==若{}1MN =,则M∪N= ( )A .{}0,1,2B .{}0,1,3C .{}0,2,3D .{}1,2,3【答案】D 因为{}1MN =,所以3log 1a =,即3a =,所以1b =,即{}{}2,1,3,1M N ==,所以{}2,1,3MN =,选 D .18.(山东省潍坊市2019届高三第二次模拟考试理科数学)集合{}{}|13,|4A x x B y y x =+≤==≤≤.则下列关系正确的是( )A .AB R =B .R A B ⊆餽C .R B A ⊆餽D .R R A B ⊆餽餽【答案】D {}|13{42}A x x x x =+≤=-≤≤,{}|4{02}B y y x y y ==≤≤=≤≤,所以{20}R B x x x =><或ð,{40}R A x x x =<->或ð,所以R R A B ⊆餽餽,选D .19.(2019年山东临沂市高三教学质量检测考试理科数学)已知集合A={2k x |x sin ,k Z π=∈},B={11x ||x |-≤},则A B = ( )A .{-1,0}B .{0,1}C .{0}D .{1}【答案】B {sin,}{0,1,1}2k A x x k Z x π==∈=-,{|1|1}{02}B x x x x =-≤=≤≤,所以{0,1}A B =,选B20.(山东省枣庄市2019届高三3月模拟考试数学(理)试题)已知全集{0,1,2,3,4},{1,2,3},{2,4},()U U A B C A B ===集合则为 ( )A .{4}B .φC .{0,2,4}D .{1,3}【答案】A {0,4}U C A =,所以(){4}U C A B =,选( )A .21.(山东省烟台市2019届高三3月诊断性测试数学理试题)若集合M={x ∈N *| x<6},N={}||1|2x x -≤,则M ()R N ð= ( )A .(-∞,-1)B .[)1,3C .(3,6)D .{4,5}【答案】D {1,2,3,4,5}M =,{212}{13}N x x x x =-≤-≤=-≤≤,所以(){13}R N x x x =<->或ð22.(山东省济南市2019届高三3月高考模拟理科数学)已知全集R U =,集合{}21x A x =>,{}2340B x x x =-->,则A B ⋂=( )A .{}0x x > B .{}10x x x <->或C.{}4x x >D .{}14x x -≤≤【答案】C {0}A x x =>,{41}B x x x =><-或,所以{4}A B x x =>,选C .23.(山东省潍坊市2019届高三第一次模拟考试理科数学)设集合{}|24x A x =≤,集合B 为函数lg(1)y x =-的定义域,则AB =( )A .()1,2B .[]1,2C .[1,2)D .(1,2]【答案】D {}|24{2}x A x x x =≤=≤,由10x ->得1x >,即{1}B x x =>,所以{12}A B x x =<≤,所以选D .24.(山东省青岛市2019届高三第一次模拟考试理科数学)设全集R U =,集合{}2|lg(1)M x y x ==-,{}|02N x x =<<,则()U NM =ð( )A .{}|21x x -≤<B .{}|01x x <≤C .{}|11x x -≤≤D .{}|1x x <【答案】B {}22|lg(1){10}{11}M x y x x x x x x ==-=->=><-或,所以{11}U M x x =-≤≤ð,所以()U NM =ð{}|01x x <≤,选B .25.(山东省滨州市2019届高三第一次(3月)模拟考试数学(理)试题)已知全集}{1,2,3,4U =,集合{}{}1,2,2,4A B ==,则()U A B =ð( )A .{}1,2B .{}2,3,4C .{}3,4D .{}1,2,3,4【答案】B 因为{}{}1,2,2,4A B ==,所以{34}U A =,ð,即()U A B =ð}{=2,3,4,选 B .26.(山东省威海市2019届高三上学期期末考试理科数学)已知R 为全集,{|(1)(2)0}A x x x =-+≤,则R C A =( )A .{|21}x x x <->或B .{|21}x x x ≤-≥或C .{|21}x x -<<D .{|21}x x -≤≤【答案】C因为{|(1)(2)0}A x x x =-+≤,所以{|(1)(2)0}{(1)(2)0}{21}R A x x x x x x x x =-+>=-+<=-<<ð,选 C .27.(山东省泰安市2019届高三上学期期末考试数学理)已知集合{M x y ==,集合{}3,0x N y y x ==>,则如图所示的韦恩图中阴影部分所表示的集合为( )A .()2,+∞B .[)()0,12,⋃+∞C .[]()0,12,⋃+∞D .[][)0,12,⋃+∞【答案】C【解析】{2{20}{02}M x y x x x x x ===-≥=≤≤,{}3,0{1}x N y y x y y ==>=>,则阴影部分为{}x x MN x M N ∈∉且{0}M N x x =≥,{12}M N x x =<≤,所以,即阴影部分为{}{012}x x MN x MN x x x ∈∉=≤≤>且或,即[]()0,12,⋃+∞,选C .28.(山东省枣庄市2019届高三4月(二模)模拟考试数学(理)试题)集合{}{}22(,)|,,(,)|1,,A x y y x x R B x y x y x y R ==∈=+=∈,则集合A B ⋂中元素的数为 ( )A .0B .1C .2D .无穷个【答案】C29.