高考数学复习训练:解析几何100道经典大题(含答案)高中生打印

合集下载

高中数学解析几何测试题(答案版)

高中数学解析几何测试题(答案版)

高中数学解析几何测试题(答案版)高中数学解析几何测试题(答案版)第一部分:平面解析几何1. 已知平面P1:2x + 3y - 4 = 0和平面P2:5x - 7y + 2z + 6 = 0,求平面P1和平面P2的夹角。

解析:首先,我们需要根据平面的一般式方程确定法向量。

对于平面P1,法向量为(n1, n2, n3) = (2, 3, 0),对于平面P2,法向量为(n4, n5,n6) = (5, -7, 2)。

根据向量的内积公式,平面P1和平面P2的夹角θ可以通过以下公式计算:cosθ = (n1 * n4 + n2 * n5 + n3 * n6) / √[(n1^2 + n2^2 + n3^2) * (n4^2 + n5^2 + n6^2)]代入数值计算,得到cosθ ≈ 0.760,因此夹角θ ≈ 40.985°。

2. 已知四边形ABCD的顶点坐标为A(1, 2, 3),B(4, 5, 6),C(7, 8, 9)和D(10, 11, 12),判断四边形ABCD是否为平行四边形,并说明理由。

解析:要判断四边形ABCD是否为平行四边形,我们需要比较四边形的对角线的斜率。

四边形ABCD的对角线分别为AC和BD。

根据两点间距离公式,我们可以计算出AC的长度为√99,BD的长度为√99。

同时,我们还需要计算坐标向量AC = (6, 6, 6)和坐标向量BD = (9, 9, 9)。

由于AC和BD的长度相等,且坐标向量AC与坐标向量BD的比值为1∶1∶1,因此四边形ABCD是一个平行四边形。

第二部分:空间解析几何3. 已知直线L1:(x - 1) / 2 = y / 3 = (z + 2) / -1和直线L2:(x - 4) / 3= (y - 2) / 1 = (z + 6) / 2,判断直线L1和直线L2是否相交,并说明理由。

解析:为了判断直线L1和直线L2是否相交,我们可以通过解方程组的方法来求解交点。

高中数学解析几何大题(附有答案及详解)

高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。

高中数学解析几何复习 题集附答案

高中数学解析几何复习 题集附答案

高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。

直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

下面我们通过一些例题来复习直线的方程的求解方法。

例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。

解析:首先我们可以求出直线L1的斜率k。

直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。

例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。

解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。

直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。

再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。

二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。

我们可以通过直线的方程和平面的方程来求解交点的坐标。

下面我们通过一些例题来复习直线和平面交点的求解方法。

例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。

解析几何大题精选题-共四套(答案)

解析几何大题精选题-共四套(答案)

解析几何大题精选题-共四套(答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率;(II) 如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。

【优质文档】高考解析几何(含详细答案)

【优质文档】高考解析几何(含详细答案)

4,b
23
x2 y2
椭圆 E 的方程为
1
16 12
( 2 )方法 1:由( 1 )问得 F1( 2, 0) , F2(2,0) ,又 A 2, 3 ,易得 F1AF2 为直角三角形,其中
AF2 3, F1F2 4, AF1 5,
设 F1AF2 的角平分线所在直线 l 与 x 轴交于点 M ,根据角平线定理可知: AF1
( 1)求椭圆和双曲线的标准方程;
( 2)设直线 PF1、 PF2 的斜率分别为 k1 、 k2 ,证明 k1·k2 1 ;
( 3)是否存在常数 ,使得 AB CD
AB ·CD 恒成立?
若存在,求 的值;若不存在,请说明理由 .
名师精编
欢迎下载
考点 4:圆锥曲线综合问题
例 4:( 2010·江苏高考·T1 8) 在平面直角坐标系 xoy 中,如图,已知椭圆 x2 9
2, x2
1
,求点 T 的坐标;
3
( 3)设 t 9 , 求证:直线 MN必过 x 轴上的一定点(其坐标与
m无关)。
名师精编
欢迎下载
详细解答
例 1( 1
1( a b 0 ),
由题意 e
c a
14 2 , a2
9 b2
1 ,又
c2
a2
b 2 ,解得: c
2, a
AF2 ,可得 F2M
3

F1M F2M
2
1 M ( ,0)
2
y0 直线 l 的方程为:
30
1 x
2 ,即 y 1 2 2
2x 1。
方法 2:由( 1)问得 F1( 2,0) , F2 (2,0) ,又 A 2,3 ,

