磁场的基本物理量
磁场知识点整理

磁场知识点整理在我们的物理世界中,磁场是一个极其重要的概念。
它看不见、摸不着,但却在许多方面发挥着关键作用。
接下来,让我们一起深入探索磁场的奥秘。
一、磁场的基本概念首先,我们要明白什么是磁场。
磁场是一种存在于磁体周围的特殊物质,它能够对放入其中的磁体或电流产生力的作用。
磁体都有两个磁极,分别是北极(N 极)和南极(S 极)。
同名磁极相互排斥,异名磁极相互吸引。
这就是磁场最直观的表现之一。
二、磁场的描述为了更准确地描述磁场,科学家们引入了一些物理量。
1、磁感应强度(B)磁感应强度是描述磁场强弱和方向的物理量。
它的定义是:在磁场中垂直于磁场方向的通电导线,所受的安培力 F 跟电流 I 和导线长度 L 的乘积 IL 的比值,即 B = F /(IL)。
磁感应强度是矢量,其方向就是磁场的方向。
小磁针静止时 N 极所指的方向就是该点的磁感应强度的方向。
2、磁感线磁感线是用来形象地描述磁场分布的曲线。
磁感线上某点的切线方向表示该点的磁场方向,磁感线的疏密程度表示磁场的强弱。
磁感线的特点包括:磁感线是闭合曲线,在磁体外部由 N 极指向 S 极,在磁体内部由 S 极指向 N 极;磁感线不相交;磁感线的疏密程度反映磁场的强弱。
三、电流的磁场1、奥斯特实验奥斯特实验揭示了电流能够产生磁场。
当导线中有电流通过时,其周围会产生磁场,使小磁针发生偏转。
2、安培定则安培定则(也叫右手螺旋定则)用于判断直线电流、环形电流和通电螺线管产生的磁场方向。
对于直线电流,右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
对于环形电流和通电螺线管,右手握住螺线管,让弯曲的四指所指的方向与电流方向一致,拇指所指的方向就是螺线管内部磁感线的方向,也就是螺线管的 N 极。
四、磁场对电流的作用1、安培力当电流在磁场中时,会受到磁场力的作用,这个力称为安培力。
安培力的大小 F =BILsinθ,其中θ是电流方向与磁场方向的夹角。
地磁

第一节 地球的磁场
一 、磁场的基本物理量 磁化率
M H
称为介质的磁化率。 磁化率表示物质磁化的难易程度。 值越大,说明越容易磁化。由于值是表 示岩石磁性强弱的物理量,所以它是磁法 勘探的物性依据。
第一节 地球的磁场
一 、磁场的基本物理量 物质的磁性:反磁性、顺磁性、铁 磁性
反磁性:磁化率很小,可看成无磁性物质。(1~-2)*10-6CGSM。岩盐、石油、方解石 顺磁性:磁化率(0~500 )*10-6CGSM。黑云母、 辉石、褐铁矿。 铁磁性:几千~几百万个10-6CGSM。只有铁、 镍、钴以及它们的化合物、合金,铬、锰合金。
2M s 当x 0时,Z max h2 若令Z a 0, 则 x0 h
水平圆柱体磁场
水平圆柱体磁场
任意走向水平圆柱体的磁异常剖面
水平圆柱 体不同有 效磁倾角 时的剖面 曲线
板状体磁场
A 薄板状体的磁场 B 厚板状体磁场 C 顺层磁化无限延深厚板
无限延深厚板(顺层磁化)的座标
第六节 磁性体的磁场
正问题的假设 (1)磁性体为简单的几何形状;(2) 磁性体是均匀磁化的;(3)天然剩磁与 感应磁化强度方向相同;(4)磁性体孤 立存在;(5)观测面是水平的。
第六节 磁性体的磁场
一、柱体磁场
单极的磁场
第六节 磁性体的磁场
单极的磁场
b.双极磁场
Z a Z a (-m) Z a ( m)
F 1 40 QmQm 0 3 γ
磁场强度
F 1 Qm H 3 γ Qm 0 40
第一节 地球的磁场
一 、磁场的基本物理量 磁感应强度(毕奥—沙伐尔定律)
0 ldl r B 3 4 L r
第一节磁场基本物理量何铁磁性材料