(山东省文登市2019届高三3月二轮模拟考试数学(理))已知集合11,2A ⎧⎫=-⎨⎬⎩⎭,{}01=-=mx x B ,若B B A = ,则所有实数m 组成的集合是 ( )A .{}0,1,2-B .1,0,12⎧⎫-⎨⎬⎩⎭C .{}1,2-D .11,0,2⎧⎫-⎨⎬⎩⎭【答案】A30.(山东省莱芜市莱芜十七中2019届高三4月模拟数学(理)试题)已知集合{}⎭⎬⎫⎩⎨⎧∈≥+=∈≤-=Z x x x T R x x x S ,115,,21,则T S 等于( )A .{}Z x x x ∈≤≤,30|B .{}|13,x x x Z -≤≤∈C .{}Z x x x ∈≤≤-,41|D .{}Z x x x ∈<≤-,01| 【答案】A31.(山东省济南市2019届高三4月巩固性训练数学(理)试题)已知集合2{12},{log 2}A x x B x x =-<=<,则A B =( )A .(1,3)-B .(0,4)C .(0,3)D .(1,4)-【答案】C32.(山东省菏泽市2019届高三第二次模拟考试数学(理)试题)已知集合{}1A x x =>,{}B x x m =<,且A B =R ,那么m 的值可以是( )A .1-B .0C .1D .2【答案】D33.(山东省凤城高中2019届高三4月模拟检测数学理试题 )集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B = ( )A .{0}B .{|0}x x ≠C .RD .∅【答案】A34.(2019届山东省高考压轴卷理科数学)已知集合2{|03},{|540}M x x N x x x =<<=-+≥,则MN = ( ) A .{|01}x x <≤ B .{|13}x x ≤< C .{|04}x x <≤ D .{|0x x <或4}x ≥【答案】A 【解析】=⋂∴≥≤=≥--=N M x x x x x x N },41|{}0)1)(4(|{或{|01}x x <≤ 35.(2019年高考(山东理))已知全集U=R,集合M={x||x-1|≤2},则U C M= ( )A .{x|-1<x<3}B .{x|-1≤x ≤3}C .{x|x<-1或x>3}D .{x|x ≤-1或x ≥3}【答案】C【解析】因为集合M={}x|x-1|2≤={}x|-1x 3≤≤,全集U=R ,所以U C M={}x|x<-1x>3或,故选 C .【二、解答题36.(山东省曲阜市2019届高三11月月考数学(理)试题)已知集合1|2164x A x ⎧⎫=≤≤⎨⎬⎩⎭,{|()(3)0}B x x m x m =--+≤()m R ∈.(1)若[2,4]AB =,求实数m 的值;(2)设全集为R ,若R A B ⊆ð,求实数m 的取值范围.【答案】解:(1)由4121622,244x x x ≤≤≤≤-≤≤-2知2即∴[2,4]A =-, 由{|()(3)0}B x x m x m =--+≤,可得[3,]B m m =-,∵[2,4]A B =,∴32,4.m m -=⎧⎨≥⎩∴5m =(2)∵{|3,}R B x x m x m =<->或ð又∵R A B ⊆ð,∴2,34m m <-->或 ∴2,7m m <->或37.(山东省寿光市2019届高三10月阶段性检测数学(理)试题)已知{||4},{|2|3}.A x x aB x x =-=- (Ⅰ)若a=1,求A B ⋂; (Ⅱ)若A B R =,求实数a 的取值范围.【答案】解:(Ⅰ)当a=1时,{|35}.{|15}.A x x B x x x =-=-或∴{|31}A B x x⋂=-- (Ⅱ){|44}.A x a x a =-+ {|15}.B x x x =-或且A B R = 411345a a a --⎧⇒⎨+⎩实数a 的取值范围是(1,3)38.(山东省潍坊市四县一校2019届高三11月期中联考(数学理))已知集合}032|{)},(0)1(|{2≤--=∈<--=x x x N R a a x x x M ,若N N M =⋃,求实数a 的取值范围. 【答案】解:由已知得{}31|≤≤-=x x N , N M N N M ⊆∴=⋃, 又{})(0)1(|R a a x x x M ∈<--=①当01<+a 即1-<a 时,集合{}01|<<+=x a x M . 要使N M ⊆成立,只需011<+≤-a ,解得12-<≤-a②当01=+a 即1-=a 时,φ=M ,显然有N M ⊆,所以1-=a 符合 ③当01>+a 即1->a 时,集合{}10|+<<=a x x M . 要使N M ⊆成立,只需310≤+<a ,解得21≤<-a 综上所述,所以a 的取值范围是[-2,2]39.(山东省枣庄三中2019届高三上学期1月阶段测试理科数学)已知二次函数2()f x ax x =+,若对任意12,x x R ∈,恒有12122()()()2x x f f x f x +≤+成立,不等式()0f x <的解集为A (Ⅰ)求集合A ;(Ⅱ)设集合{}4,B x x a =+<,若集合B 是集合A 的子集,求a 的取值范围 【答案】解:(Ⅰ)对任意12,x x R ∈,有1212()()2()2x x f x f x f ++-2121()02a x x =-≥ 要使上式恒成立,所以0a ≥由2()f x ax x =+是二次函数知0a ≠故0a >由21()()0f x ax x ax x a=+=+< 所以不等式()0f x <的解集为1(,0)A a=- (Ⅱ)解得(4,4)B a a =---,B A ⊆ 4014a a a -≤⎧⎪∴⎨--≥-⎪⎩解得02a <≤-。

