《点集拓扑学》期末复习
点集拓扑

一、基 1.定义 定义
B ⊂ T , B 为拓扑空间( X , T )的一个基
⇔ ∀U ∈T , ∃B1 ⊂ B , 使得U = ∪
def A∈
B1
A
2.基的判定 基的判定
(1)
设 B ⊂T ,则B 是X的基 ⇔ ∀x ∈ X , ∀U x ∈ x , U ∃V x ∈B ,使得x ∈V x ⊂ U x .
2.邻域基、邻域子基与连续映射 •定理2.6.6 设X和Y是两个拓扑空间,f:X→Y, x∈X.则以下条件等价: (1)f在点x处连续; (2)f(x)有一个邻域基ψ f ( x ) ,使得对于 任何V∈ψ f ( x ) 原象 f −1(V)是x的一个邻域; (3)f(x)有一个邻域子基 ψ f ( x ),使得对于
定理2.7.4 定理2.7.4 设 ( X , ρ ) 是一个度量
{ 空间, 中的一个序列, 空间, xi }i∈Z + 是 X 中的一个序列,
x∈X,则以下条件等价: ∈ ,则以下条件等价: (1) 序列 {xi }i∈Z+ 收敛于 ; 收敛于x; (2) 对任意 (3)
ε >0
使得当 i > N 时
ψ x (⊂ U x )称为x的领域基
⇔ ∀U ∈U x , ∃V ∈ψ x , 使得V ⊂ U ,
def
2.定理2.6.7 2.定理2.6.7 设X是一个拓扑空间,x∈X.则 定理 如果B是X的一个基,则
Bx ={B∈B | x∈B} 是点x的一个邻域基;
四、基、子基与连续映射 1.定理 1.定理 2.6.5 设 X和Y是两个拓扑空间,f: X→Y. 则以下条件等价: (l)f连续; (2)拓扑空间Y有一个基B,使得对于任何 f −1 一个B∈B, (B)是X中的一个开集; (3)Y有一个子基 ϕ , 使得对于任何一个 ϕ 原象 f −1(S)是X中的一个开集. S∈
点集拓扑学期末复习材料

第五章相关可数性的公义① 几种可数性的关系定理每一个知足第二可数性公义的空间都知足第一可数性公义。
证明:设 X 是一个知足第二可数性公义的空间,Β是它的一个可数基。
对于每一个x∈ X,依据定理,B x={B∈B | x∈B}是点x处的一个邻域基,它是 B 的一个子族所以是可数族.于是X 在点 x 处有可数邻域基B x.定理每一个知足第二可数性公义的空间都是可分空间.证明:设 X 是一个知足第二可数性公义的空间, B 是它的一个可数基.在 B 中的每一个非空元素 B 中随意取定一个点x B B .令 D= x B| B B | B这是一个可数集.因为 X 中的每一个非空开集都可以表示为 B 中若干个元素(其中自然起码会有一个不是空集)之并,所以这个非空开集必定与 D 有非空的交,所以可数集 D 是 X 的一个浓密子集.定理( Lindel?ff 定理)任何一个知足第二可数性公义的空间都是Lindel?ff 空间.② 可数性的定义定义一个拓扑空间假如有一个可数基,则称这个拓扑空间是一个知足第二可数性公义的空间,或简称为 A2空间。
定义一个拓扑空间假如在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个知足第一可数性公义的空间或简称为A1空间。
