空调房间室内气流组织模拟fluent
空调房间室内气流组织模拟(fluent)

模型[1]m s,送风温如图,房间左下角有一个空调,送风和回风方向如图所示。
送风速度为1/度为25℃,壁面温度为30℃。
1.建立模型及网格划分①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。
②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。
2.求解模型的设定①启动FLUENT。
启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。
c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。
②求解器设置。
这里保持默认的求解参数,即基于压力的求解器定常求解。
如图:下面说一说Pressure-based和Density-based的区别:a.Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和CoupledSolver,其实也Pressure-Based Solver的两种处理方法;b.Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。
空调房间流场温度场的fluent模拟报告

空调房间流场温度场的fluent模拟报告1. 引言1.1 概述空调在现代生活中扮演着重要的角色,它可以有效地改善室内环境,并为人们提供舒适的居住和工作条件。
空调房间的流场温度场分布是一个关键因素,对室内温度均匀性、舒适性以及能源消耗等方面都有着重要影响。
因此,对空调房间的流场温度场进行模拟与分析具有重要意义。
1.2 文章结构本文主要围绕着空调房间流场温度场的Fluent模拟展开研究。
文章共分为五个部分:引言、流场温度场模拟方法、模拟结果与分析、参数优化与仿真结果验证以及结论与展望。
每个部分都包含了具体的子章节,以便系统地介绍和阐述相关内容。
1.3 目的本文旨在使用Fluent软件对空调房间的流场温度场进行详细模拟,并通过分析结果和验证方法,评估其在不同工况下的效果。
同时,本文还将探讨如何优化空调参数以实现更好的温度均匀性,并展望存在问题并提出改进方向。
以上是对文章引言部分内容的详细清晰撰写。
2. 流场温度场模拟方法2.1 空调流场模拟概述空调房间的流动和温度场模拟是通过计算流体力学(Computational Fluid Dynamics,简称CFD)方法实现的。
该方法基于Navier-Stokes方程,并结合大气物理学、传热学和传质学等知识原理,对空气在房间内的流动特性进行数值分析。
通过该模拟方法可以了解空调房间中的气流运动规律以及温度分布情况,进而为空调系统设计和优化提供有效依据。
2.2 Fluent软件介绍Fluent是一种常用的CFD仿真软件,广泛应用于各种工程领域。
它提供了强大的求解器和前后处理器,可实现复杂流体问题的数值模拟和分析。
在本文中,我们采用Fluent软件进行空调房间流场温度场仿真模拟。
2.3 模型建立与边界条件设定在进行流场温度场模拟前,需要建立几何模型并设置边界条件。
首先,根据实际情况绘制出空调房间的几何图形,并导入Fluent软件进行后续处理。
然后需要定义边界条件,包括房间墙壁、入口和出口等。
空调房间气流组织模拟及优化模板可修订

毕业设计说明书作者:学号:学院:系(专业):热能与动力工程题目:空调房间气流组织数值模拟和优化指导者:讲师(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2012 年 6 月 2 日Title Numerical simulation of air-conditioned room air distribution and optimizationAbstractAirflow-organizing in air-conditioned indoor air environment, air quality has an important effect is directly related to the indoor temperature, area, flow rate and air-conditioning energy consumption is an important part of the air-conditioned. Effective ventilation and airflow organization has an important significance for improving indoor air quality, to ensure the realization of healthy buildings, healthy comfort air conditioning.The main factors to affect the flow in room inlet velocity, the location of the air inlet into the return air relative position Firstly, the establishment of a physical model and mesh using Gambit software, and numerical simulations using Fluent software, said in an intuitive way the temperature field and velocity field of airflow under different air distribution program, analyzing the draw for office and other similar air-conditioned room, Side of the send side back, on sending the next time, on to send back, next to send back to the four air distribution are more appropriate. But the better Side of the send side back and on to send back on the air current forms of organization.Keywords:Airflow-organizing;Numerical simulation; Turbulencemodel;Temperature field;Velocity field.目次1引言 (1)1.1 研究的背景及意义 (1)1.2 国内外的研究成果 (1)1.3 本文的主要内容和工作 (2)2空调房间的气流组织形式 (3)2.1气流组织的介绍 (3)2.2常用的气流组织形式 (3)2.2.1侧送侧回 (4)2.2.2上送下回 (4)2.2.3上送上回 (4)2.2.4 下送上回 (5)3 气流组织和室内舒适性的评价指标 (5)3.1 技术指标 (5)3.2 经济性指标 (7)3.3 适性空调室内空气计算参数 (8)4 空调房间的数值模拟过程 (8)4.1 物理模型的建立 (8)4.2网格的划分 (11)4.3数学模型 (11)4.4在Fluent里的参数 (13)4.5解算结果及后处理 (14)5 数值模拟结果分析 (15)5.1侧送侧回的结果及分析 (15)5.2 异侧下送上回的结果及分析 (17)5.3上送上回的结果及分析 (19)5.4上送下回的结果及分析 (20)结论 (22)参考文献 (23)致谢 (25)1 引言1.1 研究的背景及意义随着经济的发展和科技的进步,人们的物质生活水平不断提高,空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,因此对通风空调技术也提出了更高的要求。
空调房间气流组织数值模拟

