第16章 杂环化合物
第十六章 杂环化合物

双烯合成。
O
OO
=
=
O+
O
△
O 90%
=
=
O 顺丁烯二酸酐
O
吡咯也可以与苯炔、丁炔二酸发生类似的反应
N-H
△
N-H +
C-COOH N-H +
△
C-COOH
N-H -COOH -COOH
噻吩芳香性强不发生反应
3. 吡咯的酸碱性
吡咯表面上 是个仲胺,但实 际上吡咯是一个 很弱的碱,碱性 比苯胺弱得多, 基本可以认为其 无碱性
S
+ (CH3CO)2O
H2PO4 或SnCl4
S
-COCH3 70%
2-乙酰基噻吩
呋喃、噻吩、吡咯进行烷基化反应很难得到一烷基取 代物。
呋喃、噻吩、吡咯亲电取代以α-位为主
2. 加成反应
呋喃、噻吩、吡咯分子中都有一个顺丁二烯型结构, 因此它们又具有不饱和性质:
稳定性增加
共振能
S
N
O
(KJ / mol)152 125.5 90.4 71.1 12.6
① 碱性和亲核性 碱性:叔胺 >> 吡啶 > 吡咯
叔胺
N
pKb: ~ 4
8.8
N
NH2
H
9.37
~ 14
碱性增强
+ HCl N
· Cl -
N+ H 吡啶盐酸盐
吡啶氮原子还可以作为亲核试剂与R-X、Br2等亲电 试剂反应形成吡啶盐
+ Br2 N
· Br N+ Br
② 亲电取代反应
亲电取代反应似硝基苯。
常见芳香性六元杂环化合物(单环、稠环)
第十六章 杂环化合物、生物碱

第十六章杂环化合物、生物碱第十六章杂环化合物、生物碱杂环化合物的定义:在环状有机化合物中,构成环的原子除了碳原子外还含有其他原子,这环状种化合物就叫做杂环化合物(heterocyclic compound)。
除碳以外的其他原子叫做杂原子。
常见的杂原子有:氮、氧、硫。
第一节杂环化合物的分类和命名一、分类按照环的大小和环的数目可分为:五元环单杂环OSN六元环H杂环N苯环与单杂环的稠合杂环(苯并杂环)稠杂环N两个或两个以上单杂环的稠合杂环NNNNH二、命名1、音译法:根据外文译音,选用同音汉字,加“口”字旁表示杂环。
ONS呋喃噻吩furanpyrrole吡咯HthiopheneN吡啶N咪N啶NHpyridinepyrimidineindole吲哚?取代杂环的命名:①杂环的编号从杂原子起依次1,2,3 ……(或:α,β,γ……)。
②如环上不止一个杂原子时,则从O、S、N的顺序依次编号。
③有两个相同杂原子的,应从连有H原子或取代基的开始编号。
④编号时注意杂原子或取代基的位次之和最小。
⑤稠杂环是特定的母体和固定的编号。
4CH354463CH3N3N512NH12C5N32H5S213-甲基吡啶4-甲基咪唑5-乙基噻唑2、根据结构命名:1即根据相应于杂环的碳环来命名,把杂环看作是相应的碳环中的碳原子被杂原子置换而形成的。
例如,吡啶可看作是苯环上一个碳原子被氮原子置换而成的,所以叫做氮杂苯。
NHO 茂(环戊二烯)氮茂S氧茂硫茂NNN苯氮苯1,3-二氮苯第二节一杂五元杂环化合物含有一个杂原子的典型五元杂环是呋喃、噻吩、吡咯。
OSNH一、呋喃、噻吩、吡咯的结构1、据现代物理方法证明:①呋喃、噻吩、吡咯都是一个平面的五元环结构,即成环的四个C原子和一个杂原子都是以SP2杂化轨道成键的。