第一节磁场基本物理量和铁磁性材料一、电磁场的基本物理量为了更好地理解磁场的基本性质,介绍四个常用的基本物理量,即磁感应强度B、通Φ、磁导率μ、磁场强度H。
1、磁感应强度B磁感应强度B是反映磁场性质的参数.它的大小反映磁场强弱,它的方向就是磁场的方向.若在磁场中某一区域,磁力线疏密一致,且方向相同,则称该区域为匀强磁场或均匀磁场.在均匀磁场内,磁感应强度处处相同。
场内某点磁力线的方向即磁感应强度的方向,磁力线的多少就表示磁感应强度的大小。
一载流导体在磁场中受电磁力的作用,如图3-1所示。
电磁力的大小就与磁感应强度B、电流I、垂直于磁场的导体有效长度L成正比。
公式为F=BILsinα(3一1)式中,α为磁场与导体的夹角;B为磁感应强度,单位是特斯拉(T),工程上也曾用高斯(Gs)。
两个单位的大小关系是:1Gs=10-4 T。
若α=90°,则F=BIL (3一2)电磁力的方向可用左手定则来确定。
2、磁通Φ磁感应强度B和垂直于磁场方向的某一面积S的乘积称为该截面的磁通Φ。
若磁场为匀强磁场,Φ的大小为:Φ= BS (3-3)磁通Φ的单位为韦伯(Wb), 工程上过去常用麦克斯韦(Mx), 两个单位的大小关系是:1Mx=10-8Wb。
磁力线垂直穿过某一截面, 磁力线根数越多,就表明磁通越大;磁通越大就表明在一定范围中磁场越强。
由于磁力线是首尾闭合的曲线,所以穿入闭合面的磁力线数,必等于穿出闭合面的磁力线数,这就是磁通的连续性。
3、磁导率μ磁导率μ是用来衡量磁介质磁性性能的物理量。
如图3-2所示一直导体,通电后在导体周围产生磁场,在导体附近一处X点的磁感应强度B与导体中的电流I及X点所处空间几何位置、磁介质μ有关。
公式为:(3-4)由式(3-4)可知磁导率μ越大,在同样的导体电流和几何位置下,磁场越强,磁感应强度B越大,磁介质的导磁性能越好。
不同的介质,磁导率μ也不同,例如真空中的磁导率μ0=4π×10-7H/m,一般磁介质的磁导率μ与真空中磁导率μ0的比值,称为相对磁导率,用表示μr表示,即(3-5)磁导率μ的单位为亨/米(H/m)。
1.2_电磁学基本知识解析

磁位差
公式:
总磁动
Ni H k lk H1l1 H 2l2 H
k 1
3
常用物理量和定律
3、均匀磁路的欧姆定律 磁通量Φ 等于磁通密度乘以面积:
BA
磁场强度等于磁通密度除以磁导率: H B 于是 Hl Ni 可写为:
电磁学基本知识
• 常用的物理量和定律 • 常用的铁磁材料及其特性
法拉第
M.法拉第(1791~1869)伟大的物理学家、化学家、19世纪最伟大的实 验大师。右图为法拉第用过的螺绕环
电磁学基本知识
导言:
• 100多年前,人们从电磁现象出发,总
结出系统的电磁理论。一个最直接的产品
就是电机。电磁理论是研究电场、磁场、
常用物理量和定律
补充B和H的区别: •磁场强度和磁感应强度均为表征磁场性质(即磁场 强弱和方向)的两个物理量。
•由于磁场是电流或者说运动电荷引起的,而磁介质
(除超导体以外不存在磁绝缘的概念,故一切物质均 为磁介质)在磁场中发生的磁化对源磁场也有影响 (场的迭加原理)。 •因此,磁场的强弱可以有两种表示方法。
常用物理量和定律
磁力线
(1)磁感应线的回转方向和电流方向之间的关系遵守右手螺旋法则. (2)磁场中的磁感应线不相交,每点的磁感应强度的方向确定唯一. (3)载流导线周围的磁感应线都是围绕电流的闭合曲线.
常用物理量和定律
2. 磁通量Φ (磁通) 垂直通过磁场中某一面积的磁力线数称为通过该面
积的磁通量(磁通),符号、单位Wb (韦伯).
常用物理量和定律
主磁路:主磁通所通过的路径。 漏磁路:漏磁通所通过的路径。 励磁线圈:用以激励磁路中磁通的载流线圈。
励磁电流:励磁线圈中的电流。
常用基本电磁定律