定义设 X 是一个拓扑空间,D X .假如D X ,则称D是X的一个浓密子集.定义设 X 是一个拓扑空间,假如X 中有一个可数的浓密子集,则称 X 是一个可分空间.定义设 A 是一个集族, B 是一个会合.假如A A B 则称集族A是会合B的一个覆而且当 A 是可数族或有限族时,分别称集族 A 是会合 B 的一个可数覆盖或有限覆盖.设集族 A 是会合 B 的一个覆盖.假如集族 A 的一个子族A1 也是会合 B 的覆盖,则称集族A1 是覆盖 A(对于会合B)的一个子覆盖.设 X 是一个拓扑空间.假如由X 中开(闭)子集组成的集族 A 是 X 的子集 B 的一个覆盖,则称集族 A 是会合 B 的一个开(闭)覆盖.定义设X是一个拓扑空间.假如X 的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X 是一个 Lindel ?ff 空间.③ 可数性与序列定理设 X 是一个拓扑空间.假如在 x∈ X 处有一个可数邻域基,则在点 x 处有一个可数邻域基Ui i Z使得对于任何 i Z有 U i U i 1,即U 1 U 2 ......U i...定理设 X 是一个知足第一可数性公义的空间, A X .则点x∈X是会合A的一个凝集点的充足必需条件是在会合A-{x}中有一个序列收敛于x.④ 性质Ⅰ. 拓扑不变性定理设X和Y是两个拓扑空间,f: X→ Y 是一个满的连续开映照.假如X 知足第二可数性公理(知足第一可数性公义),则y也知足第二可数性公义(知足第一可数性公义).Ⅱ. 遗传性定理知足第二可数性公义(知足第一可数性公义)的空间的任何一个子空间是知足第二可数性公义(知足第一可数性公义)的空间.定理Lindeloff 空间的每一个闭子空间都是Lindeloff 空间。
拓扑学复习

定理:设X是一个集合,B 是X的一个子集族, 若满足(1) B X
B B
(2)如果B1,B2∈B ,x∈ B1∩B2,那么存在B3 ∈B , 使得x∈ B3 B1∩B2 则X存在唯一拓扑T ,使得 B为T的基。 注:① 称T 为由B 生成的拓扑; ② 反之,X的基必满足以上(1)和(2); 定理:设X是一个集合,S 是X的一个子集族, 若满足 S X 则X存在唯一拓扑T 以S为子基。 SS (例)
2、特殊集合与特殊点 设(X, T )为拓扑空间,A X,x∈ X, 1)邻域、邻域系 A称为点x的邻域 存在V ∈ T ,使得x∈ V A x的所有邻域构成的集族称为点x的邻域系,记为Ux (开邻域) 2)内点、内部 x称为A的内点 存在V ∈ T ,使得x∈ V A A的所有内点构成的集合称为A的内部,记为A0 U ∈Ux使得U∩(A-{x})≠ 3) x称为A的凝聚点 A的所有凝聚点构成的集合称为A的导集,记为d(A) 4)闭包 A∪ d(A)称为A的闭包,记为 A U ∈Ux使得U∩A≠ 注意:(闭包点的充要条件)x∈ A 5) 边界点、边界 x称为A的边界点 U∈Ux使得U∩A≠ 且U∩ A≠ A的所边界点构成的集合称为A的边界,记为 ( A)
性、对称性和三角不等式, 则称是X的一个度量. (X, )称为度量空间, (x, y)表示两点x, y之间的 距离.
例 实数空间R. (x,y)=|x-y|,
R的通常度量.
(2)定义 设(X, )是度量空间. B(x, )={yX | (x, y)<} 称为以x为心, 为半径的球形邻域. (3)定义 X的子集A称为(X, )的开集, 若aA, ε>0, 使B(a, ε)A. 注:每一球形邻域是开集. 实数空间 R中的开区间是开集.