②环上每个碳原子的P轨道有一个电子,杂原子P轨道上有两个电子。
③ P轨道垂直于五元环的平面,互相侧面重叠而形成一个与苯环相似的闭合共轭体系。
第十六章杂环化合物

第十六章
20
呋喃在镍催化下,加氢可得四氢呋喃。四氢呋喃沸点65.5℃,
是良好的溶剂,也是有机合成的原料。从四氢呋喃可得到己二酸和
己二胺,它们是制造尼龙—66的原料。
第十六章
21
尽管呋喃在温和条件下容易发生亲电取代反应,但由于它的芳
香性较弱,呋喃及其衍生物可以容易地进行Diels—Alder反应和一般
合物。最常见的和最稳定的杂环化合物可分为五元杂环和六元杂环 两大类,在每一类中又根据杂原子种类、数目、单环或稠环等再分 类。
第十六章
4
第十六章
5
第十六章
6
杂环化合物的命名采用英文名称的音译,一般在同音汉字的左
边加一“口”旁。对于含一个杂原子的杂环也可把靠近杂原子的位
置叫做α位,其次为β位和γ位。
沸点162℃。糠醛在醋酸存在下遇苯胺呈亮红色,可用来定性检验 糠醛。糠醛可由农副产品如燕麦壳、玉米芯、棉子壳等原料来制取。 这些原料中含有戊醛糖的高聚物 (戊聚糖)。戊聚糖用盐酸处理后, 先解聚变为戊醛糖,然后再失水而成糠醛。
第十六章
19
糠醛是一个很好的溶剂,也是有机合成的原料。糠醛的化学性
质同苯甲醛类似,例如糠醛与约50%氢氧化钠水溶液作用可生成糠
第十六章
7
16.1.2 结构和芳香性
呋喃、噻吩和吡咯是含一个杂原子的五元杂环化合物,组成环
的五个原子位于同一平面上,彼此以 σ键相连接,每个碳原子还有
一个电子在p轨道上,杂原子的未共用电子对也在p轨道上,这五个 p轨道都垂直于环所在的平面。
第十六章
8
呋喃、吡咯和噻吩的离域能分别为67 kJ· mol-1、88 kJ· mol-1和
高中化学奥赛有机化学教案16--杂环化合物

⾼中化学奥赛有机化学教案16--杂环化合物16--杂环化合物§1. 杂环化合物的分类和命名⼀、杂环⼤体可分为:单杂环和稠杂环两类:1. 分类:稠杂环是由苯环与单杂环或有两个以上单杂环稠并⽽成。
⼆、命名:杂环的命名常⽤⾳译法,是按外⽂名称的⾳译,并加⼝字旁,表⽰为环状化合物。
如杂环上有取代基时,取代基的位次从杂原⼦算起⽤1,2,3,4,5……(或可将杂原⼦旁的碳原⼦依次编为α ,β, γ, δ …)来编号。
如杂环上不⽌⼀个杂原⼦时,则从O,S,N 顺序依次编号,编号时杂原⼦的位次数字之和应最⼩:五元杂环中含有两个杂原⼦的体系叫唑(azole)§2. 呋喃,噻吩,吡咯含有⼀个杂原⼦的五元杂环单环体系:呋喃,噻吩,吡咯。
⼀、呋喃,噻吩,吡咯的电⼦结构和光谱性质电⼦结构:这三个杂环化合物中,碳原⼦和杂原⼦均以sp2杂化轨道互相连接成σ健,并且在⼀个平⾯上,每个碳原⼦及杂原⼦上均有⼀个p轨道互相平⾏,在碳原⼦的p轨道中有⼀个p电⼦,在杂原⼦的p轨道中有两个p电⼦,形成⼀个环形的封闭的π电⼦的共轭体系。
这与休克尔的4n+2规则相符,因此这些杂环或多或少的具有与苯类似的性质,故称之为芳⾹杂环化合物。