高中数学解析几何深度练习题及答案

高中数学解析几何深度练习题及答案

高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。

解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。

因此,三角形ABC为等腰三角形。

题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。

解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。

由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。

即 k * (-3/k) = -1。

解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。

题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。

解答:由于L1与L2垂直,它们的斜率之积为 -1。

L1的斜率为 -4/3,所以L2的斜率为 3/4。

通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。

2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。

解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。

高中数学解析几何训练题(带答案)

高中数学解析几何训练题(带答案)试卷分析高中数学习题精选第三部分解析几何一、选择题:1、直线的倾斜角是______。

A. B. C. D.2、直线m、l关于直线_ = y对称,若l的方程为,则m的方程为_____。

A. B. C. D.3、已知平面内有一长为4的定线段AB,动点P满足|PA||PB|=3,O为AB中点,则|OP|的最小值为______。

A.1 B. C.2 D.34、点P分有向线段成定比,若,则所对应的点P的集合是___。

A.线段 B.线段的延长线 C.射线 D.线段的反向延长线5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。

A.150 B.135 C.75 D.456、经过点A 且与直线垂直的直线为______。

A. B. C. D.7、经过点且与直线所成角为30的直线方程为______。

A. B.或C. D.或8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。

A. B. C. D.9、两不重合直线和相互平行的条件是______。

A. B.或 C. D.10、过且倾斜角为15的直线方程为______。

A. B. C. D.11、a = 1是直线和互相垂直的___。

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也非必要条件12、与曲线关于直线对称的曲线方程是______。

A. B. C. D.13、曲线关于点对称的曲线的方程是______。

A. B. C. D.14、实数a = 0是和平行的______A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也非必要条件15、已知m和n的斜率分别是方程的两根,则m和n所成角为______。

A.15 B.30 C.45 D.6016、直线的倾斜角为______。

A. B. C. D.17、a为非负实数,直线不通过的象限是______。

高中数学高考总复习---解析几何综合问题巩固练习题(含答案解析)


2
b
(a)
2
(b)
2ab ab
.
【巩固练习】 1.(2016 浦东新区一模)方程 kx2+4y2=4k 表示焦点在 x 轴的椭圆,则实数 k 的取值范围是 () A.k>4 B.k=4 C.k<4 D.0<k<4
2.若过点 A(4, 0) 的直线 l 与曲线 (x 2)2 y2 1有公共点,则直线 l 的斜率的取值范
16.已知函数 f(x) x ,g(x)=alnx,a R.
(Ⅰ)若曲线 y=f(x)与曲线 y=g(x)相交,且在交点处有共同的切线,求 a 的值和该切 线方程;
(Ⅱ)设函数 h(x)=f(x)-g(x),当 h(x)存在最小值时,求其最小值 (a)的解析式;
(Ⅲ)对(Ⅱ)中的(a) 和任意的 a>0,b>0,证明:
方程为( )
A.5x+12y+20=0
B. 5x+12y+20=0 或 x+4=0
C.5x-12y+20=0
D. 5x-12y+20=0 或 x+4=0
3.设曲线
C
的参数方程为
x y
2 3cos 1 3sin
(
为参数),直线
l
的方程为
x
3y
2
0

则曲线 C 上到直线 l 距离为 7 10 的点的个数为 10
高中数学高考总复习---解析几何综合问题巩固
练习题(含答案解析)
【巩固练习】 1.曲线 y x 在点 (1, 1) 处的切线方程为 x2
A. y 2x 1
B. y 2x 1
C. y 2x 3
D. y 2x 2
2.过点(-4,0)作直线 l 与圆 x2+y2+2x-4y-20=0 交于 A,B 两点,如果|AB|=8,则 l 的