2019年高考数学 考点01 集合必刷题 理

2019年高考数学 考点01 集合必刷题 理

考点1 集合1.如果集合,,则()A. B. C. D.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。

故答案为:B.3.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.4.已知集合,,则()A. B. C. D.【答案】C【解析】由题意得,,.故选C.5.已知集合,,则集合()A. B. C. D.【答案】D【解析】已知集合,,∴A∩B中的元素满足:解得:则A∩B=.故选D.6.已知全集,,,则图中阴影部分表示的集合是()A. B.C. D.7.已知函数的定义域为集合M,集合A. B. C. D.【答案】D【解析】由x-1>0,解得:x>1,故函数y=ln()的定义域为M=,由x2﹣x0,解得:0x1,故集合N={x|x2﹣x0}=,∴,故选:D.8.A=,B=,则A∩B=( )A. (2,4] B. [2,4] C. (-∞,0)∪(0,4] D. (-∞,-1)∪[0,4]【答案】A【解析】,,则.选.9.已知集合A=,集合B=,,则A∩B=()A. B. C. D.10.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.11.集合,则集合的真子集的个数是A. 1个 B. 3个 C. 4个 D. 7个【答案】B【解析】由题意,集合,则,所以集合的真子集的个数为个,故选B.12.已知集合,则=A. B. C. D.13.已知集合,则满足条件的集合的个数为A. B. C. D.【答案】D【解析】根据题意得到:有,即找集合M的子集个数,有:共有4个集合是M的子集.故答案为:D.14.设集合.若,则()A. B. C. D.【答案】C【解析】集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故答案为:C15.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=. 故答案为:A16.已知集合,,则()A. B. C. D.17.已知集合,,则()A. B. C. D.【答案】A【解析】因为,由得,其与不等式为同解不等式,所以;则故选A.18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.19.设集合,,则()A. B. C. D.【答案】A【解析】因为,,所以,故选A. 20.已知,,则()A. B.C. D.21.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填.22.已知集合,. (1)若A∩B=,求实数m的值;(2)若,求实数m的取值范围.【答案】(1)2;(2)【解析】由已知得: ,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值范围为.23.已知集合A=(-2,8),集合(1)若,求实数m的取值范围;(2)若A∩B=(a,b)且b-a=3,求实数m的值③当时,即解得,综上,m的值为或1.。