芳⾹性⼤⼩,试验结果表明:光谱性质:IR: νc-H = 3077~3003cm-1,νN-H = 3500~3200 cm-1(在⾮极性溶剂的稀溶液中,在3495 cm-1,有⼀尖峰。
在浓溶液中则于3400 cm-1,有⼀尖峰。
在浓和淡的中间浓度时,两种谱带都有),杂环C=C伸缩振动:1600~1300 cm-1(有⼆⾄四个谱带)。
NMR:这些杂环化合物形成封闭的芳⾹封闭体系,与苯环类似,在核磁共振谱上,由于外磁场的作⽤⽽诱导出⼀个绕环转的环电流,此环电流可产⽣⼀个和外界磁场⽅向相反的感应磁场,在环外的质⼦,处在感应磁场回来的磁⼒线上,和外界磁场⽅向⼀致,在去屏蔽区域,故环上氢吸收峰移向低场。
杂环化合物

吡咯 —无色液体,b.p. 130~131℃,有弱的苯胺气味 —松木片反应:遇盐酸浸湿的松木片呈红色
二、吡啶的物理性质
▪ 吡啶为具有特殊臭味的无色液体, b.p. 115.5℃, 密度 0.982, 可与水、乙醇、乙醚任意混合
▪ 化学性质稳定 可作溶剂(碱性)
三、五员杂环化合物的化学性质
1.亲电取代反应 反应活性顺序:吡咯>呋喃>噻吩>苯
(1) 卤化 呋喃、噻吩在温和条件下(如溶剂稀释及低温)反应 可得一卤代产物;
Br2, 0℃
O Br O O
Cl2
O
-40℃
+ O Cl Cl O Cl
80%
吡咯卤化常得四卤化物,唯有2-氯吡咯可直接卤化制
得。
Br
Br
Br N Br H
Br2, 0℃
AcONO2
O
-5~-30℃
HNO3/(CH3CO)2O
N H
H O NO2
N NO2 H
AcOPyridine
S
H
H
AcO O NO2
O NO2 35%
混酸
S NO2
(3)磺化
呋喃、噻吩和吡咯常用较温和的磺化试剂-吡 啶与三氧化硫加合物进行反应
SO3, CH2Cl2
N
r. t.
综上所述,五元、六元杂环化合物虽然都具有芳香性,
但其环上的电子云的密度是不同的,其电子云密度由高到 低的顺序是:
S
N
O
N
H
§16-4 杂环化合物的性质
一、呋喃、噻吩、吡咯的物理性质
▪ 呋喃 ▪ —无色液体,b.p. 31.36℃,有氯仿气味 —松木片反应:遇盐酸浸湿松木片呈绿色
喹啉的结构特征PPT课件

N
300 ℃ / 重排
N
SO31H3
SO3H
13
❖ 2、亲核取代:发生在吡啶环,活性比吡啶高。喹啉 取代主要发生在C-2 位上,异喹啉取代主要发生在 C-1 位上。
NaNH2
N 二甲苯 / 100 ℃
KNH2 / -10 ℃
N 浓NH3 . H142O / 加压
N NH2
N NH2
14
❖3、 氧化还原反应
第二节 五元单杂环化合物 第三节 六元杂环化合物 第四节 苯稠杂环化合物 第五节 稠杂环化合物 第六节 生物碱 第七节 杂环化合物的应用
第四节 苯稠杂环化合物
一、吲哚 二、苯并吡喃 三、喹啉和异喹啉
重点、难点
❖重点: ❖ 1、喹啉的结构特征。 ❖ 2、喹啉的化学性质。 ❖难点: ❖ 1、苯并吡喃的结构特4征。 ❖ 2、喹啉及其衍生物的制备
Na _
N
NH3
Na+
CH3MgI
NH6
乙醚
N MgI
6
2、吲哚为多π芳杂环,亲电取代活性高于苯, 但低于吡咯,反应主要发生在吡咯3(β)位, 而不是在2(α)位。