点集拓扑知识点总结

一、点集拓扑学的基本概念1. 拓扑空间的概念拓扑空间是点集拓扑学中的一个基本概念,它是一个具有一定性质的集合,其定义是一个集合X,以及X的子集族T,称为X上的一个拓扑结构,满足以下条件:(1)空集和全集都属于T(2)任意两个元素的交集属于T(3)任意有限个元素的并集属于T拓扑结构T的元素称为开集,满足这些条件的集合X称为拓扑空间。
2. 拓扑结构的生成拓扑结构可以由邻域系统、基本开集系统或者距离函数生成。
通常我们可以通过指定一组生成元素,然后利用生成元素的运算得到拓扑结构。
3. 连通性连通性是点集拓扑学中一个重要的概念,它描述了集合的整体性质。
一个集合如果可以被分解成两个不相交的非空集合,则称该集合是不连通的;反之,如果一个集合不能被分解成两个不相交的非空集合,则称该集合是连通的。
4. 紧性紧性是一种覆盖性质,描述了集合上开覆盖的性质,一个集合如果任何开覆盖都存在有限子覆盖,则称该集合是紧的。
二、拓扑空间上的映射1. 连续映射拓扑空间之间的映射称为连续映射,一个映射如果满足对于任意开集的原像都是开集,则称该映射是连续的。
2. 同胚映射一个双射且连续的映射称为同胚映射,它描述了两个拓扑空间之间的等同性质。
3. 全局性质全局性质是指拓扑空间中全体元素的性质,例如紧性、连通性等。
1. 度量空间度量空间是一种特殊的拓扑空间,它可以通过度量函数来定义拓扑结构。
度量空间的拓扑结构由度量函数生成。
2. 离散拓扑离散拓扑是一种特殊的拓扑结构,它的开集是所有单点集和空集的组合。
它是最精细的拓扑结构。
3. 有限开拓扑有限开拓扑是一种限制了开集数量的拓扑结构,它适用于有限集的拓扑结构定义。
四、点集拓扑的应用1. 分析学拓扑学在分析学中有广泛的应用,比如连续函数的性质、紧性和连通性对于函数的性质有很大的影响。
2. 几何学拓扑学在几何学中有着举足轻重的地位,比如拓扑不变性理论、同伦理论等都是几何学中重要的研究方向。
3. 应用数学拓扑学在应用数学中有广泛的应用,比如网络结构的分析、信号传输的优化等都涉及到拓扑学的知识。
(点集拓扑学拓扑)知识点(可打印修改)

第4章 连通性重要知识点本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. §4.1 连通空间本节重点: 掌握连通与不连通的定义.掌握如何证明一个集合的连通与否?掌握连通性的拓扑不变性、有限可积性、可商性。
我们先通过直观的方式考察一个例子.在实数空间R 中的两个区间(0,l )和[1,2),尽管它们互不相交,但它们的并(0,1)U [l ,2)=(0,2)却是一个“整体”;而另外两个区间(0,1)和(1,2),它们的并(0,1)U (1,2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0,l )有一个凝聚点1在[1,2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用术语来区别这两种情形.定义4.1.1设A 和B 是拓扑空间X 中的两个子集.如果∅=⋂⋃⋂()(A B B A 则称子集A 和B 是隔离的.明显地,定义中的条件等价于 和 同时成立,也就是说,A ∅=⋂B A ∅=⋂A B 与B 无交并且其中的任何一个不包含另一个的任何凝聚点.应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的,而子集(0,l )和[1,2) 不是隔离的.又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个无交的子集都是隔离的.定义4.1.2 设X 是一个拓扑空间.如果X 中有两个非空的隔离子集A 和B 使得X=A ∪B ,则称X 是一个不连通空间;否则,则称X 是一个连通空间.显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4.1.1设X 是一个拓扑空间.则下列条件等价:(l )X 是一个不连通空间;(2)X 中存在着两个非空的闭子集A 和B 使得A ∩B= 和 A ∪B = X 成立;∅(3) X 中存在着两个非空的开子集A 和B 使得A ∩B= 和 A ∪B = X 成立;∅ (4)X 中存在着一个既开又闭的非空真子集.证明(l )蕴涵(2): 设(1)成立.