高考数学——解析几何专题经典试题练习及解析

1 / 21高考数学解析几何专题经典试题练习及解析1、已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1)(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足、证明:存在定点Q ,使得|DQ |为定值【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,① 当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m kmkm k m k k-⎛⎫++---+-+= ⎪++⎝⎭,2 / 21整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫-⎪⎝⎭,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,3 / 21所以AE 中点Q 满足QD 为定值(AE=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 2、已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点、求直线AB 的方程、【答案】(Ⅰ)221189x y +=;(Ⅰ)132y x =-,或3y x =-、 【解析】(Ⅰ)椭圆()222210x y a b a b +=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,4 / 21设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 3、已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =(Ⅰ)求椭圆C 的方程:5 / 21(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 、求||||PB BQ 的值【解析】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.6 / 21很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 4、已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.7 / 21所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==,由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:11825⨯=.5、如下图已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1C与抛物线2C的交点,过点A的直线l交椭圆1C于点B,交抛物线2C于M(B,M不同于A)(Ⅰ)若116=p,求抛物线2C的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值、【答案】(Ⅰ)1(,0)32;【解析】(Ⅰ)当116=p时,2C的方程为218y x=,故抛物线2C的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x yB x y M x y I x y mλ=+,8/ 219 / 21由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,40p ≤, 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .10 / 21将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p模拟试题1、在平面直角坐标系中,曲线Γ:0(),F x y =和函数21()4f x x =的图像关于点(1,2)对称. (1)函数21()4f x x =的图像和直线4y k x =⋅+交于A 、B两点,O 是坐标原点,求证:2AOB π∠=; (2)求曲线Γ的方程;(3)对于(2),依据课本章节《圆锥曲线》的抛物线的定义,求证:曲线Γ为抛物线.【解析】(1)设()()1122,,A B x y x y ,,由2144y x y kx ⎧=⎪⎨⎪=+⎩得24160x kx --=,则1212+4,16x x k x x =⋅=-, 又1212+OA OB x x y y ⋅=⋅⋅ ()()22112121222211++16+160441616x x x x x x x x =⋅⋅=⋅⋅=-⨯-=,11 / 21所以OA OB ⊥,所以2AOB π∠=;(2)设曲线Γ:0(),F x y =上任意一点(),P x y ,点P 关于点(1,2)对称的点()111,P x y ,则1124x xy y =-⎧⎨=-⎩,代入到214y x =中得()21424y x -=-, 所以曲线Γ的方程是2134y x x =-++;(3)设曲线Γ:0(),F x y =上任意一点(),P x y ,则满足2134y x x =-++,设点()2,3F ,直线:5l y =,则()()22223PFx y =-+-()()22222211233244x x x x x x ⎛⎫⎛⎫=-+-++-=-+-+ ⎪ ⎪⎝⎭⎝⎭()2222251123544x x x x y ⎛⎫⎛⎫=-+=-++-= ⎪ ⎪⎝⎭-⎝⎭,所以曲线Γ:0(),F x y =上任意一点P 到点()2,3F 的距离与到直线:5l y =的距离相等,根据抛物线的定义得到曲线Γ为抛物线.2、点P 是直线2y =-上的动点,过点P 的直线1l 、2l 与抛物线2y x 相切,切点分别是A 、B .(1)证明:直线AB 过定点;(2)以AB 为直径的圆过点()2,1M ,求点P 的坐标及圆的方程. 