用热敏电阻测量温度试验
热敏电阻温度计设计实验报告

热敏电阻温度计设计实验报告热敏电阻温度计设计实验报告引言:温度是我们日常生活中非常重要的一个物理量,它直接影响着我们的生活质量和健康状况。
因此,准确测量温度是科学研究和工程应用中的一个重要问题。
本文将介绍热敏电阻温度计的设计实验,通过实验验证其温度测量的准确性和稳定性。
一、热敏电阻的原理热敏电阻是一种电阻值随温度变化而变化的电阻元件。
其工作原理是基于材料的温度系数,即温度变化会导致材料电阻值的变化。
常见的热敏电阻材料有铂、镍、铜等。
在本实验中,我们选用了铂作为热敏电阻材料。
二、实验装置本实验使用了以下装置和元件:1. 热敏电阻:选用了铂热敏电阻,具有较高的灵敏度和稳定性。
2. 恒流源:为了保证热敏电阻上的电流恒定,我们使用了一个恒流源。
3. 电压表:用于测量热敏电阻两端的电压。
4. 温度控制装置:通过控制加热电流的大小,来控制热敏电阻的温度。
三、实验步骤1. 将热敏电阻连接到恒流源上,并将电压表连接到热敏电阻的两端。
2. 打开恒流源,并调整电流大小,使热敏电阻上的电流保持恒定。
3. 打开温度控制装置,并设置所需的温度。
4. 等待一段时间,直到热敏电阻的温度稳定下来。
5. 使用电压表测量热敏电阻两端的电压,并记录下来。
6. 将温度控制装置的温度调整到其他值,重复步骤4和5。
7. 根据测量结果绘制出热敏电阻的电阻-温度曲线。
四、实验结果与分析根据实验数据,我们绘制了热敏电阻的电阻-温度曲线。
从曲线可以看出,热敏电阻的电阻值随温度的升高而增加。
这符合热敏电阻的特性。
在实验中,我们还发现热敏电阻的灵敏度较高,即单位温度变化引起的电阻变化较大。
这使得热敏电阻在温度测量领域有着广泛的应用。
此外,我们还测试了热敏电阻的稳定性。
通过多次测量同一温度下的电压值,我们发现其变化范围较小,表明热敏电阻具有较好的稳定性。
五、实验误差分析在实验过程中,可能存在一些误差来源,如电流源的漂移、电压表的测量误差等。
这些误差可能会对实验结果产生一定的影响。
使用热敏电阻测量温度的步骤

使用热敏电阻测量温度的步骤在我们的日常生活和工作中,测量温度是非常常见的一项任务。
为了准确测量温度,热敏电阻是一种常用且有效的测量工具。
热敏电阻利用材料在温度变化下电阻值的变化来测量温度。
接下来,本文将为您介绍使用热敏电阻测量温度的步骤。
第一步:准备工作使用热敏电阻测量温度之前,我们需要准备相关的工具和材料。
首先,我们需要一根热敏电阻,确保其质量可靠且测量范围适宜。
其次,我们需要一台数字万用表或其他适用的测量仪器。
此外,还需要一台恒温器或其他稳定的温度控制设备,用来提供不同温度环境。
第二步:连接电路将热敏电阻与测量仪器连接起来是测量温度的关键步骤。
首先,将热敏电阻的两个引脚分别连接到万用表的两个测试插孔上。
确保连接稳固而且接触良好。
然后,将万用表调整为电阻测量模式,并选择适当的量程。
确保仪器设置正确,以获得准确的测量结果。
第三步:设置温度在开始测量之前,我们需要确定测试的温度范围。
使用恒温器或稳定的温度控制设备,将温度控制在适当的范围内。
此时,热敏电阻的电阻值将与环境温度相对应。
请注意,温度的变化应该是逐渐的,以免影响测量的准确性。
第四步:记录数据在进行实际测量之前,我们需要记录一些基础数据。
首先,测量起始温度时的热敏电阻的电阻值。
然后,在温度变化时,定期测量电阻值并记录下来。
请注意,测量的时间间隔应适当,以确保准确性与实时性的平衡。
第五步:绘制曲线根据记录的数据,我们可以绘制出热敏电阻与温度之间的关系曲线。
使用适当的软件或绘图工具,将温度表示在横轴上,将电阻值表示在纵轴上。
通过曲线的走势,我们可以推导出电阻值与温度之间的数学关系,从而可以准确地测量未知温度下的电阻值。
第六步:验证与校准在使用热敏电阻测量温度之后,我们需要进行验证和校准工作。
通过与其他可靠的温度测量仪器进行对比,可以验证我们的测量结果的准确性。
如果有需要,我们可以对热敏电阻进行校准,以提高测量的准确性和可靠性。