2019年全国版高考数学(理)一轮复习必刷题:第四单元 函数的图象与函数应用

2019年全国版高考数学(理)一轮复习必刷题:第四单元  函数的图象与函数应用

第四单元函数的图象与函数应用考点一图象推导型cos x(-π≤x≤π且x≠0)的图象可能为().1.(2015年浙江卷)函数f(x)= x-1xABCD【解析】函数f(x)=x-1x cos x(-π≤x≤π且x≠0)为奇函数,排除选项A,B;当x=π时,f(π)=π-1πcosπ=1π-π<0,排除选项C,故选D.【答案】D2.(2016年全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]上的图象大致为().【解析】∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,且f(2)=8-e2∈(0,1),∴排除A,B.设g(x)=2x2-e x,则g'(x)=4x-e x.又∵g'(0)<0,g'(2)>0,∴g(x)在(0,2)内至少存在一个极值点,∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.【答案】D3.(2017年全国Ⅰ卷)函数y=sin2x1−cos x的部分图象大致为().ABCD【解析】令f (x )=sin2x1−cos x ,∵f (1)=sin21−cos1>0,f (π)=sin2π1−cos π=0, ∴排除选项A ,D .由1-cos x ≠0得x ≠2k π(k ∈Z ), 故函数f (x )的定义域关于原点对称. 又∵f (-x )=sin(−2x )1−cos(−x )=-sin2x1−cos x=-f (x ),∴f (x )为奇函数,其图象关于原点对称,∴排除选项B .故选C . 【答案】C4.(2017年全国Ⅲ卷)函数y=1+x+sin xx 2的部分图象大致为( ).【解析】当x→+∞时,sin xx2→0,1+x→+∞,y=1+x+sin xx2→+∞,故排除选项B.当0<x<π2时,y=1+x+sin xx2>0,故排除选项A,C.故选D.【答案】D5.(2015年全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为().【解析】当x∈0,π4时,f(x)=tan x+4+tan x,图象不会是直线段,从而排除A,C.当x∈π4,3π4时,fπ4=f3π4=1+5,fπ2=22.∵22<1+5,∴fπ2<fπ4=f3π4,从而排除D,故选B.【答案】B6.(2014年全国Ⅰ卷)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M.将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]的图象大致为().【解析】如图,当x∈0,π时,则P(cos x,sin x),M(cos x,0).作MM'⊥OP,M'为垂足,则2|MM'|=sin x,∴f(x)=sin x,∴f(x)=sin x cos x=1sin2x,则当x=π时,f(x)1;当x∈π,π 时,有max=f(x)=sin(π-x),f(x)=-sin x cos x=-1sin2x,当x=3π时,f(x)1.只有B选项的图象符合.max=【答案】B考点二图象应用型7.(2015年北京卷)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是().A.{x|-1<x ≤0}B.{x|-1≤x ≤1}C.{x|-1<x ≤1}D.{x|-1<x ≤2}【解析】令g (x )=y=log 2(x+1),作出函数g (x )的图象,如图所示.由x +y =2,y =log 2(x +1),得 x =1,y =1.∴结合图象知不等式f (x )≥log 2(x+1)的解集为{x|-1<x ≤1}.【答案】C8.(2017年江苏卷)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= x 2,x ∈D ,x ,x∉D ,其中集合D= x |x =n -1n ,n ∈N*,则方程f (x )-lg x=0的解的个数是 .【解析】由于f (x )∈[0,1),则只需考虑1≤x<10的情况.在此范围内,当x ∈Q 且x ∉Z 时,设x=q,p ,q ∈N *,p ≥2且p ,q 互质,若lg x ∈Q ,则由lg x ∈(0,1),可设lg x=n ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =q,则10n= q m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q .因此lg x 不可能与每个周期内x ∈D 对应的部分相等,只需考虑lg x与每个周期x∉D部分的交点.画出函数草图(如图).图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D部分,且x=1处(lg x)'=1x ln10=1ln10<1,则在x=1附近仅有一个交点,因此方程解的个数为8.【答案】89.(2015年北京卷)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是().A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油【解析】根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.【答案】D考点三函数应用型10.(2014年湖南卷)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为().A.p +q2B.(p +1)(q +1)−12C. D. (p +1)(q +1)-1【解析】设年平均增长率为x ,则(1+x )2=(1+p )(1+q ),∴x= (1+p )(1+q )-1.【答案】D11.(2015年四川卷)某食品的保鲜时间y (单位:h )与储藏温度x (单位:℃)满足函数关系y=e kx+b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是 h .【解析】由已知条件,得192=e b,∴b=ln192.又∵48=e22k+b=e22k+ln192=192e 22k=192(e 11k )2,∴e 11k=4819212=1412=12.设该食品在33℃的保鲜时间是t h ,则t=e33k+ln192=192e 33k =192(e 11k )3=192×123=24.【答案】24高频考点:函数图象的识别与判断、图象的对称变换、函数零点个数的判断、函数零点所在区间的判断、函数图象与性质的综合应用、函数模型的应用.命题特点:函数图象的考查形式主要有两种:一种是给出解析式判断函数图象;一种是函数图象的应用.函数零点的考查形式主要是由函数零点求参数范围,在选择题、填空题中考查的较多,难度中等,也可在解答题中作为一种数学工具呈现,利用数形结合思想分析试题并解决问题.§4.1 函数图象一 利用描点法作函数图象。