垂直穿过某截面积的磁力线总和。单位:Wb
F SΒ dA
对于均匀磁场,若B与S垂直,则 F BA
磁场强度H
计算磁场时引用的物理量(实际也在存在的)。单位:A/m B=μH
μ:导磁材料的磁导率。
注意:B的大小与磁场环境有关,H的大小与磁场内在因素有关.
3
电磁学的基本定律
1.3.2 法拉第电磁感应定律—— 磁生电
14
1.4.2 软磁材料与硬磁材料
1、软磁材料——磁滞回线较窄。 硅钢片、铸铁、铸钢、铁氧体等。 用于制作电器设备的铁心。
2、硬磁材料——磁滞回线较宽。 铷铁硼、铁钴钐。 用于制作永久磁铁。
B H(i)
B H(i)
15
1.4.3 铁心损耗
铁耗
磁滞损耗 :由磁畴相互摩擦发热造成
Ñ ph fV HdB Ch fBmnV
11
二、磁化曲线和磁滞回线
1、起始磁化曲线
Φ i
物体从无磁性开始,磁
场强度H(i)由零逐渐增
加时,磁通密度B将随 B μ= B/H
பைடு நூலகம்
之增加。用B=f (H)描述
c
的曲线就称为起始磁化
b
曲线。
a
O
磁饱和现象
d B=f (H)
导磁性能的 非线性现象
H∝i
12
2、磁滞回线
Φ
磁滞回线——当H在Hm和- Hm i 之间反复变化时,呈现磁滞现
第1章 磁路 本章内容
磁路的基本知识 电磁学基本定律 常用磁性材料及其特性
1
第一节 磁路的基本定律
一、磁场的几个常用物理量
1.磁感应强度(磁密) B
•表征磁场强弱及方向的物理量。单位:特斯拉T(Wb/m2)
磁学

Hm 1500 / m 15A / cm A
励磁电流
ξ 1.4 1.3 1.2 1.1 0 1.0 1.线,得ξ=1.25 I 0.99 IM m 0.56A 2 2 1.25 查比磁损耗数据表得 pFe 0 4.93W / kg
I2
N2 H2 l2 I1 N1 H1 l1
H'3
左边回路
H1l1 H2l2 N1I1 N2 I 2
H4
l4 H"3 l3"
可得
磁通势 有
HI NI
F NI
单位:A
U
M
F
磁路定律 (2)
磁路基尔霍夫第二定律内容: 在磁路任一闭合回路中,各段磁位差的代数和等于各磁通势的代数和。
第九章:磁路和铁心线圈电路
在发电厂与电力系统中,广泛的应用着变压器、各种旋转电 机及其它含有铁心线圈的电气设备,它们不仅存在电路问题,同 时还存在磁路问题。只有同时掌握了电路和磁路的基本理论,才 能对各种电工设备作全面分析。 本章主要内容: 磁场的主要物理量和基本性质 铁磁物质的磁化曲线 磁路和磁路定律 恒定磁通磁路的计算 交流铁心线圈中的波形畸变和功率损耗 交流铁心线圈的电路模型
30
数KFe=0.92,衔铁材料为铸钢。要使电 磁铁空气隙中的磁通为3×10 Wb。 求:⑴所需磁通势;⑵若线圈匝数 N=1000匝,求线圈的励磁电流。
-3
8
解:⑴ 将磁路分成铁心、衔铁、气隙三段。 ⑵ 求各段长度和截面积 l1=(30-6.5)+2(30-3.25)=77cm l2=30-6.5+4×2=31.5cm 2l0=0.1×2=0.2cm A1=6.5×5×0.92=30cm2 A2=8×5=40cm2 A3=ab+(a+b)l0 =5×6.5+(5+6.5) ×0.1=33.65cm2
磁场的基本物理量