总结使用热敏电阻测量温度是一项简单且有效的测量方法。
热敏电阻温度计实验报告

热敏电阻温度计实验报告热敏电阻温度计实验报告引言热敏电阻温度计是一种利用电阻随温度变化的特性来测量温度的仪器。
在工业和科学研究中,温度是一个重要的参数,因此温度的准确测量对于许多实验和应用至关重要。
本实验旨在通过使用热敏电阻温度计来测量不同温度下的电阻值,并分析其特性曲线。
实验方法实验中使用的热敏电阻温度计是一种负温度系数(NTC)热敏电阻,其电阻值随温度的升高而下降。
首先,我们将热敏电阻温度计连接到一个恒流源和一个数字多用表。
然后,我们将热敏电阻温度计放置在不同的温度下,例如室温、冰水混合物和沸水中。
在每个温度下,我们记录下热敏电阻温度计的电阻值,并计算出温度与电阻的对应关系。
实验结果根据实验数据,我们绘制出了热敏电阻温度计的特性曲线。
曲线显示出温度和电阻之间的非线性关系。
在低温下,电阻值较高,而在高温下,电阻值较低。
这是由于热敏电阻的材料特性决定的。
随着温度的升高,热敏电阻材料中的载流子增多,导致电阻值的下降。
讨论与分析根据实验结果,我们可以看出热敏电阻温度计的响应速度较快,可以快速反应温度变化。
这使得热敏电阻温度计在许多实际应用中非常有用,例如温度控制系统和温度补偿。
然而,热敏电阻温度计也存在一些局限性。
首先,由于其非线性特性,我们需要进行一定的校准和计算才能获得准确的温度值。
其次,热敏电阻温度计对环境的变化非常敏感,例如湿度和压力的变化可能会影响其测量精度。
此外,我们还可以利用实验数据进行一些额外的分析。
通过拟合实验数据,我们可以得到一个数学模型来描述热敏电阻温度计的特性曲线。
这将有助于我们更准确地预测和计算温度值。
此外,我们还可以比较不同型号和品牌的热敏电阻温度计的性能差异,以选择最适合特定应用的温度计。
结论通过本次实验,我们成功地使用热敏电阻温度计测量了不同温度下的电阻值,并分析了其特性曲线。
热敏电阻温度计是一种常用的温度测量仪器,具有快速响应和较高的测量精度。
然而,我们也需要注意其非线性特性和对环境变化的敏感性。
热敏电阻温度特性研究实验

热敏电阻温度特性研究实验热敏电阻是一种电阻值随温度变化而变化的电阻器件,其特性可以用于温度测量、温度补偿和温度控制等应用。
为了研究热敏电阻的温度特性,我们可以进行以下实验来获取相关数据并分析。
第一步:实验准备在进行实验之前,我们需要准备以下材料和仪器:1. 热敏电阻:选择一款具有明确参数和规格的热敏电阻。
我们可以根据实际需求和实验目的选择合适的材料和规格。
2. 温度控制装置:使用恒温水槽或热电偶与温控器等设备来提供稳定的温度环境。
3. 电阻测量设备:选择一台高精度的电阻计来测量热敏电阻的电阻值。
4. 数据记录装置:通过连接电阻计和计算机,或是使用独立的数据记录设备,将实验数据记录下来以便后续分析。
第二步:实验过程1. 首先,将热敏电阻与电阻测量设备连接。
注意确保连接的稳定和可靠,避免因为松动或接触不良导致实验误差。
2. 将热敏电阻放置在温度控制装置中,并设定一系列不同的温度值。
可以根据实验需求选择适当的温度范围和步进值。
3. 保持每个温度值下的稳定状态,等待热敏电阻达到热平衡。
这样确保测量的数据准确可靠。
4. 使用电阻计测量每个温度下热敏电阻的电阻值,并记录下来。
为了提高准确度,可以对每个温度值进行多次测量并取平均值。
5. 根据实验需要,可以重复多次实验以获得更加可靠的数据。
第三步:实验数据分析与应用1. 整理实验数据,将测量得到的热敏电阻电阻值与相应的温度值进行对应。
2. 基于这些数据,我们可以绘制出热敏电阻的温度特性曲线,其中横轴表示温度,纵轴表示电阻值。
通过曲线的形状和趋势,我们可以分析出热敏电阻的温度响应特性和敏感度。
3. 进一步,我们可以根据实验数据和温度特性曲线,开发出与热敏电阻相关的温度测量、控制和补偿等应用。
例如,使用热敏电阻的温度特性来实现恒温控制系统、电子温度计或温度补偿技术。
其他专业性角度:1. 理论分析:可以通过数学模型和物理方程来解释和解析热敏电阻的温度特性。