N=NPh PhN2+Cl_ N H
C6H5COONO2
N7
CH3CN / 0 ℃
H
NO2 N H
7
二、苯并吡喃
❖ 1、香豆素:即苯并α-吡喃酮,具有吡喃环内酯结 构和性质,不稳定,遇到强酸能生成盐、遇碱水解 容易开环。
酮)、硫酸和硝基苯(相应于所用芳胺)等一起反
应,生成喹啉的反应称为斯克劳普反应(Skraup,
Z.H.)N。H2
CH2OH
HO
+ CHOH +
有机化学第十六章杂环
按照英文字母顺序排列取代基,并按照取代基的数目和位置进行编 号。
编号顺序
按照取代基的编号顺序进行编号,取代基的编号越小,优先级越高。
分类方法
1
根据杂环母核的环状结构分类:分为单环、双环 和多环杂环化合物。
2
根据杂环母核中杂原子的种类分类:分为含氧、 含氮、含硫和含磷等杂环化合物。
3
根据杂环母核中碳原子和杂原子的成键情况分类: 分为碳-碳键和碳-杂原子键杂环化合物。
杂环化合物的特点
01
02
03
稳定性
杂环化合物通常比相应的 碳环化合物更加稳定,因 为杂原子可以提供额外的 电子,增加环的稳定性。
芳香性
有些杂环化合物具有芳香 性,其特点是具有特殊的 电子分布和化学性质。
反应性
杂环化合物的反应性取决 于其结构和取代基的性质, 有些杂环化合物容易进行 亲电或亲核反应。
THANKS
感谢观看
随着科学技术的发展,杂环化合物在 未来的应用将更加广泛和深入。
同时,随着人们对环境保护和可持续 发展的重视,开发环境友好型的杂环 化合物合成方法和技术也将成为未来 的重要研究方向。
未来发展的方向包括开发新的杂环化 合物合成方法、研究杂环化合物的生 物活性与作用机制、探索杂环化合物 在其他领域的应用等。
杂环化合物的取代反应机理通常涉及亲核和亲电取代反应。
详细描述
杂环化合物的取代反应机理通常涉及亲核和亲电取代反应。在亲核取代反应中,亲核试剂进攻杂环上 的碳原子,形成负离子中间体;在亲电取代反应中,亲电试剂进攻杂环上的碳原子,形成正离子中间 体。这些中间体可以进一步发生重排或水解,最终形成取代产物。
05
在材料科学中的应用
杂环化合物在材料科学中也有广泛的应用,如高分子材料、功能材料和复合材料等。
第十六章杂环化合物(第三版)
16.1.2 氮原子上的亲电加成
+ RCOX
N
N+ X-
RC O
N-酰基吡啶鎓盐
N+ X-
RC O
HNu
+ HX
N+
R C O-
O
R C Nu + N
Nu
N-酰基吡啶鎓盐是比酰氯和酸酐更好的酰化剂,因吡啶环是一
个良好的离去基团。
Xumiaoqing
Xumiaoqing
Organic Chemistry
144 ℃
C H 3
H 3 C N C H 3 N C H 3 N C H 3 N C H 3H 3 CN C H 3
2,6-二甲基吡啶 2,5-二甲基吡啶 2,4-二甲基吡啶
2,3-二甲基吡啶 2,4,6-三甲基吡啶
沸点: 177℃ 157 ℃ 157℃
163 ℃
170 ℃
Xumiaoqing
Organic Chemistry
(pKa=5.40)都 是 弱 碱 性 ,能 与 酸 生 成 盐 .