高考数学一轮复习考点集合必刷题含解析

高考数学一轮复习考点集合必刷题含解析

考点01 集合1、已知全集U ={1,3,5,7,9},A ={1,5,9},B ={3,5,9},则∁U (A∪B)的子集个数为___.【答案】2【解析】由题意得A∪B={1,3,5,9},所以∁U (A∪B)={7},所以∁U (A∪B)的子集个数为2.2、已知集合A ={0,a},B ={0,1,3},若A∪B={0,1,2,3},则实数a 的值为__2__.【答案】2【解析】因为A∪B={0,1,2,3},A ={0,a},B ={0,1,3},所以a =2.3、设集合A ={-1,1,3},B ={a +2,a 2+4},若A∩B={3},则实数a 的值为__1__.【答案】1【解析】因为A∩B={3},所以a +2=3或a 2+4=3,解得a =1,此时B ={3,5},符合题意,故实数a 的值为1.4、已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系如图所示,则阴影部分表示的集合中的元素有____个.【答案】2【解析】由图可知,阴影部分表示的是M ∩N .由M ={x |-2≤x -1≤2}得M ={x |-1≤x ≤3}.集合N 表示的是正奇数集,所以M ∩N ={1,3},所以阴影部分所示的集合中的元素共有2个.5、设全集U =R ,M ={m |方程mx 2-x -1=0有实数根},N ={n |方程x 2-x +n =0有实数根},则(∁U M )∩N =________.【答案】{x |x <-14} 【解析】当m =0时,x =-1,即0∈M ;当m ≠0时,Δ=1+4m ≥0,即m ≥-14,且m ≠0, ∴m ≥-14,∴∁U M ={m |m <-14}, 而对于N ,Δ=1-4n ≥0,即n ≤14, N ={n |n ≤14},∴(∁U M )∩N ={x |x <-14}.答案:{x |x <-14} 6、下面四个命题中,正确命题的序号为____.①某班个子较高的同学构成集合A ;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程x 2-2x +1=0的解集是{1,1};④∅与{∅}表示同一个集合.【答案】②【解析】①集合是指一定范围内某些确定的、不同的对象的全体,个子较高的同学不确定,所以①错误;②正确,集合中的元素具有无序性;③错误,集合中的元素具有互异性;④错误,∅表示不含任何元素的集合,{∅}表示集合中有一个元素∅,而不是空集.7、设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集.其中的真命题是________.(写出所有真命题的序号)【答案】①②【解析】由题意,①S ={a +b i|a ,b 为整数,i 为虚数单位},S 为复数集,若x 、y ∈S ,则x +y ,x -y 及xy 仍为复数,故①正确.②若S 为封闭集,且存在元素x ∈S ,那么必有x -x =0∈S ,即一定有0∈S ,故②正确.③因为{0}是封闭集,且是有限集,故③错误.④举特例,若S ={0},T ={0,i ,-i},显然,T 中i·(-i)=1∉T ,∴T 不是封闭集,故④错误. 答案:①②8、设集合A =⎩⎨⎧⎭⎬⎫x|132≤2-x ≤4,B ={x|x 2+2mx -3m 2<0},m>0. (1) 若m =2,求A∩B;(2) 若A ⊇B ,求实数m 的取值范围.【答案】(1) {x|-2≤x<2} (2) ⎝ ⎛⎦⎥⎤0,23【解析】由题意得,集合A ={x|-2≤x≤5},因为m>0,所以B ={x|-3m<x<m}.(1) 当m =2时,B ={x|-6<x<2},所以A∩B={x|-2≤x<2}.(2) A ={x|-2≤x≤5},B ={x|-3m<x<m},因为A ⊇B ,所以⎩⎪⎨⎪⎧-3m ≥-2,m≤5, 所以m≤23,所以0<m≤23. 综上所述,m 的取值范围是⎝ ⎛⎦⎥⎤0,23. 9、已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},若B ⊆A ,求实数m 的取值范围.【答案】{}m|m ≤4【解析】当B =∅时,有m +1≥2m-1,则m≤2.当B≠∅时,若B ⊆A ,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m≤4.综上,m 的取值范围是{}m|m ≤4.10、若集合A ={x|ax 2+ax +1=0}中只有一个元素,求实数a 的值.【答案】4【解析】当a =0时,不合题意,舍去;当a≠0时,由题意得,Δ=a 2-4a =0,解得a =4.综上所述,a =4.11、若集合A ={x|ax 2+ax +1=0}只有一个子集,求实数a 的取值范围.【答案】[0,4)【解析】由题意得,集合A 为空集.①若a =0,符合题意;②若a≠0,则Δ=a 2-4a<0,解得0<a<4.综上,a 的取值范围是[0,4).12、已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1) 当m =3时,求A ∩∁R B ;(2) 若A ∩B ={x |-1<x <4},求实数m 的值.【答案】(1) A ∩∁R B =[3,5] (2)8【解析】(1) 当m =3时,B ={x |-1<x <3},则∁R B =(-∞,-1]∪[3,+∞).又因为A =(-1,5],所以A ∩∁R B =[3,5].(2) 因为A =(-1,5],A ∩B ={x |-1<x <4},所以4是方程-x 2+2x +m =0的一个根,所以-42+2×4+m =0,解得m =8.此时集合B ={x |-2<x <4},符合题意.因此实数m 的值为8.13、已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.(1) 当a =4时,求A∩B;(2) 若A ⊆B ,求实数a 的取值范围.【答案】(1) [-8,-7) (2) (-4,1)【解析】(1) 由题意得,A =[-8,-4],当a =4时,B =(-∞,-7)∪(4,+∞),所以A∩B=[-8,-7).(2) 方程x 2+3x -a 2-3a =0的两根分别为a ,-a -3.①当a =-a -3,即a =-32时, B =⎝⎛⎭⎪⎫-∞,-32∪(-32,+∞),满足A ⊆B ; ②当a<-a -3,即a<-32时, B =(-∞,a)∪(-a -3,+∞),则a>-4或-a -3<-8,解得-4<a<-32; ③当a>-a -3,即a>-32时, B =(-∞,-a -3)∪(a ,+∞),则a<-8或-a -3>-4,解得-32<a<1.综上所述,实数a 的取值范围是(-4,1).14、已知集合A ={x |6x +1≥1,x ∈R},B ={x |x 2-2x -m <0}, (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.【答案】(1){x |3≤x ≤5} (2) 8【解析】由6x +1≥1,得x -5x +1≤0.∴-1<x ≤5, ∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.15、已知集合A ={x|0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x|-12<x≤2. (1) 若A ⊆B ,求实数a 的取值范围;(2) 若B ⊆A ,求实数a 的取值范围;(3) A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.【答案】(1) (-∞,-8)∪[2,+∞) (2) ⎝ ⎛⎦⎥⎤-12,2 (3) 2 【解析】对于不等式0<ax +1≤5,当a =0时,0<1<5恒成立,即x ∈R ,集合A =R ;当a >0时,-1a <x ≤4a,即集合A ={x |-1a <x ≤4a }; 当a <0时,4a ≤x <-1a ,即集合A ={x |4a≤x <-1a }. (1) 若A 是B 的子集,则当a =0时,不满足题意;当a >0时,需要满足⎩⎪⎨⎪⎧-1a ≥-12,4a ≤2,解得a ≥2; 当a <0时,需要满足⎩⎪⎨⎪⎧4a >-12,-1a ≤2,解得a <-8. 综上所述,a 的取值范围是(-∞,-8)∪[2,+∞).(2) 若B 是A 的子集,则当a =0时,满足题意;当a >0时,需要满足⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,解得0<a ≤2; 当a <0时,需要满足⎩⎪⎨⎪⎧-1a >2,4a ≤-12,解得-12<a <0. 综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤-12,2. (3) 当A =B 时,需满足A ⊆B 且B ⊆A ,即同时满足(1)和(2),所以a =2.16、设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.【答案】见解析【解析】假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧ y =2x -1y =ax 2-ax +a 有正整数解,消去y ,得ax 2-(a +2)x +a +1=0(*). 由Δ≥0,有(a +2)2-4a (a +1)≥0,解得-233≤a ≤233.∵a 为非零整数, ∴a =±1,当a =-1时,代入(*),解得x =0或x =-1,而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意.故存在a =1,使得A ∩B ≠∅,此时A ∩B ={(1,1),(2,3)}.17、对于函数f (x ),若f (x )=x ,则称x 为f (x )的“不动点”,若f (f (x ))=x ,则称x 为f (x )的“稳定点”,函数f (x )的“不动点”和“稳定点”的集合分别记为A 和B ,即A ={x |f (x )=x },B ={x |f (f (x ))=x }.(1)求证:A ⊆B .(2)若f (x )=ax 2-1(a ∈R ,x ∈R),且A =B ≠∅,求实数a 的取值范围.【答案】(1) 见解析 (2) [-14,34] 【解析】(1)证明:若A =∅,则A ⊆B 显然成立;若A ≠∅,设t ∈A ,则f (t )=t ,f (f (t ))=f (t )=t ,即t ∈B ,从而A ⊆B .(2)A 中元素是方程f (x )=x ,即ax 2-1=x 的实根.由A ≠∅,知a =0或⎩⎪⎨⎪⎧ a ≠0,Δ=1+4a ≥0即a ≥-14,B 中元素是方程a (ax 2-1)2-1=x ,即a 3x 4-2a 2x 2-x +a -1=0的实根,由A ⊆B ,知上述方程左边含有一个因式ax 2-x -1,即方程可化为(ax 2-x -1)(a 2x 2+ax -a +1)=0.因此,若要A =B ,即要方程①a 2x 2+ax -a +1=0 要么没有实根,要么实根是方程②ax 2-x -1=0的根.若①没有实根,则Δ=a 2-4a 2(1-a )<0,由此解得a <34. 若①有实根且①的实根是②的实根,则由②有a 2x 2=ax +a ,代入①有2ax +1=0.由此解得x =-12a ,再代入②得14a +12a-1=0, 由此解得a =34. 故a 的取值范围是[-14,34].。