=袅【r爱】+岳【r雾】+斟r亚az】+S[2】
式中,妒为通用变量,代表Ⅱ,t,,埘,T,cs,等求解变
量;为广义扩散系数;S为广义源项;Ⅱ,口,l‘,为速度
“。在石,),,:方向的投影。对于特定的方程,9,r和
竺=二』P三±s S具有特定的形式(见表1)。 表1 通用控制方程中各符号的具体形式
Байду номын сангаас
-___-_____-____--●_-●^___——————_-_-_●●-_-_——
连续方程
1
o
o
动祭方程
啦
能量方程T
卢
一apla。i+S
女,c
Sr
组分方程
cI£如
S。
表l中毗为速度,弘为动力粘度;P为压力;后
万方数据
·42·
安徽冶金科技职业学院学报
2009年第1期
为传热系数,c为比热;cl为组分.s的体积浓度;见 为组分S的扩散系数。
本文为建立此模型房间流场计算的数学模型 所作的简化如下:
1物理模型的建立
如图1,模型房间的内部空间尺寸为:长度4.5 111、宽度3.3 ITI、高度3 m。房间的窗户安装在南墙 上,窗户的尺寸为1.2 mx 1.5 m。进风口长、宽为 0.4 111、0.1 m,出风口长、宽为0.4 m、0.2 m。房间 只有南墙和南窗有热量传递,其余墙面假设为绝 热。
(2)室内速度分布很均匀,对于工作区的流速,
射流对室内空气的影响更为强烈,送风射流形成的
从图中可以很清楚的看出,风速是较均匀的,在z 旋涡相应增大。射流的下方形成较大的旋涡时,旋
万方数据
总第钙期
张红光,陈光:空调房间气流组织数值模拟
·43·
基于FLUENT的房间内组分的流动特性仿真分析

基于FLUENT的房间内组分的流动特性仿真分析1、设计参数FLUENT已经广泛用于复杂的化工反应工程、流线设计及环境监测等诸多领域,可以用于解决流体的流动特性、相间转换过程、热质耦合传递等复杂问题,可以直接形象地分析在空间和时间域上连续性的物理场,为优化操作条件提供了丰富的理论指导和可靠的依据为了更好地了解内部的传热传质过程,充分研究床层内部的流动特性具有重要意义。
计算流体动力学(CFD)在流体流动和传热传质过程中,数值数学和计算机科学结合的产物,是一门具有强大生命力的交叉科学。
ANSYS FLUENT是一种将流体力学,有限元结合的数值求解平台,同时具有图像显示功能。
该平台主要应用各种离散化的数学方法,对流体力学的各类问题进行数值计算和分析研究,以解决各种实际问题。
计算流体力学ANSYS FLUENT与实验法相比有以下几个优点:相对试验过程,可以提供比更加细致、全面的数据;研发费用低,明显缩短产品的研发周期,提高科研工作者工作效率的特点;数值平台仿真分析,可以为试验提供一定的理论参考和指导作用。
本文模拟了房间里的气流和传热,这个房间排风系排烟过程。
几何尺寸,其中长宽高分别为7.8m,4.2m,3.1m,房间壁面厚度为0.2m,壁面材料混凝土(密度2719kg/m3,定压比容1500J/kg.K,热导率200.4W/m.K),具体的布局图。
研究对象:某南方城市的房间模型如下图所示,房间高3.3m,在每个房间上方布置了组分进风口和回风口。
速度为0.6m/s,温度为40.5℃,如图0所示。
2、建立计算模型与划分网格本文主要是分析利用FLUENT进行房间内流动的仿真计算,因此主要分析fluent的过程。
针对网格划分过程简略。
图1 房间内流域模型2.2划分网格图2 数值计算流域的几何模型(1)几何模型的建立通过三维软件建好后,然后保存为step格式,然后导入到ICEM中,如图2所示。
(2)划分流域的面网格单击选中操作工具栏中的网格绘制图标,并在绘制网格mesh界面下单击选中体网格。
基于Fluentairpak的数据中心机房的气流组织模拟优化