16.2.2 化 学 反 应
在强酸性溶液中喹啉和异喹啉的亲电取代都在碳环上进行 ,一 般 生 成 5-位 和 8-位 取 代 物 .例 如 :
16.2.2.1 碳 原 子 上 的 亲 电 取 代 :
Xumiaoqing
H N O 3,H 2S O 4
吡 啶 的 分 子 轨 道 模 型 :
π6 N
ππ
5 4
N
N
HN
2
Sp
π3
p
π2
N
N
π6 6
π1
N
(a)六个原子轨道组成分子轨道
( b) 能级
第十六章 杂环化合物2009级新
N
H
H2, Pt, AcOH, 40℃
H +
N
N H H
N H H
反十氢喹啉
顺十氢喹啉
杂环的合成
1. 吡咯环的合成 ——Knorr(L)合成法 2. 呋喃环和噻吩环的合成 ——Paal-Knorr合成法 汪秋安编, 重要有机化学反应 及机理速查手册, 中国纺织出版社
3. 吡啶环的合成
——Hantzsch(A)合成法 4. 喹啉和异喹啉环的合成
(2) 亲核取代反应
N
N
(3) 氧化反应
喹啉和异喹啉与绝大多数氧化剂不发生反应;与高锰酸钾能 发生反应:
KMnO4 水溶液
HOOC HOOC N
N
100℃
喹啉与异喹啉在过酸的作用下均可形成N-氧化物。
RC O3H
N
N O
RC O3H
N
N
O
(4) 还原反应
H2 / Ni
N
N H
Hg(OAc)2, 130℃ or I2
第十六章
·
N
· ·
· ·
五 中 心 六 电 子
·
· ·
N—H 体系中π 电子数: 4+2=6
吡咯
· ·
·
·
· ·
O 呋喃
· ·
O · ·
· ·
S 噻吩
富 电 子 环
)
(
· · ·
·
S ·
· ·
符合休克 尔4n+2 规则,故 三个杂环 均具有芳 香性
吡咯、呋喃、噻吩小结
具体反应式:P.427/435/436 化学性质:
糠醛的化学性质——无α-H的芳醛。
① 催化加氢 -CHO O ② 氧化 -CHO O
呋喃吡咯噻吩的化学性质
呋喃 噻吩
吡咯
. . . . . . H . . . . . . . . . C . . H C
H
H
C
C
C H HC
H
H
C
C
C H HC
H C
CH
O
S
N
4
H
呋喃环结构 噻吩环结构 吡咯环结构
4
二、呋喃、吡咯、噻吩的一般性质
1、电负性:3.50(O)>3.04(N)> 2.58(S) >2.55(C) 。
第一取代 3(β)-取 代
实例
取代基类型
A Z=O,S,N; A=o, p -位基团
Z
A
Z=O,S,N; A= m -位基团
Z
12
Cl
N
12
第二取代
A B B主要在2-位 Z
A
B
B主要在5-位
Z
SO3H
O
练习题16-3
1、完成下列反应,写出反应主要产物。
1.
O2N
O
CHO + ( CH3CO)2O
A Z=S,N; A=o, p -位基团 Z
A
Z=S,N; A= m -位基团
Z
11
B
A B总是在5-位
O
B
A B主要在5-位
Z
B Z
A B主要在4-位
实例
CHO O
S CH3
11
S NO2
三、单取代呋喃、吡咯、噻吩的定位规律
1、第二取代:主要发生在a位,因为α 位的π电 子密度较大,容易受到亲电试剂进攻。
H
K+
CH3MgX
N H
C2H5OC2H5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H H H O O N N O O H H N H O H
O O2N O CH=N N
呋喃唑酮(痢特灵)
H
H H H H N H
H O
N
H
O
O
H H O H H
O2N
第29页
O
CH= CHCNHCH(CH3)2 O
呋喃丙胺(抗血吸虫药)
HOOCCH2CH2 N H
CH2COOH CH2NH2
卟吩胆色素原:通过生物体内特定酶的作用可转变成 卟啉、叶绿素和维生素B12等重要生物活性物质.
杂环 > 苯环 杂环 < 苯环 杂环 < 苯环 杂环 > 苯环
第18页
(2)五元杂芳化合物的化学性质
结构与性质
呋喃、吡咯和噻吩具有芳香性,容易进行亲电取代反应.