令A 和B 是X 中的两个非空的隔离子集使得A ∪B =X ,显然 A ∩B=,并且这时我们有∅ BB B A B B A B X B B =⋂⋃⋂=⋃⋂=⋂=)()()(因此B 是X 中的一个闭子集;同理A 也是一个X 中的一个闭子集.这证明了集合A 和B 满足条件(2)中的要求.(2)蕴涵(3).如果X 的子集A 和B 满足条件(2)中的要求,所以A 、B 为闭集,则由于这时有A =B /和B=,因此A 、B 也是开集,所以A 和B 也满足条件(3)中的要A '求.(3)蕴涵(4).如果X 的子集A 和B 满足条件(3)中的要求,所以A 、B 是开集,则由A =和B= 易见A 和B 都是X 中的闭集,因此A 、B 是X 中既开又闭的真B 'A '(∵A 、B ≠,A ∪B=X ,∴A 、B ≠X )子集,所以条件(4)成立.∅ (4)蕴涵(l ).设X 中有一个既开又闭的非空真子集A .令B=.则A 和B 都是A 'X 中的非空的闭子集,它们是无交的并且使得A ∪B=X .易见两个无交的闭子集必定是隔离的(因为闭集的闭包仍为自己).因此(l )成立.例4. 1.1 有理数集Q 作为实数空间R 的子空间是一个不连通空间.这是因为对于任何一个无理数r ∈R-Q ,集合(-∞,r )∩Q =(-∞,r]∩Q 是子空间Q 中的一个既开又闭的非空真子集.定理4.1.2 实数空间R 是一个连通空间.证明 我们用反证法来证明这个定理.假设实数空间R 是不连通空间.则根据定理4.1.1,在R 中有两个非空闭集A 和B 使得A ∩B= 和 A ∪B = R 成立.任意选取a ∈A 和b ∈B ,不失一般性可设a <b .令∅=A ∩[a,b],和=B ∩[a,b].于是和是R 中的两个非空闭集分别包含a 和b ,并且A ~B ~A ~B ~使得∩=和∪=[a ,b]成立.集合有上界b ,故有上确界,设为.由于A ~B ~∅A ~B ~A ~b ~是一个闭集,所以∈,并且因此可见<b ,因为=b 将导致b ∈∩,而这A ~b ~A ~b ~b ~A ~B ~与∩=矛盾.因此(,b].由于是一个闭集,所以∈.这又导致A ~B ~∅b ~⊂B ~B ~b ~B ~∈∩,也与∩=矛盾.b ~A ~B ~A ~B ~∅ 定义4.1.3设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个连通空间,则称Y 是X 的一个连通子集;否则,称Y 是X 的一个不连通子集.拓扑空间X 的子集Y 是否是连通的,按照定义只与子空间Y 的拓扑有关(即Y 的连通与否与X 的连通与否没有关系.).因此,如果,则Y 是X 的连通子集当且仅X Z Y ⊂⊂当Y 是Z 的连通子集.这一点后面要经常用到.定理4.1.3 设Y 是拓扑空间X 的一个子集,A ,B Y .则A 和B 是子空间Y 中⊂的隔离子集当且仅当它们是拓扑空间X 中的隔离子集.因此,Y 是X 的一个不连通子集当且仅当存在Y 中的两个非空隔离子集A 和B 使得A ∪B =Y(定义)当且仅当存在X 中的两个非空隔离子集A 和B 使得A ∪B =Y .证明 因为))(())(())()(())()(()))((()))((())(())((A B C B A C A Y B C B Y A C A Y B C B Y A C A B C B A C X X X X X X Y Y ⋂⋃⋂=⋂⋂⋃⋂⋂=⋂⋂⋃⋂⋂=⋂⋃⋂因此根据隔离子集的定义可见定理成立.定理4.1.4 设Y 是拓扑空间X 中的一个连通子集.如果X 中有隔离子集A 和B 使得 Y A U B ,则或者 Y A ,或者 Y B .⊂⊂⊂ 证明 如果A 和B 是X 中的隔离子集使得Y AUB ,则⊂∅=⋂⋃⋂⋂=⋂⋂⋃⋂⋂⊂⋂⋂⋂⋃⋂⋂⋂()((()()(()((A B B A Y A Y B B Y A Y A Y B Y B Y A 这说明A ∩Y 和B ∩Y 也是隔离子集.然而(A ∩Y )∪(B ∩Y )=(A ∪B )∩Y =Y因此根据定理4.1.3,集合A ∩Y 和B ∩Y 中必有一个是空集.如果 A ∩Y=,据上式∅立即可见 Y B ,如果 B ∩Y = ,同理可见Y A .⊂∅⊂ 定理4.1.5设Y 是拓扑空间X 的一个连通子集,Z X 满足条件.则 ⊂Y Z Y ⊂⊂Z 也是X 的一个连通子集.证明 假设Z 是X 中的一个不连通子集.根据定理4.1.3,在 X 中有非空隔离子集A 和B 使得Z=A ∪B .因此 Y AUB .由于Y 是连通的,根据定理4.1.4,⊂或者Y A ,⊂∅=⋂=⇒∅=⋂⊂⋂⇒⊂⊂B Z B B A B Z A Y Z Q 或者Y B,同理,。