教育最新K122019版高考数学(理)高分计划一轮狂刷练第1章集合与常用逻辑用语1-2a

教育最新K122019版高考数学(理)高分计划一轮狂刷练第1章集合与常用逻辑用语1-2a

[基础送分提速狂刷练]一、选择题1.下列命题中是真命题的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若x-312是有理数,则x是无理数”的逆否命题.A.①②B.①③C.②③D.①②③答案 B解析对于①,其否命题是“若x2+y2=0,则x,y全为零”,这显然是正确的,故①为真命题;对于②,其逆命题是“若两多边形相似,则它们一定是正多边形”,这显然是错误的,故②为假命题;对于③,原命题为真,故逆否命题也为真.因此是真命题的是①③.故选B.2.(2018·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c答案 A解析否命题是将原命题的条件和结论都否定,故命题“若a>b,则a+c>b+c”的否命题是“若a≤b,则a+c≤b+c”.故选A.3.(2018·曲阜模拟)已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,q:函数g(x)=log a(x+1)(a>0且a≠1)在(-1,+∞)上是增函数,则綈p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析 易知p 成立⇔a ≤1,q 成立⇔a >1,所以綈p 成立⇔a >1,则綈p 是q 的充要条件.故选C.4.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“b a +a b ≥2”的充分必要条件C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0”D .命题p :∃x ∈R ,x 2+x -1<0,则綈p :∀x ∈R ,x 2+x -1≥0 答案 D解析 若p ∨q 为真命题,则p ,q 中至少有一个为真,那么p ∧q 可能为真,也可能为假,故A 错误;若a >0,b >0,则b a +a b ≥2,又当a <0,b <0时,也有b a +a b ≥2,所以“a >0,b >0”是“b a +a b ≥2”的充分不必要条件,故B 错误;命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,故C 错误,易知D 正确.故选D.5.“a <-1”是“∃x 0∈R ,a sin x 0+1<0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案 B解析 由题意知“∃x 0∈R ,a sin x 0+1<0”等价于“(a sin x +1)min <0”,即“当a >0时,-a +1<0,即a >1;当a <0时,a +1<0,即a <-1”,所以“a <-1”是“∃x 0∈R ,a sin x 0+1<0”的充分不必要条件,故选B.6.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题, 即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.7.(2017·衡水联考)“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x ,f (-x )=sin(-x )-1-x=-sin x +1x =-⎝ ⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数;反之,当f (x )=sin x -1x +a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x+a +sin x -1x +a =2a ,故a =0, 所以“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的充要条件.故选C.8.(2018·天津模拟)已知f (x )=2x +3(x ∈R ),若|f (x )-1|<a 的必要条件是|x +1|<b (a ,b >0),则a ,b 之间的关系是( )A .b ≥a 2B .b <a 2C .a ≤b 2D .a >b 2答案 A解析 ∵f (x )=2x +3,且|f (x )-1|<a ,∴|2x +2|<a .∴-a <2x +2<a ,∴-2-a 2<x <-2+a 2.∵|x +1|<b ,∴-b <x +1<b ,∴-b -1<x <b -1.∵|f (x )-1|<a 的必要条件是|x +1|<b (a ,b >0),∴⎝ ⎛⎭⎪⎫-2-a 2,-2+a 2⊆(-b -1,b -1), ∴⎩⎨⎧-b -1≤-2-a 2,b -1≥-2+a 2,解得b ≥a 2.故选A. 9.(2018·江西一联)已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >0”是“点M 在第四象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 复数z =(1-2i)(a +i)=a +2-2a i +i =a +2+(1-2a )i 在复平面内对应的点为M (a +2,1-2a ).若a >0,则a +2>0,但1-2a 的正负不确定,所以点M 是否在第四象限也是不确定的;若点M 在第四象限,则⎩⎪⎨⎪⎧a +2>0,1-2a <0,解得a >12,此时可推出a >0.所以“a >0”是“点M 在第四象限”的必要不充分条件.故选B.10.(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r<3,q:圆C上至多有2个点到直线x-3y+3=0的距离为1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析圆C:(x-1)2+y2=r2的圆心(1,0)到直线x-3y+3=0的距离d=|1-3×0+3|2=2.当r∈(0,1)时,直线与圆相离,圆上没有到直线的距离为1的点;当r=1时,直线与圆相离,圆上只有一个点到直线的距离为1;当r∈(1,2)时,直线与圆相离,圆上有两个点到直线的距离为1;当r=2时,直线与圆相切,圆上有两个点到直线的距离为1;当r∈(2,3)时,直线与圆相交,圆上有两个点到直线的距离为1.综上,当r∈(0,3)时,圆上至多有2个点到直线的距离为1,又由圆上至多有两个点到直线的距离为1可得0<r<3,故p是q的充分必要条件.故选C.二、填空题是“A∩B≠∅”的充分条件,则实数b的取值范围是________.答案(-1,+∞)解析12.已知条件p:x∈A,且A={x|a-1<x<a+1},条件q:x∈B,且B ={x |y =x 2-3x +2}.若p 是q 的充分条件,则实数a 的取值范围是________.答案 (-∞,0]∪[3,+∞)解析 易得B ={x |x ≤1或x ≥2},且A ={x |a -1<x <a +1},由p 是q 的充分条件,可知A ⊆B ,故a +1≤1或a -1≥2,即a ≤0或a ≥3.即所求实数a 的取值范围是(-∞,0]∪[3,+∞).13.(2018·泰安模拟)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,若p 是q 的必要不充分条件,则实数a 的取值范围是________.答案 (1,2]解析 ∵p 是q 的必要不充分条件,∴q ⇒p ,且p ⇒/ q .设A ={x |p (x )},B ={x |q (x )},则B A .又B ={x |2<x ≤3},当a >0时,A ={x |a <x <3a };当a <0时,A ={x |3a <x <a }.故当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2; 当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是(1,2].14.(2017·长沙模拟)r (x ):已知r (x )=sin x +cos x >m ;s (x ):x 2+mx +1>0.如果∀x ∈R ,r (x )与s (x )有且仅有一个是真命题,则实数m 的取值范围是________.答案 (-∞,-2]∪[-2,2)解析 由sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4, 得sin x +cos x 的最小值为- 2.若∀x ∈R 时,命题r (x )为真命题,则m <- 2.若命题s (x )为真命题,即∀x ∈R ,不等式x 2+mx +1>0恒成立,则Δ=m 2-4<0,解得-2<m<2.若命题r(x)为真命题,命题s(x)为假命题,则m≤-2;若命题r(x)为假命题,命题s(x)为真命题,则-2≤m<2.综上所述,实数m的取值范围是(-∞,-2]∪[-2,2).三、解答题15.(2017·沂水模拟)已知f(x)是(-∞,+∞)上的增函数,a,b ∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.解(1)逆命题:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.是真命题.(用反证法证明)假设a+b<0,则有a<-b,b<-a.∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与题设中f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立.从而a+b≥0成立.逆命题为真.(2)逆否命题:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0.是真命题.原命题为真,证明如下:∵a+b≥0,∴a≥-b,b≥-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-a)+f(-b).∴原命题为真命题,∴其逆否命题也为真命题.16.(2017·江苏兴化月考)已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解 (1)由题意知,方程x 2-x -m =0在(-1,1)上有解,即m 的取值范围就为函数y =x 2-x 在(-1,1)上的值域,易知M ={m ⎪⎪⎪⎭⎬⎫-14≤m <2. (2)因为x ∈N 是x ∈M 的必要条件,所以M ⊆N .当a =1时,解集N 为空集,不满足题意;当a >1时,a >2-a ,此时集合N ={x |2-a <x <a },则⎩⎨⎧ 2-a <-14,a ≥2,解得a >94; 当a <1时,a <2-a ,此时集合N ={x |a <x <2-a }, 则⎩⎨⎧ a <-14,2-a ≥2,解得a <-14.综上,a >94或a <-14.。

专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)

专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)