特点: ① 它们的亲电取代反应都比苯活泼(吡咯>呋 喃>噻吩>苯),其活泼性同苯酚、苯胺相似。
亲电反应活性次序
吡咯 > 溴化反应 相对速率 3×1018 呋喃 6×10 11 > 噻吩 5×10 9 >> 苯 1
+ H2
Pt , 25℃ CH3COOH 95%
N
(e)氧化反应
N H 哌啶(有机碱催化剂、环 氧树脂的固化剂)
NO2
吡啶与过氧化氢作用生成吡啶–N–氧化物:
NO2
PCl3,CHCl3 △ H2O2,AcOH 65℃ HNO3,H2SO4 90℃
N
N O
N O
N
4–硝基吡啶 (80%)
第40页
吡啶–N–氧化物 (95%)
CH2COOH N H
3-吲哚乙酸(植物生长促进剂)
第30页
OH N C 2H 5 N H H3COOC H3CO N R HO H N C 2H 5 OCOCH3 COOCH3
长春碱(R=CH3);长春新碱(R=CHO); 抗癌药
第31页
H3C N
N
NH2 Cl N + CH2
S CH2CH2OH CH3
给电子共轭效应: N > O > S
第19页
由于它们的高度活泼性以及呋喃和吡咯对于 无机强酸的敏感性,其亲电取代反应需要比较温 和的条件。
②亲电取代反应的位臵:在α位
进攻 2 位
E X
X=O,S,NH
第20页
X
进攻 3 位
E H
E H
中间体稳定
X
(A)呋喃 亲电取代反应:
Br2
二氧六环
H
H
O CH3COONO2 低温
第14页
•键长:有平均化的倾向。
呋喃、噻吩、吡咯及环戊二烯的键长/nm X-C1(单键) C2-C3 C3-C4
X
X=O,S, NH,CH2
呋喃 0.1362(0.143) 噻吩 0.1714(0.182) 吡咯 0.1370(0.147) 环戊二烯 0.1502
C C C C
0.1361 0.1370 0.1382 0.1341
4–硝基吡啶–N–氧化物 (90%)
+
γ–甲基吡啶
α–甲基吡啶
N
(b)亲电取代反应
H
H
H
活性: 由于氮原子的吸电子诱导效应,吡啶环上 的电子云密度较低,其亲电取代反应与硝基苯 类似,一般需要强烈条件。
H N
H
位臵:主要发生在β-位.
进攻α 位
δ
N有较大电负 性,6电子N 不稳定的 不稳定。 极限结构
E H E H N N E H E H
N
N
N H
偶极矩/C· 7.5 ×10–30 6.1 ×10–30 m:
第33页
吡啶电子结构与吡咯不同:
N H
激发态进行sp2杂化
N
基态进行sp2杂化
第34页
H
(B)吡啶化学性质
(a)氮原子上的反应
H
H
H
N
H
碱性:吡啶氮原子上的未共用电子对不参与π-体系,
这对电子可与质子结合,因此吡啶的碱性较吡咯强, 也比苯胺略强。
H O O
浓NaOH 氧化还原 Cannizarro反应
O CHO
① KMnO4 ②H
O
COOH
O
CH2OH
O
O
COOH
ZnO Cr2O3 MnO2 400℃
第26页
(3)呋喃、噻吩、吡咯、糠醛的制备
Paal–Knorr(帕尔-诺尔)合成法:
γ –二羰基化合物在酸催化下脱水或与氨或硫化物作用
TsOH 甲苯,△
γ
β ' α '
第11页
4
3
β α
β ' α '
5 1 2
O
3 5 6 1 2
4
β α
N
§16.2
五元杂环化合物
(1)呋喃、吡咯和噻吩的结构 (A)符合Huckel规则具有芳香性 符合Huckel规则:
O
S
N H
构成环的原子都是sp2杂化,五个原子在同一平面内。
每个碳原子的p轨道有一个电子,杂原子的p轨道有 二个电子。这五个p轨道都垂直于分子所在平面,侧面 相互交盖,形成(4n+2)π电子共轭体系。
R C2H5
CH3 H
C OO OCH3