例如,通过电阻和温度之间的数学关系,可以计算出电阻值随温度变化的速率或曲线斜率。
应用热敏电阻测量温度的方法简述

应用热敏电阻测量温度的方法简述摘要:本文介绍了利用热敏电阻实现的简单温度测量方法。
讲述了这种测量方法的基本原理、具体测量过程,并且根据电路及电子技术推导出了温度计算公式,文中还给出了几种利用热敏电阻测温的方法。
最后通过具体应用实例验证了该方法的可行性。
关键词:热敏电阻温度测量一、前言在测控系统和电子设备中,常常需要用到各种温度参数。
测量温度的方法很多,可以采用专用的测温芯片或者利用热电偶和热敏电阻实现。
但是要实时测量设备的环境工作温度,采用热敏电阻具有简单实用,最小限度的更改设备电路的优势。
热敏电阻的主要优点是电阻温度系数大,灵敏度高,响应速度快,能进行精密温度测量。
NTC热敏电阻是一种氧化物的烧结体,具有负温度系数,与金属热电阻相比,电阻温度系数大,灵敏度约为金属热电阻的10倍,结构简单,电阻率小,适于动态测量。
热敏电阻与电阻串并联组成的电路具有温度灵敏度高、电路简单、价格便宜等优点,在测试和自动控制领域得到广泛应用。
二、NTC热敏电阻的热电温度特性分析1、温度特性方程热敏电阻的温度特性可用下面经验公式表示:(1)其中,RT—温度为T时的热敏电阻阻值;R0—温度为常温时的热敏电阻阻值,一般常取T0为20℃;B—热敏电阻材料常数,B=1365ln由式(1)可以看出,阻值变化与温度变化为指数关系,随温度升高,热敏电阻阻值迅速下降,灵敏度高是热敏电阻测温的主要优点。
2、热电特性热敏电阻在其自身温度变化1℃时,电阻值的相对变化量称为热敏电阻的温度系数,其值为:(2)由式(2)可以看出,NTC热敏电阻的温度系数是负值,且与温度变化有关。
温度越低,温度系数越大,灵敏度越高,所以NTC热敏电阻常用于低温测量。
三、热敏电阻的测温方法测量的基本原理是通过检测热敏电阻的电气参数来间接测量温度,使用一个热敏电阻Rt、一个分压电阻R0和一个a/d来完成温度检测。
热敏电阻和分压电阻形成分压电路,热敏电阻随着温度变化而变化,电压也就随着变化。
实验一、热敏电阻应用——温度传感实验.docx(1)

实验一、热敏电阻应用——温度传感实验一、实验目的(1)了解热敏电阻的工作原理。
(2)了解热敏电阻电路的工作特点及原理。
(3)了解温度传感模块的原理并掌握其测量方法。
二、实验内容利用转换元件电参量随温度变化的特征,对温度和与温度有关的参量进行检测。
三、实验原理1. NEWLab温度传感模块认识(1)温度传感模块的电路板认识1)温度/光照传感模块电路板认识温度/光照传感模块电路板结构图:①温敏或光敏电阻传感器②基准电压调节电位器③比较器电路④基准电压测试接口J10,测试温度感应的阀值电压,即比较器1负端(3脚)电压⑤模拟量输出接口J6,测试热敏电阻两端的电压,即比较器1正端(2脚)电压;⑥数字量输出接口J7,测试比较器1输出电平电压⑦接地GND接口J22)继电器模块电路(电路图如下)继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化,使被控制的输出电路导通或断开的自动控制器件。
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
继电器模块电路图:3)指示灯模块和风扇模块电路板认识指示灯模块接到继电器的常开开关上,风扇接入继电器的常闭开关上,当温度传感模块输出低电平时,风扇模块工作,指示灯模块停止工作;当温度传感模块输出高电平时,继电器工作,常开和常闭开关工作状态发生变化,指示灯模块开始工作,风扇模块停止工作。
(2)温度传感模块场景模拟界面认识四、实验步骤1. 启动温度传感模块温度传感模块工作时需要有四个模块,分别是温度/光照传感模块、继电器模块、指示灯模块、风扇模块。
(1)将NEWLab实验硬件平台通电并与电脑连接。
(2)将温度/光照传感模块、继电器模块分别放置在NEWLab实验平台一个实验模块插槽上,指示灯、风扇模块放置好,并将四个模块连接好。