【解析】(1)设点()11,A x y 、()22,B x y 、(),2P b -,对函数2yx 求导得2y x '=,所以,直线1l 的方程为()1112y y x x x -=-,即1120x x y y --=,同理可得直线2l 的方程为2220x x y y --=,12 / 21将点P 的坐标代入直线1l 、2l 的方程得1122220220bx y bx y -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程220bx y -+=,由于两点确定一条直线,所以,直线AB 的方程为220bx y -+=,该直线过定点()0,2; (2)设直线AB 的方程为()22y kx k b =+=,将直线AB 的方程与抛物线的方程联立得220x kx --=,则240k ∆=+>,由韦达定理得122x x =-,12x x k +=,因为()2,1M 在AB 为直径的圆上,所以0MA MB ⋅=,()()11112,12,1MA x y x kx =--=-+,同理()222,1MB x kx =-+,()()()()()()()21212121222111250MA MB x x kx kx k x x k x x ∴⋅=--+++=++-++=,即2230k k +-=,解得1k =或3k =-.当1k =时,1,22P ⎛⎫-⎪⎝⎭,直线AB 的方程为2y x =+,圆心为15,22⎛⎫⎪⎝⎭,半径2r ==,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭; 当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,直线AB 的方程为32y x =-+,圆心为313,22⎛⎫- ⎪⎝⎭,半径r ==2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 综上所述,当1k =时,1,22P ⎛⎫- ⎪⎝⎭,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;13 / 21当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,圆的标准方程为2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭.3、设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A 、B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆S(1)求圆心C 的轨迹方程,并描述轨迹的图形; (2)若圆S 经过原点,求直线l 的方程;(3)证明:圆S 内含或内切于圆223x y +=.【答案】(1)圆心C的轨迹方程为1233y x x ⎛⎫=--<< ⎪ ⎪⎝⎭,轨迹为线段;(2)3y x =±;(3) 【解析】(1)设斜率为1的动直线l 的方程为y x t =+,联立椭圆方程2222x y +=,可得2234220x tx t ++-=,设()11,A x y 、()22,B x y ,则()2221612222480t t t ∆=--=->,即t <<由韦达定理得1243t x x +=-,212223t x x -=,则中点2,33t t C ⎛⎫- ⎪⎝⎭,可得圆心C的轨迹方程为12y x x ⎛=-<< ⎝⎭,即轨迹为线段; (2)由(1)可得AB ===可得圆S 的方程为2222124339t t t x y -⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,若圆S 经过原点,可得()2243599t t -=,解得3t =±,14 / 21因此,直线l的方程为y x =±; (3)圆223x y +=的圆心设为()0,0O圆S 的圆心2,33t t S ⎛⎫-⎪⎝⎭由222225124133393933t t OS t ⎫⎛⎫--=--+=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,()03m m =<<,则2293m t -=,可得()2222941312033333m m OS m ⎫--=+-=--≤⎪⎪⎝⎭, 可得圆S 内含或内切于圆223x y +=.4、在平面直角坐标系xOy 中,抛物线C 关于x 轴对称,顶点为坐标原点,且经过点()2,2 (1)求抛物线C 的标准方程;(2)过点()1,0Q 的直线交抛物线于M 、N 两点,P 点是直线:1l x =-上任意一点.证明:直线PM PQ PN 、、的斜率依次成等差数列.【解析】(1)由条件设抛物线为22y px =,而点()2,2在抛物线上,从而有2222p =⨯,得1p =,故抛物线方程为22y x =;(2)设点()1,P t -是直线l 上任意一点,15 / 21由条件知直线MN 的斜率不等于0,设:1MN x my =+交抛物线于()()1122,,M x y N x y 、,由212x my y x=+⎧⎨=⎩可得:2220y my --= 从而有12122,2y y m y y +==-1212112PM PN PQ y t y t tk k k x x --===-++,, 121211PM PN y t y tk k x x --+=+++ ()()()12122121222424my y tm y y tm y y m y y +-+-=+++222424tm t t m --==-+, 而2PQ k t =-,即证2PM PN PQ k k k +=. 即证直线PM ,PQ ,PN 的斜率成等差数列.5、已知椭圆C :22221x y a b +=(0a b >>)的离心率是2,原点到直线1x y a b +=的距离等于3. (1)求椭圆C 的标准方程.(2)已知点()0,3Q ,若椭圆C 上总存在两个点,A B 关于直线y x m =+对称,且328QA QB ⋅<,求实数m 的取值范围【答案】(1)22142x y+=;(2)13⎛⎫⎪⎪⎝⎭,.【解析】(1)因为椭圆的离心率是2,原点到直线1x ya b+=的距离等于3,所以=⎪⎪⎨=,解得224,2a b==,所以椭圆C的标准方程为22142x y+=、(2)根据题意可设直线AB的方程为y x n=-+,联立22142y x nx y=-+⎧⎪⎨+=⎪⎩,整理得22342(2)0x nx n-+-=,由22(4)432(2)0n n=--⨯⨯->△,得26n<、设1122(),(,)A x x nB x x n-+-+,,则()21212224,33nnx x x x-+==又设AB的中点为00()M x x n-+,,则12002,233x x n nx x n+==-+=.由于点M在直线y x m=+上,所以233n nm=+,得3n m=-代入26n<,得296m<,所以m<<,因为1122(,3),(,3)QA x x n QB x x n=-+-=-+-,所以212122(3)()(3)QA QB x x n x x n⋅=--++-2224(2)4(3)3619(3)333n n n n nn---+=-+-=.