拓扑期末试题及答案

拓扑期末试题及答案一、选择题1. 下面哪个选项不是拓扑的基本概念?A. 连通性B. 邻域C. 紧致性D. 可分性答案:B. 邻域2. 拓扑空间的定义中包括以下哪些要素?A. 集合B. 拓扑C. 运算D. 距离答案:A. 集合,B. 拓扑3. 以下哪个定理用于判断一个集合是否为紧致集?A. Heine-Borel定理B. Bolzano-Weierstrass定理C. 单调有界定理D. Cantor定理答案:A. Heine-Borel定理4. 一个空间若每个点都有至少一个可数邻域,则称该空间满足:A. 可分性B. 连通性C. 紧致性D. 完备性答案:A. 可分性5. 以下哪个不是拓扑空间上的基本拓扑?A. 离散拓扑B. 序拓扑C. 紧致拓扑D. Hausdorff拓扑答案:C. 紧致拓扑二、填空题1. 在连通空间中,_________只有一个子集,即空集和整个集合本身。
答案:极大连通子集2. 设X是一个度量空间,如果序列{an}在X中收敛到点x,则它的任意一个子列也在X中收敛到点x,这个定理称为_________定理。
答案:Bolzano-Weierstrass定理3. 设X、Y是两个度量空间,f:X→Y是一个映射,若对X中任意一致收敛的序列{an}都有序列{f(an)}一致收敛于f(a),则称f是一个_________映射。
答案:连续映射4. 在一个度量空间中,若集合E能被包含在一列开集内,即E⊆∪(n=1)∞O(n),则E称为_________集。
答案:可分集5. 在度量空间中,_________是指个别的点被聚集成簇,而某个区域内不能含有过多的点。
答案:Hausdorff性三、计算题1. 已知拓扑空间X为实数集R上的子集,其基本拓扑为以区间(a,b)为开集的集合族T,计算X中元素x=1的极限点。
解答:首先,极限点是指一个点周围存在无穷多的序列点。
对于x=1来说,我们可以构造一个序列{a_n},其中a_n = 1+1/n。
拓扑学复习题与参考答案

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 419、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1)24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3)25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 442、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z =③ T Z = ④ {}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性③ 离散性 ④ 第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 连通性③ 第二可数性公理 ④ 平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 可分性③ 第二可数性公理 ④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 可分性③ 离散性 ④ 第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个()① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A是有限补空间X中的一个无限子集,则()d A= ;7、设A是有限补空间X中的一个无限子集,则A= ;8、设A是可数补空间X中的一个不可数子集,则()d A= ;9、设A是可数补空间X中的一个不可数子集,则A= ;10、设{1,2,3}X=,X的拓扑{,,{2},{2,3}}=,则X的子集{1,2}A=的内部T Xφ为 ;11、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{1},{2,3}}T Xφ为 ;12、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{2,3}}为 ;13、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{2},{2,3}}T