热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性研究(FB203型多档恒流智能控温实验仪)热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种,负温度系数它的电阻率随着温度的升高而急剧下降(一般是按指数规律),而正温度系数电阻率随着温度的升高而急剧升高(一般是按指数规律),金属的电阻率则是随温度的升高而缓慢地上升。
热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。
【实验目的】1.研究热敏电阻、铜电阻;铂电阻、热电偶的温度特性。
2.掌握利用直流单臂电桥与控温实验仪测量热敏元件在不同温度下电阻值的方法。
【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点各不相同,本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。
1.热敏电阻温度特性原理:在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:/1B TAe ρ= (1) 式中1A 和B 是与材料物理性质有关的常数,T 为绝对温度。
对于截面均匀的热敏电阻,其阻值T R 可用下式表示:T lR Sρ= (2) 式中T R 的单位为Ω,ρ的单位为cm Ω,l 为两电极间的距离,单位为cm ,S 为电阻的横截面积,单位为2cm 。
将(1)式代入(2)式,令1l A A S=,于是可得:/B TT R Ae = (3)对一定的电阻而言,A 和B 均为常数。
对(3)式两边取对数,则有:1l n l n T R B A T=+ (4)T R ln 与T1成线性关系,在实验中测得各个温度T 的T R 值后,即可通过作图求出B 和A 值,代入(3)式,即可得到T R 的表达式。
式中T R 为在温度)K (T 时的电阻值)(Ω,A 为在某温度时的电阻值)(Ω,B 为常数)K (,其值与半导体材料的成分和制造方法有关。
(完整版)热敏电阻温度特性的测量

实验十二 热敏电阻温度特性的测量[实验目的]1。
测量热敏电阻的温度特性2.掌握箱式电桥的使用3。
学习用曲线改直的方法处理数据[教学方法]采用讨论式,提案式教学方法[实验原理]半导体热敏电阻与热电阻相比具有灵敏度高、体积小、反应快等优点。
大多数热敏电阻具有负的温度特性,称为NTC 型热敏电阻,其阻值与温度的关系可表示为 ⎪⎪⎭⎫ ⎝⎛-=0011T T B T T eR R (1) 式中,0T R 和T R 分别是温度)(0K T 和)(K T 时的阻值;T 和0T 是开尔文温标;B 是材料常数,单位是K 。
也有些热敏电阻具有正的温度特性,称为PTC 型热敏电阻,其阻值与温度的关系可表示为)(00T T B T T e R R -=,热敏电阻的主要性能指标是:(1)标称值H R 是指25℃时的阻值.(2)温度系数T α.定义为温度变化一度时阻值的变化量与该温度下阻值之比dTdR R T T ⋅=1α (3) 将式(2)代入式(3),得2TB T -=α (4) T α不仅与材料常数有关,还与温度有关,低温段比高温段更灵敏。
如果不作特殊说明,是指K T 293=时的T α。
材质不同,T α也有很大差别,大约为(-3~-6)×10—2/K ,它比热电阻的T α高出10倍左右。
图1是CU 电阻和某一负温度系数热敏电阻的温度特性曲线。
热敏电阻的缺点是非线性严重,元件的稳定性较差。
(3)材料常数B 是与材质有关的常数,对NTC 型热敏电阻来说,B 值约为1500—6000K.(2)式两边取对数,得⎪⎪⎭⎫⎝⎛-+=011ln ln 0T T B R R T T (5) 令x T A T B R y R T T ==-=1,ln ,ln 00则(5)式变为Bx A y +=(6)[实验任务]1。
测绘NTC 热敏电阻的温度特性曲线2.绘制T R T 1ln -图,由图求出材料常数B3。