f o r S c i e n c e a n d T e c h n o l o g y , S h a n g h a i 2 0 0 0 9 3 , C h i n a )
Ab s t r a c t :En e r g y c o n s e r v a t i o n a n d e mi s s i o s n r e d u c t i o n i s a l o n g - t e r m i mp o r t a n t s t r te a g i c t a s k i n o u r
c o u n t r y .Wi t h t h e r a p i d d e v e l o p m e n t o f m o b i l e b u s i n e s s i n C h i n a , mo r e a n d m o r e d a t a c e n t e r s a r e u s e d ,
器均 温和回风 温度基 本相 同时 , 相 对 于原始送 风 温度 1 5℃ , 冷 热通道 改进 方案 可提 高至 2 6℃ , 相 对 于原 始方 案 可节 能 4 2 . 2 7 %。
关键词: 数 据 中心机 房 ; 流动 ; 数值 模拟 ; 算法; 气流 组织 ; 节能 中图分 类号 : T K0 1 8 ; T U8 3 4 文 献标志码 : A 文章编 号 : 1 6 7 3 — 7 2 3 7 ( 2 0 1 5 ) 0 3 — 0 0 2 7 — 0 7
用CFD方法对冬季空调房间进行气流组织模拟和优化方案

4.1冬季空调房间的温度场和速度场 4.1.1冬季空调房间的温度场
z = 0.1m处温度场
z = 1.1m处温度场
z = 1.6处温度场
z = 2m处温度场
4.1.2冬季空调房间的速度场
z = 0.1m处速度场
z = 1.1m处速度场
z = 1.6m处速度场
z = 2m处速度场
问题
➢ 温度场:温度场也有极大的改善,但改善程度 略次于措施1。
➢ 速度场:比采取措施2前略有改善,但效果不是 很大。
4.4改进后冬季空调房间的温度场和速度场。 4.4.1采取措施3后冬季空调房间不同断面的温度场
z = 0.1m处温度场
z = 1.1m处温度场
z = 1.6m处温度场
z = 2m处温度场
谢谢
❖ 冬季外窗的渗透风对室内温度场影响很大,北向与西向墙及窗的热损失, 也使得温度场在这两个墙壁附近分布不均匀。
Hale Waihona Puke 改进方法➢ 改进方法: ❖ 措施1:采取措施,使北向外窗的
渗透风量减小一半,风口的布置 不变。 ❖ 措施2:风机盘管以及风口布置位 置改变,其中一组风机盘管以及 送风风口移到靠近北外墙布置。 如右图所示,北外窗的渗透风量 不变。 ❖ 措施 3:采取措施使北外窗的渗 透风量减小一半,同时又将送、 回风口移近北外墙(窗)。新风 、送回风的参数不变。
2.3算例选择
本模拟选择本办公楼中最 代表性的房间进行模拟,空 调平面图如右图所示。房间 内安装了两台风机盘管。
3.模型建立 3.1 几何模型
设计对象的物理模型如图所示,房间的尺寸:8.2m×5m×3.3m(长×宽×高),如下图所示。
3.2 数学模型
在本设计中采用k-ε(k为紊流动能,ε为紊流耗散率)模型。它是目前在房间空气流 动中最普遍采用的模型,对暖通空调领域多种流型的计算结果显示,该模型优于其他 模型。
空调房间气流组织数值模拟和优化-白杰