专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高三一轮复习理科数学必刷题《集合》一、选择题:(每题5分,共12题60分)1、已知集合A ={x|x 2-2x -3≤0},B ={x|0<x≤4},则A ∪B =( )A .[-1,4]B .(0,3]C .(-1,0]∪(1,4]D .[-1,0]∪(1,4]2、已知集合A ={x|x<1},B ={x|3x <1},则( )A .A∩B={x|x<0}B .A ∪B =RC .A ∪B ={x|x>1}D .A∩B=∅3、已知集合A ={x ∈N|πx <16},B ={x|x 2-5x +4<0},则A∩(∁R B)的真子集的个数为( )A .1B .3C .4D .74、设集合A ={1,2,4},B ={x|x 2-4x +m =0}.若A∩B={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}5、若集合M ={x||x|≤1},N ={y|y =x 2,|x|≤1},则( )A .M =NB .M ⊆NC .N ⊆MD .M∩N=∅6、设函数y =4-x 2的定义域为A ,函数y =ln (1-x)的定义域为B ,则A∩B=( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)7、已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y|y =⎝ ⎛⎭⎪⎫12x ,x ∈R ,B ={-2,-1,1,2},则下列结论正确的是( ) A .A∩B={-2,-1} B .(∁R A)∪B =(-∞,0) C .A ∪B =(0,+∞) D .(∁R A)∩B={-2,-1}8、已知集合A ={(x ,y)|x 2+y 2=1},B ={(x ,y)|y =x},则A∩B 中元素的个数为( )A .3B .2C .1D .09、已知集合A ={x|x 2-3x +2=0,x ∈R},B ={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .410、设常数a ∈R ,集合A ={x|(x -1)(x -a)≥0},B ={x|x≥a-1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)11、已知集合P ={x ∈R|1≤x≤3},Q ={x ∈R|x 2≥4},则P ∪(∁R Q)=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)12、设全集U =R ,集合A ={x|2x -x 2>0},B ={y|y =e x +1},则A ∪B 等于( )A .{x|x<2}B .{x|1<x<2}C .{x|x>1}D .{x|x>0}二、填空题:(每题5分,共4题20分)13、已知集合A ={a 2,a +1,-3},B ={a -3,a -2,a 2+1},若A∩B={-3},则a =________.14、若集合A ={x|x 2-9x<0,x ∈N *},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y|4y ∈N *,y ∈N *,则A∩B 中元素的个数为________. 15、已知集合A ={x|x<-3或x>7},B ={x|m +1≤x≤2m-1},若B ⊆A ,则实数m 的取值范围是________.16、设A ,B 是非空集合,定义A ⊗B ={x|x ∈A ∪B 且x ∉A∩B}.已知集合A ={x|0<x<2},B ={y|y≥0},则A ⊗B =___.三、解答题:(共6题70分)17、(10分)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2a 2+5a ,12,6a -1,且-3∈A ,求实数a 的值.18、(12分)已知集合A ={x ∈R|x 2-ax +b =0},B ={x ∈R|x 2+cx +15=0},A∩B={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R|ax 2+bx +c≤7},求集合P∩Z.19、(12分)已知集合P ={x|a +1≤x≤2a+1},Q ={x|x 2-3x≤10}.(1)若a =3,求(∁R P)∩Q; (2)若P ∪Q =Q ,求实数a 的取值范围.20、(12分)已知集合A ={x|-1<x≤3},B ={x|m≤x<1+3m}.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.21、(12分)已知集合A ={x|x 2-2x -3<0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|12<2x -1<8,C ={x|2x 2+mx -m 2<0}(m ∈R). (1)求A ∪B ;(2)若(A ∪B)⊆C ,求实数m 的取值范围.22、(12分)设集合A ={x|x 2-x -6<0},B ={x|x -a≥0}.(1)若A∩B=∅,求实数a 的取值范围;(2)是否存在实数a ,使得A∩B={x|0≤x<3}成立?若存在,求出a 的值及对应的A ∪B ;若不存在,说明理由.2019高三一轮复习理科数学必刷题———集合解析版一、选择题:(每题5分,共12题60分)1、已知集合A ={x|x 2-2x -3≤0},B ={x|0<x≤4},则A ∪B =( )A .[-1,4]B .(0,3]C .(-1,0]∪(1,4]D .[-1,0]∪(1,4]答案 A解析 A ={x|x 2-2x -3≤0}={x|-1≤x≤3},故A ∪B =[-1,4].选A.2、已知集合A ={x|x<1},B ={x|3x <1},则( )A .A∩B={x|x<0}B .A ∪B =RC .A ∪B ={x|x>1}D .A∩B=∅答案 A解析 ∵B ={x|3x <1},∴B ={x|x <0}.又A ={x|x <1},∴A∩B={x|x <0},A ∪B ={x|x <1}.故选A.3、已知集合A ={x ∈N|πx <16},B ={x|x 2-5x +4<0},则A∩(∁R B)的真子集的个数为( )A .1B .3C .4D .7答案 B解析 因为A ={x ∈N|πx <16}={0,1,2},B ={x|x 2-5x +4<0}={x|1<x<4},故∁R B ={x|x≤1或x≥4},故A∩(∁R B)={0,1},故A∩(∁R B)的真子集的个数为3.故选B.4、设集合A ={1,2,4},B ={x|x 2-4x +m =0}.若A∩B={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}答案 C解析 ∵A∩B={1},∴1∈B.∴1-4+m =0,即m =3.∴B ={x|x 2-4x +3=0}={1,3}.故选C.5、若集合M ={x||x|≤1},N ={y|y =x 2,|x|≤1},则( )A .M =NB .M ⊆NC .N ⊆MD .M∩N=∅答案 C解析 M ={x||x|≤1}=[-1,1],N ={y|y =x 2,|x|≤1}=[0,1],所以N ⊆M.故选C.6、设函数y =4-x 2的定义域为A ,函数y =ln (1-x)的定义域为B ,则A∩B=( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)答案 D解析 ∵4-x 2≥0,∴-2≤x≤2,∴A =[-2,2].∵1-x >0,∴x <1,∴B =(-∞,1),∴A∩B=[-2,1).故选D.7、已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y|y =⎝ ⎛⎭⎪⎫12x ,x ∈R ,B ={-2,-1,1,2},则下列结论正确的是( ) A .A∩B={-2,-1} B .(∁R A)∪B =(-∞,0) C .A ∪B =(0,+∞) D .(∁R A)∩B={-2,-1}答案 D解析 因为A =(0,+∞),所以A∩B={1,2},(∁R A)∪B ={y|y≤0或y =1,2},A ∪B ={y|y>0或y =-1,-2},(∁R A)∩B={-1,-2}.所以D 正确.8、已知集合A ={(x ,y)|x 2+y 2=1},B ={(x ,y)|y =x},则A∩B 中元素的个数为( )A .3B .2C .1D .0答案 B解析 集合A 表示以原点O 为圆心,半径为1的圆上的所有点的集合,集合B 表示直线y =x 上的所有点的集合.由图形可知,直线与圆有两个交点,所以A∩B 中元素的个数为2.