Xφ为 ;14、设{,,}=,则X的平庸拓扑为 ;X a b c15、设{,,}=,则X的离散拓扑为 ;X a b c16、设{1,2,3}A=的内部=,则X的子集{1,3}T XφX=,X的拓扑{,,{2},{3},{2,3}}为 ;17、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{3},{1,3}}为 ;18、:f X Y→是拓扑空间X到Y的一个映射,若它是一个单射,并且是从X到它的象集()f X的一个同胚,则称映射f是一个 .19、:f X Y→是拓扑空间X到Y的一个映射,如果它是一个满射,并且Y的拓扑是对于映射f而言的商拓扑,则称f是一个 .20、设,→是一个映射,若X中任何一个开集U的象集X Y是两个拓扑空间,:f X Yf U是Y中的一个开集,则称映射f是一个;()21、设,→是一个映射,若X中任何一个闭集U的象集X Y是两个拓扑空间,:f X Y()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的内点3、集合A 的内部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。
点集拓扑考试题及答案

点集拓扑考试题及答案一、单项选择题(每题2分,共10分)1. 点集拓扑中,下列哪个概念不是拓扑空间的公理之一?A. 开集的任意并集仍是开集B. 空集和整个空间是开集C. 有限个开集的交集仍是开集D. 任意多个开集的交集仍是开集答案:D2. 在拓扑空间中,若集合A是集合B的闭包,则以下哪个说法是正确的?A. A是B的子集B. B是A的子集C. A和B互为子集D. A和B没有交集答案:A3. 拓扑空间中,连续函数的定义是?A. 函数的值域是连续的B. 函数的图像是连续的C. 函数的逆映射是开集D. 函数的逆映射是闭集答案:C4. 拓扑空间中的紧性是指?A. 每个开覆盖都有有限子覆盖B. 每个闭覆盖都有有限子覆盖C. 每个开覆盖都有开子覆盖D. 每个闭覆盖都有闭子覆盖答案:B5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间不能被分割成两个不相交的非空闭集C. 空间不能被分割成两个不相交的非空子集D. 空间不能被分割成两个不相交的非空有限集答案:A二、填空题(每题3分,共15分)1. 在拓扑空间中,若集合A是集合B的内部,则A是B的______。
答案:开子集2. 拓扑空间中的闭集是指其补集是______。
答案:开集3. 拓扑空间中的邻域是指包含某点的______。
答案:开集4. 拓扑空间中的序列收敛是指序列的极限点是唯一的,并且该极限点属于序列的______。
答案:闭包5. 拓扑空间中的紧集是指其任意开覆盖都有______。
答案:有限子覆盖三、简答题(每题10分,共20分)1. 请简述拓扑空间中极限点的定义。
答案:在拓扑空间中,如果点x的每个邻域都至少包含一个不同于x 的点y,则称x为集合A的极限点。
2. 请简述拓扑空间中紧集和列紧集的区别。
答案:紧集是指每个开覆盖都有有限子覆盖的集合,而列紧集是指每个序列都有收敛子序列的集合。
在有限维欧几里得空间中,紧集和列紧集是等价的,但在无限维空间中,列紧集是紧集的更强条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习
学了一个学期的点集拓扑,大家对它应当有了更多的了解,更深刻的认识.大家掩卷回忆一下,点集拓扑学的主要内容有哪些?沿着什么思路研究?研究手法是什么?
下面把这几个方面的内容理一下,仅供参考.
一、点集拓扑学的主要内容:
1.一般拓扑空间:
(1)任何点集只要定义了拓扑,就成了拓扑空间.任何拓扑空间中均有开集、基、闭集、闭包.任何点集均可能有凝聚点,任何点均有邻域.指定了顺序的元素就成了序列.(这些名词的定义是什么?相互关系是什么?如何判定?)
(2)常见的拓扑空间有:度量空间、平庸空间、离散空间、有限补空间、可数补空间等.任何集合均可通过指定开集而构成上述空间.因此一个集合与不同的拓扑(开集族)配对,可以构成不同的拓扑空间.(实数集合可能成为上述空间吗?)(注意:实数集合与实数空间不同.)
(3)一般拓扑空间均可以有子空间,任意有限个拓扑空间均可以构成乘积空间.任一拓扑空间中的一个等价关系均可以造出商空间.(这些空间的拓扑是怎样的?或基是怎样的?)