图3.异侧上送下回
图4.异侧下送上回
网格的划分:
• 我所建立的模型是规 则的长方体模型,因 此取整个空调房间为 计算区域,在笛卡尔 直角坐标系下使用 0.08m×0.08m×0.08 m的网格,网格数总 计147700个,模型如 下图,数值模拟采用 Fluent软件进行数值 计算。
图5.网格划分的模型图
结论:
• 同侧上送下回是送风口以贴附射流形式进行送风,射流有足够的 射程能够送到对面墙上,工作区处在回流区,气流在整个房间截 面内形成一个大的回旋气流,房间内的有害气体可以随着气流的 挤压流动由回风口排出。由于送风射流在到达工作区之前,已与 房间空气进行了比较充分的混合,速度场和温度场都趋与均匀和 稳定。 • 实际上,对于办公室等类似的空调房间,以上的四种气流组织都 比较适合的。但是同侧上送下回和异侧上送上回的气流组织形式 更优。
摘要
本文以计算流体力学和数值传热学为理论基础,对空调房间的气流 组织形式和室内空气三维湍流流动的数值模拟方法进行分析,使用 Gambit建立夏季空调房间常见的四种气流组织模型,采用FLUENT 软件以直观的方式显示了四种气流组织方案的气流流型,分析讨论 其气流分布规律、特点,并将数值计算结果进行处理,并将各种不 同送气流组织形式下的温度场和速度场进行对比,总结各种气流组 织形式的优缺点。
( u ) ( v) ( w) 0 x y z
(2)动量守恒方程(N-S方程)
( u ) u u u +div( uU) ( ) + ( ) + ( ) Su t x x y y z z x
( v) v v v +div( vU) ( ) + ( ) + ( ) Sv t x x y y z z y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空调房间室内气流组织模拟(fluent)
————————————————————————————————作者:————————————————————————————————日期:
模型[1]
m s,送风温度为ﻩ如图,房间左下角有一个空调,送风和回风方向如图所示。
送风速度为1/
25℃,壁面温度为30℃。
1.建立模型及网格划分
①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。
②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。
2.求解模型的设定
①启动FLUENT。
启动设置如图,这里着重说说DoublePrecision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317
a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能
足够精确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特
别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。
c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛
性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。
②求解器设置。
这里保持默认的求解参数,即基于压力的求解器定常求解。
如图:
下面说一说Pressure-based和Density-based的区别:
a.Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是
压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流
动也可以求解;Fluent6.3以前的版本求解器,只有SegregatedSolver
和Coupled Solver,其实也Pressure-Based Solver的两种处理方法;
b.Density-BasedSolver是Fluent 6.3新发展出来的,它是基于密度法的求解
器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初
衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限
制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Pr
econditioning方法来处理,使之也能够计算低速问题。
Density-Based Solver下
肯定是没有SIMPLEC,PISO这些选项的,因为这些都是压力修正算法,不会在这
种类型的求解器中出现的;一般还是使用Pressure-BasedSolver解决问题。
基于压力的求解器适用于求解不可压缩和中等程度的可压缩流体的流动问题。
而基于密度的求解器最初用于高速可压缩流动问题的求解。
虽然目前两种求解器都适用于各类流动问题的求解(从不可压缩流动到高度可压缩流动),但对于高速可压缩流动而言,使用基于密度的求解器通常能获得比基于压力的求解器更为精确的结果。
-湍流模型,Define/Models/Viscous。
③流动模型设置。
这里使用的是kε
a.这里我们使用的湍流模型是Standard kε-模型,这种模型应用较多,计算量适
中,有较多数据积累和比较高的精度,对于曲率较大和压力梯度较强等复杂流动模
拟效果欠佳。
一般工程计算都使用该模型,其收敛性和计算精度能满足一般的工程
计算要求,但模拟旋流和绕流时有缺陷。
b.壁面函数的选择,我们这里选择的是,标准壁面函数法。
其应用较多,计算量小,
有较高的精度。
适合高雷诺数流动,对低雷诺数流动问题,有压力梯度、高度蒸腾
和大的体积力、低雷诺数和高速三维流动问题不适合。
④激活能量方程。
考虑到传热的存在,需激活能量方程,Define/Models/Energy。
3.材料物性设置
保持默认的air物性,Define/Materials,这里不再详述。
4.计算域设置
一般来讲,计算域与边界条件在建模时已确定,这里只是根据具体需要,设置相关参数。
计算域在这里默认,Define/Cell ZoneConditions,默认流体介质为标准空气。
5.边界条件设置
①设置进口的边界条件。
从Zone列表中选择inlet,并设置Type为velocity-inlet。
再单击Edit弹出Veloc ity Inlet对话框。
m s,而SpecificationMethod中的设置如Momentum设置:设置入口速度为1/
图。
在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。
这里选择Intensity and Hydraulic Diameter,湍流强度与水力直径的确定有相应的
计算方法,这里只是采用估算来加以确定。
Thermal设置:设置入口送风温度为298K,即25℃。
②设置出口的边界条件。
从Zone列表中选择outlet,并设置Type为pressure-outlet。
再单击Edit弹出P ressureOutlet对话框。
压强出口边界条件在流场出口边界上定义静压,而静压的值仅在流场为亚声速时使用。
如果在出口边界上流场达到超音速,则边界上的压强将从流场内部通过差值得到。
其他流场变量均从流场内部通过插值获得。
Momentum设置:使用默认的表压参数值,因为出口为大气压,而Specification Metho d中的设置如图。
Thermal设置:对于包含能量计算的问题,需要设定回流总温。
(这里原文中并未设置,提出质疑,认为这里应设置成为外界温度298K,即25℃。
)
③设置壁面的边界条件。
从Zone列表中选择wall,并设置Type为wall。
再单击Edit弹出Wall对话框。
Thermal设置:设置壁面温度为303K,即30℃。
6.求解
①SolutionMethods:这里保持默认的求解参数。
②SolutionInitialization:对于稳态问题,计算的初始化并不显得那么重要,这里只将Computefrom下拉列表中选择inlet,然后点击Initialize按钮。
③Run Calculation:设置迭代步数,开始迭代。
7.后处理
①显示速度云图。
双击击GraphicsandAnimation/Contours,设置如图
结果如图:
②显示温度云图。
同样,设置如图:
结果如图:。