由328QA QB⋅<,得2361928n n-+<,即13n-<<,所以133m-<-<,即113m-<<,16/ 2117 / 21所以113m m ⎧<<⎪⎪⎨⎪-<<⎪⎩,解得13m <<.实数m的取值范围为133⎛⎫- ⎪ ⎪⎝⎭,. 6、椭圆2222:1(0)x y C a b a b +=>>F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =. (1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆上的动点,且点P 与点A ,B 不重合,直线PA 与直线3x =相交于点S ,直线PB 与直线3x =相交于点T ,求证:以线段ST 为直径的圆恒过定点.【答案】(1)2214x y +=;(2)证明见解析. 【解析】(1)由题意,离心率为c e a ==,右焦点为(),0F c ,将x c =代入22221x y a b +=,可得2b y a=±;又过椭圆右焦点F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =,所以21||2b MF a ==,联立2212c a b a ⎧==⎪⎪⎨⎪=⎪⎩解得:2a =,1b =,18 / 21所以椭圆C 的标准方程为2214x y +=;(2)证明:由(1)知()2,0A -,()2,0B ,设直线AP 的斜率为k ,则直线AP 的方程为(2)y k x =+, 联立3x =得()3,5S k ;设()00,P x y 代入椭圆的方程有:()22000124x y x +=≠±整理得:()220144y x =--,故2020144y x =--, 又002y k x =+,002y k x '=-(k ,k '分别为直线PA ,PB 的斜率) 所以2020144y kk x '==--, 所以直线PB 的方程为:1(2)4y x k =--,联立3x =得13,4T k ⎛⎫ ⎪-⎝⎭, 所以以ST 为直径的圆的方程为:2225151(3)2828k k x y k k ⎡⎤⎛⎫⎛⎫-+--=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令0y =,解得:3x =±, 所以以线段ST为直径的圆恒过定点3⎛⎫± ⎪ ⎪⎝⎭. 7、已知定点()1,0M -,圆()22:116N x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于19 / 21点P ,记P 的轨迹为曲线C (1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A 、B 和点D 、E ,求四边形ABDE 面积的最大值.【答案】(1)22143x y +=;(2)6. 【解析】(1)由中垂线的性质得PM PQ =,42MP NP PQ NP MN ∴+=+=>=, 所以,动点P 的轨迹是以M 、N 为焦点,长轴长为4的椭圆,设曲线C 的方程为()222210x y a b a b +=>>,则2a =,b =,因此,曲线C 的方程为:22143x y +=;(2)由题意,可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩, 设()11,D x y 、()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以()2212134t DE t +===+,20 / 21同理()2212134t AB t +=+,1l 与2l的距离为d =所以,四边形ABDE的面积为24S =,u =,则1u ≥,得224241313u S u u u==++,由双勾函数的单调性可知,函数13y u u=+在[)1,+∞上为增函数, 所以,函数2413S u u=+在[)1,+∞上为减函数, 当且仅当1u =,即0t =时,四边形ABDE 的面积取最大值为6.8、已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,M 为椭圆上任意一点,当1260F MF ∠=︒时,12F MF △2b =(1)求椭圆C 的方程;(2)设O 为坐标原点,过椭圆C 内的一点()0,t 作斜率为k 的直线l 与椭圆C 交于A ,B 两点,直线OA ,OB 的斜率分别为1k ,2k ,若对任意实数k ,存在实数m ,使得124k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)设1MF m =,2MF n =,则2m n a +=,在12MF F △中,1sin 602S mn =︒=4mn =, 由余弦定理可得2222cos604m n mn c +-︒=,即()2234m n mn c +-=,21 / 21代入计算可得223a c -=,23b ∴=,又2b =,2a ∴=,则椭圆C 的方程为22143x y +=; (2)设直线l 的方程为y kx t =+, 由22143y kx t x y =+⎧⎪⎨+=⎪⎩,得()2223484120k x ktx t +++-=, 设()11,A x y ,()22,B x y , 则122834kt x x k +=-+,212241234t x x k-=+. ()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--. 由124k k mk +=对任意k 成立,得()221223t m t =--, ()23212m t m -∴=, 又()0,t 在椭圆内部,203t ∴<<, 即()321032m m-<<,解得12m >. m ∴的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以今天给同学们整理了一份高中数学几何的题库大全,包含解析,一共79页,希望同学们可以认真做题,认真复习。家长也可以给孩子打印下来。
篇幅有限,仅为部分资料。但,可免费领取电子版。
所以今天给同学们整理了一份高中数学几何的题库大全包含解析一共79页希望同学们可以认真做题认真复习
高考数学复习训练:解析几何100道经典大题(含答案)高中生打印
几何是高中数学最常考的考点之一,用代数的方法解决几何问题,难度பைடு நூலகம்用我说,大家都知道怎么回事。在几何的学习中,重点是用“数形结合”的思想把几何转化为代数问题。
相关文档
最新文档