2.有个性的拓扑空间:与连通性有关的空间、各可数性公理空间、各分离性公理空间、与紧致性有关的空间、完备度量空间.
(1)并不是任何空间都可以成为上述空间的.只有符合上述空间定义的空间才可以成为上述空间.(各类空间之间没有必然的联系)
(2)R及是上述空间吗?
(3)若有两个空间,之间通过连续映射联系起来,则原象空间的哪些性质可以传递到象空间?
(4)上述空间的哪些性质可以遗传给子空间?(或闭遗传?)
(5)上述空间的哪些性质可以是有限可积的?
3.连通性:
(1)§4.1的所有定义,定理均要掌握.以应对判断一个空间的连通性.
(2)两种分支的性质.
(3)三种连通性之间的关系.
(4)R及的连通性.
4.可数性:
(1)P.149 图表5.1
(2)各空间的性质.(特别,空间中序列的性质及如何构造序列?)
(3)哪些常见空间是的?是可分的?Lindeloff的?
5.分离性:
(1)P.171 图表6.1
(2)各分离性空间的定义及等价命题.
(3)常见空间及的分离性.
(4)中序列的极限点,中点集的凝聚点,正规、完全正则空间与连续映射的关系.(5)遗传性、有限可积性、连续映射的保持性等.
6.紧致性:
(1)P.191、201、204、208、210、212的图表.
(2)各空间的定义及等价命题.
(3)紧致性与分离性的关系.
(4)紧致、可数紧致的等价命题.
(5)中的紧致子集.
(6)局部紧致、仿紧致只要求定义与联系图.
二、思路:不断剖析,将中的性质作为公理搬到一般拓扑空间中来.考察具备怎样的性质的拓扑空间才能具有与相应的性质.及研究各拓扑空间的性质及这些性质的遗传性、有限可积性、连续映射的保持性、拓扑不变性.
三、研究手法:集合的运算与逻辑推理.
四、收获
收获:复习了这些内容后,对点集拓扑学有何了解?
研究目的:研究各拓扑空间的性质及这些性质的遗传性、有限可积性、连续映射的保持性、拓扑不变性.
感受:原来具有……性质.
提高:对逻辑推理性的证明能力有提高?证明的书写能力有提高?
五、几个注意点:
1.首先,要熟悉所有的定义、定理的内容.
2.涉及度量空间,常利用球形邻域.
3.有限个开集的交是开集,任意个开集的并是开集.有限个闭集的并是闭集,任意个闭集的交是闭集.
4.一个集合的任意个拓扑的交是拓扑,即使有限个拓扑的并也可能不是拓扑.
5.拓扑空间中任意个紧致闭子集的交还是紧致子集.有限个紧致子集的并还是紧致子集.
6.拓扑空间与它的子集的连通性各自独立.
7.不是连续映射所保持的性质,而是拓扑不变的.但是可遗传的,有限可积的.可分空间不可遗传,但是连续映射所保持的,有限可积的.
8.Lindeloff空间闭遗传,不可积,但是连续映射所能保持的.
紧致空间闭遗传,但是连续映射所能保持的,有限可积的.
9.分离性公理空间不是连续映射所保持的,但是拓扑不变的.除正规空间, 是闭遗传外,其余均可遗传. 除正规空间,不可积外,其余均有限可积.均不可商.
10.在中构造序列,可利用在x处的邻域基套,在每个中取一点,.
就构成序列
11.若涉及到连续映射f:X→Y,总是将X中的子集映到Y,或将Y中的子集反射到X.
12.常对一个等式或包含关系式两边同取f或或闭包,并注意利用P.23的习题1,2或P.28的定理1.6.3或P.20的定理1.5.2
13.要对集族构造一个单调上升或单调下降序列,可令:
则分别为单调上升或单调下降序列.
14.注意拓扑空间{X*,T*},其中X*=X∪{∞},但T*有两种构造法:P.55的习题9与P.142的例5.2.1
15.注意定义中的措辞:是任给还是存在(有一个).它的反面是什么?(互为反面)
16.注意反证法.。