计算温度系数T α[数据处理]中值点(094.7,1097.23-⨯))000.6,1069.2(31-⨯M)333.8,1027.3(32-⨯M)(1002.410)69.227.3(000.6333.8331212K x x y y B ⨯=⨯--=--=-由于不作特殊说明,T α指293K 时的温度系数 所以)(1069.42931002.412232--⨯-=⨯-=-=K T B T α[预习思考题]1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理实验报告
实验一
一、实验题目:用热敏电阻测量温度
二、实验目得:了解热敏电阻-温度特性与测温原理,掌握惠斯通电桥得原理与使用方法。
学习坐标变换、曲线改直得技巧与用异号法消除零点误差等方法。
三、实验原理:(1)半导体热敏电阻得电阻——温度特性
某些金属氧化物半导体(如:Fe3O4、MgCr2O4等)得电阻与温度关系
满足式(1):
(1)
式中R T就是温度T时得热敏电阻阻值,R就是T趋于无穷时热敏电
阻得阻值,B就是热敏电阻得材料常数,T为热力学温度。
两边取对数得;
(2)
可以通过做-曲线,将曲线改直。
根据定义,电阻得温度系数可由式(3)来决定:
(3)
故在R-t曲线某一特定点作切线,便可求出该温度时得半导体电阻
温度系数a。
(2)惠斯通电桥得工作原理
在电桥平衡下可推导出来:当电桥平衡时检流计无偏转。
实验时电
桥调到R1/R2=1则有R x=R0。
电桥灵敏度S为:
(4)
式中ΔR x指得就是在电桥平衡后R x得微小改变量(实际上待测电阻
R x若不能改变,可通过改变标准电阻R0来测电桥灵敏度),Δn越大,说
明电桥灵敏度越高,带来得测量误差就越小。
(3)实验装置图:
四、实验器材:半导体热敏电阻、检流计、惠斯通电桥、电炉、温度计
五、实验步骤:(1)按图3、5、2-3接线,先将调压器输出调为零,测室温下得热敏电
阻阻值,注意选择惠斯通电桥合适得量程。
先调电桥至平衡得R 0,改变R 0为R 0+ΔR 0,使检流计偏转一格,求出电桥灵敏度;再将R 0改变为R 0-ΔR 0,使检流计反方向偏转一格,求电桥灵敏度(因为人工所调平衡可能存在误差 而正反测量以后可以减小这种误差)
(2)调节变压器输出进行加温,从15℃开始每隔5℃测量一次R t ,直
到85℃。
撤去电炉,使水温慢冷却,测量降温过程中,各对应温度点得R t 。
求升温与降温时得各R 得平均值,然后绘制出热敏电阻得R t -t 特性曲线
七、实验数据分析
(1)特性曲线
Data: Data1_B
Model: Boltzmann
Equation:
y = A2 + (A1-A2)/(1 + exp((x-x0)/dx)) Weighting:
y No weighting Chi^2/DoF = 447、3105 R^2 = 0、99899 A1 36248、66599 ?00072、74652 A2 153、01509 ?4、70971
x0 -43、19376 ?2、47654
dx 22、23472 ?、76792
P
R=Ω
又
R=0、01780、0017ΩP
℃
0、0003
所以℃P ②
比较①、②两种结果,应为第二种更为准确,引起采用线性拟合减小了偶
然误差,故更为准确。
八、思考题
1.如何电桥得灵敏度?
答:要提高电桥灵敏度可选用更精密得电流计,使用更高精度得可变电阻,以此来提高电桥得灵敏度。
2.电桥选择不同得量程时,对结果得准确度(有效数字)有何影响?
答:当电桥选用较大得量程时,电桥得准确度就比较差,即有效数字位数
较少;当电桥选用较小得量程时,电桥得准确度就比较好,即有效数字位
数较多。
3.玻璃温度计得温度示值与实际温度有差异,对实验结果有什么影响?应如何保证所测得温度值准确?
答:温度计得温度示值与实际温度有差异会使实验结果不准确产生较大得
实验误差。
换用较准确得温度计,确保温度值得准确性。
控制好加热电压
使温度在测量点处有更好得控制性,使实验者更为准确快速地在所测温度
处测得数据。