叶绿素a (R=CH3)
叶绿素b (R=CHO)
CH3 CH3 R'=(CH3)2CHCH2CH2(CH2CHCH2CH2)CH2C=C CH2
第5页
§16.1 杂环化合物的分类和命名
杂环 非芳香性杂环 芳香性杂环
O O
O N H N
(1)非芳香性杂环
O
N H N H
N SO3
Br
H O
H
O
O
NO2
O
SO3H
(CH3CO)2O BF3
O
第21页
O CCH3
催化加氢:
H2,Ni
H
H
O
催化加氢
O
H O
H
O
HCl Cl(CH2)4Cl NaCN 140 ℃ , 0.4MPa
H 2O
NC(CH2)4CN
HOOC(CH2)4COOH
H2N(CH2)6NH2
制造尼龙66的原料
苯并呋喃 Benzofuran
N O
苯并噁唑 Benzoxazole
第9页
N S
苯并噻唑 Benzothiazole
N N H 苯并咪唑 Benzoimidazole
芳香性六元杂环化合物:
5 6 4 3
N
N
7 8 1
N2
吡啶 Pyridine
喹啉 Quinoline
N
异喹啉 Isoquinoline
第23页
(B)噻吩
Cl2
S
Cl
Cl
S
Cl
亲电加成 H2SO4
室温
S
煤焦油中提取的 苯含0.5% 噻吩。 SO3H 这是制取无噻吩 苯的一种方法
S O CCH3
H H
S
(CH3CO)2O H3PO4
H2,Ni
催化加氢
S
H S
H
第24页
(C)吡咯
碱性极弱
NH2 N H< < NH3
酸碱性 因为氮原子上未公用电子对参与了共轭体系。
第十六章 杂环化合物
第1页
第十六章 杂环化合物
Chapter 16 Hethocyclic compoud
§16.1 杂环化合物的分类和命名 §16.2 五元杂环化合物 §16.3 六元杂环化合物
§16.4 生物碱简介
第2页
构成环的原子除碳原子外还有O、S、N、P等杂原 子的一类环状化合物称为杂环化合物。 杂环化合物在现实生活中的地位极其重要: 90%以上药物和60%以上的有机化合物为杂环化合物; 碳水化合物(它为生命提供能量); 叶绿素(它为植物提供绿色); 血红素(它赋予血液以鲜红的颜色)都是杂环化合物。 核酸中的杂环(嘧啶和嘌呤)部分对DNA的复制起 着至关重要的作用并使生命得以代代相传。 杂环化合物通常是酶和辅酶中催化生化反应的活 性部位。 正是由于其存在,自然万物才有了勃勃生机。
第12页
N H
H
H N H
参与大π键生成 H 的p轨道中的电子
H
sp2 –杂化
吡咯的轨道结构
第13页
具有芳香性:
•有较高的离域能,具特殊的稳定性。
•易发生亲电取代反应。
•环上质子受离域电子环流去屏蔽效应影响出现在 低场。
δ6.24 δ6.99 δ6.22 δ6.68
O δ7.29
S δ7.18
N H
<
S
<
三种杂环具有一定程度的芳香性,杂原 子电负性大小:
O (3.5) > N (3.0) > S (2.5)
电负性 , 对外层电子吸引力 , 孤电子离域 , 故芳香性 。
芳香性与稳定性:
> S > N H > O
第17页
由于呋喃、噻吩、吡咯都是五中心六电子, 属于富电子环
π电子密度: 稳 定 性: 芳 香 性 Nhomakorabea 反 应 活 性:
第3页
O R S H3C N H O O
O NH NH2 O N H H S
CH3
1993年被发现 OH 的一种高效抗 H3C 癌物质 H3C CH3
OH Epothilone A(R=H) ; B(R=CH3) O CH3
·H2O
CH3 COOH
头孢氨苄(先锋霉素IV)
第4页
CH=CH2 H3C N Mg H H3C R' OOCCH2CH2 H N N N