故选B.9、已知集合A ={x|x 2-3x +2=0,x ∈R},B ={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4答案 D解析 集合B ={1,2,3,4},有4个元素,集合A ={1,2},则集合C 的个数问题可转化为{3,4}的子集个数问题,即22=4.10、[2018·湖南模拟]设常数a ∈R ,集合A ={x|(x -1)(x -a)≥0},B ={x|x≥a-1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)答案 B解析 集合A 讨论后利用数轴可知⎩⎨⎧ a≥1,a -1≤1或⎩⎨⎧a≤1,a -1≤a, 解得1≤a≤2或a≤1,即a≤2.故选B.11、已知集合P ={x ∈R|1≤x≤3},Q ={x ∈R|x 2≥4},则P ∪(∁R Q)=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)答案 B解析 ∵Q =(-∞,-2]∪[2,+∞),∴∁R Q =(-2,2),∴P ∪(∁R Q)=(-2,3].故选B.12、 [2018·武汉模拟]设全集U =R ,集合A ={x|2x -x 2>0},B ={y|y =e x +1},则A ∪B 等于( )A .{x|x<2}B .{x|1<x<2}C .{x|x>1}D .{x|x>0}答案 D解析 由2x -x 2>0得0<x<2,故A ={x|0<x<2},由y =e x +1得y>1,故B ={y|y>1},所以A ∪B ={x|x>0}.故选D.二、填空题:(每题5分,共4题20分)13、已知集合A ={a 2,a +1,-3},B ={a -3,a -2,a 2+1},若A∩B={-3},则a =________.答案 -1解析 由A∩B={-3}知,-3∈B.又a 2+1≥1,故只有a -3,a -2可能等于-3.①当a -3=-3时,a =0,此时A ={0,1,-3},B ={-3,-2,1},A∩B={1,-3}.故a =0舍去.②当a -2=-3时,a =-1,此时A ={1,0,-3},B ={-4,-3,2},满足A∩B={-3},故a =-1.14、若集合A ={x|x 2-9x<0,x ∈N *},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y|4y ∈N *,y ∈N *,则A∩B 中元素的个数为________. 答案 3解析 解不等式x 2-9x<0可得0<x<9,所以A ={x|0<x<9,x ∈N *}={1,2,3,4,5,6,7,8},又4y ∈N *,y ∈N *,所以y 可以为1,2,4,所以B ={1,2,4},所以A∩B=B ,A∩B 中元素的个数为3.15、已知集合A ={x|x<-3或x>7},B ={x|m +1≤x≤2m-1},若B ⊆A ,则实数m 的取值范围是________.答案 (-∞,2)∪(6,+∞)解析 当B =∅时,有m +1>2m -1,则m<2.当B≠∅时,⎩⎨⎧ m +1≤2m-1,2m -1<-3或⎩⎨⎧m +1≤2m-1,m +1>7, 解得m>6.综上可知m 的取值范围是(-∞,2)∪(6,+∞).16、设A ,B 是非空集合,定义A ⊗B ={x|x ∈A ∪B 且x ∉A∩B}.已知集合A ={x|0<x<2},B ={y|y≥0},则A ⊗B =__ __.答案 {0}∪[2,+∞)解析 A ∪B ={x|x≥0},A∩B={x|0<x<2},则A ⊗B ={0}∪[2,+∞).三、解答题:(共6题70分)17、(10分)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2a 2+5a ,12,6a -1,且-3∈A ,求实数a 的值. 解析 ∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2a 2+5a ,12,6a -1,且-3∈A ,∴①当2a 2+5a =-3时,2a 2+5a +3=0,解得a =-1或a =-32,其中a =-1时,2a 2+5a =6a -1=-3, 与集合元素的互异性矛盾,舍去;a =-32时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-3,12,-125满足题意. ②当6a -1=-3时,a =-1,由①知应舍去. 综上,a 的值为-32. 18、(12分)已知集合A ={x ∈R|x 2-ax +b =0},B ={x ∈R|x 2+cx +15=0},A∩B={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R|ax 2+bx +c≤7},求集合P∩Z.解 (1)因为A∩B={3},所以3∈B ,所以32+3c +15=0,c =-8,所以B ={x ∈R|x 2-8x +15=0}={3,5}. 又因为A∩B={3},A ∪B ={3,5},所以A ={3},所以方程x 2-ax +b =0有两个相等的实数根都是3,所以a =6,b =9,所以a =6,b =9,c =-8.(2)不等式ax 2+bx +c≤7即6x 2+9x -8≤7,所以2x 2+3x -5≤0,所以-52≤x≤1, 所以P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-52≤x≤1, 所以P∩Z=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-52≤x≤1∩Z={-2,-1,0,1}. 19、(12分)已知集合P ={x|a +1≤x≤2a+1},Q ={x|x 2-3x≤10}.(1)若a =3,求(∁R P)∩Q; (2)若P ∪Q =Q ,求实数a 的取值范围.解 (1)因为a =3,所以P ={x|4≤x≤7},∁R P ={x|x<4或x>7}.又Q ={x|x 2-3x -10≤0}={x|-2≤x≤5},所以(∁R P)∩Q={x|x<4或x>7}∩{x|-2≤x≤5}={x|-2≤x<4}.(2)当P≠∅时,由P ∪Q =Q 得P ⊆Q ,所以⎩⎨⎧ a +1≥-2,2a +1≤5,2a +1≥a+1,解得0≤a≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a<0.综上,实数a 的取值范围是(-∞,2].20、(12分)已知集合A ={x|-1<x≤3},B ={x|m≤x<1+3m}.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.解析 (1)m =1时,B ={x|1≤x<4},∴A ∪B ={x|-1<x<4}.(2)∁R A ={x|x≤-1或x>3}.①当B =∅,即m≥1+3m 时,得m≤-12,满足B ⊆∁R A. ②当B≠∅时,要使B ⊆∁R A 成立,则⎩⎨⎧ m<1+3m ,1+3m≤-1,或⎩⎨⎧m<1+3m ,m>3,解得m>3. 综上可知,实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪(3,+∞). 21、(12分)已知集合A ={x|x 2-2x -3<0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|12<2x -1<8,C ={x|2x 2+mx -m 2<0}(m ∈R). (1)求A ∪B ;(2)若(A ∪B)⊆C ,求实数m 的取值范围.解析 (1)A ={x|x 2-2x -3<0}={x|-1<x <3},B =⎩⎪⎨⎪⎧x|12<2x -1<8={x|0<x<4},则A ∪B =(-1,4). (2)C ={x|2x 2+mx -m 2<0}={x|(2x -m)(x +m)<0}.①当m>0时,C =⎝⎛⎭⎪⎫-m ,m 2, 由(A ∪B)⊆C 得⎩⎨⎧ -m≤-1,m 2≥4,解得m≥8;②当m =0时,C =∅,不合题意;③当m<0时,C =⎝ ⎛⎭⎪⎫m 2,-m ,由(A ∪B)⊆C 得⎩⎨⎧ -m≥4,m 2≤-1解得m≤-4;综上所述,m ∈(-∞,-4]∪[8,+∞).22、(12分)设集合A ={x|x 2-x -6<0},B ={x|x -a≥0}.(1)若A∩B=∅,求实数a 的取值范围;(2)是否存在实数a ,使得A∩B={x|0≤x<3}成立?若存在,求出a 的值及对应的A ∪B ;若不存在,说明理由. 解析 A ={x|-2<x<3},B ={x|x≥a}.(1)如图,若A∩B=∅,则a≥3,所以a的取值范围是[3,+∞).(2)存在,如图,a=0时,A∩B={x|0≤x<3},此时A∪B={x|x>-2}.。

相关文档
最新文档