磁场的基本物理量一、磁感应强度磁感应强度:表示磁场内某点磁场强弱和方向的物理量,磁感应强度是矢量,用 B 表示。
磁感应强度的大小:用该点磁场作用于1m 长,通有 1A 电流且垂直于该磁场的导体上的力 F 来衡量,即 B =F /(l I)。
磁感应强度的方向: 电流产生的磁场,B 的方向用右手螺旋定则确定; IB 磁场的基本物理量主要包括:磁感应强度、磁通、磁场强度、磁导率等。
永久磁铁磁场,在磁铁外部,B 的方向由N 极到二、磁通磁通:磁感应强度 B 与垂直于该磁场方向的面积S 的 乘积,称为通过该面积的磁通,用Φ表示,即 Φ=BS 或 B= Φ /S♣均匀磁场: 各点磁感应强度大小相等,方向相同的 磁场。
也称匀强磁场。
磁感应强度的单位:国际单位制:特[斯拉](T ) [T ]=Wb/m 2 (韦伯/米2) 电磁制单位:高斯(Gs ) 1T=104 Gs ♣磁感应强度在数值上可以看成为与磁场方向垂直的单位面积所通过的磁通,故又称磁通密度。
磁通的单位:三、磁场强度磁场强度H :计算磁场时所引用的一个物理量。
国际单位制:韦[伯](Wb ) [Wb ]=伏∙秒 电磁制单位:麦克斯韦(Mx ) 1Wb=108 Mx♣ 借助磁场强度建立了磁场与产生该磁场的电流之间的关系。
即安培环路定律(或称全电流定律)。
♣ 磁场强度方向与产生磁场的电流方向之间符合右手螺旋定则。
I H 单位:国际单位制:安每米(A/m )电磁制单位:奥斯特(O e ) 1 A/m=4π⨯10-8 Oe任意选定一个闭合回线的围绕方向,凡是电流方向与闭合回线围绕方向之间符合右手螺旋定则的电流作为正、反之为负。
其中: 是磁场强度矢量沿任意闭合 线(常取磁通作为闭合回线)的线积分; ⎰l H d 是穿过闭合回线所围面积的电流的代数和。
∑I ♣安培环路定律电流正负的规定:⎰∑=I l H d ♣安培环路定律(全电流定律)I 1HI 2【例1】环形线圈如图,其中媒质是均匀的, 试计算线圈内部各点的磁场强度。
1.2 电磁学基本知识

饱和点 膝点
跗点
分析:
(1)开始磁化阶段oa段。外磁场较 弱,磁通密度增加得不快。
(2)磁通很快增加阶段ab段。随着 外磁场的增强,大量磁畴开始转 向,B增加很快。
(3)达到饱和阶段bc段。可转向的 磁畴越来越少,B值增加的越来 越慢。这种现象称为饱和。b点 称为膝点。
(4)饱和后阶段cd段。饱和后磁化 曲线基本成为与非铁磁材料的特 性相平行的直线。
常用铁磁材料及其特性
知识点: 铁磁材料的磁阻随饱和度增加而增大。
应用: 设计电机和变压器时,为使主磁路内得 到较大的磁通量而又不过分增大励磁磁动势, 通常把铁心内工作点的磁通密度选择在膝点附 近。
常用铁磁材料及其特性
2、磁滞回线 剩磁:当H从零增加到Hm时, B相应地从零增加到Bm;然 后再逐渐减小H,B值将沿曲 线ab下降。当H=0 时,B值 并不等于零,而是Br。这就 是剩磁。 磁滞回线:当H在Hm和- Hm
主磁路:主磁通所通过的路径。 漏磁路:漏磁通所通过的路径。 励磁线圈:用以激励磁路中磁通的载流线圈。 励磁电流:励磁线圈中的电流。
直流:直流磁路 ,例如:直流电机 交流:交流磁路,例如:变压器
常用物理量和定律
三、磁路的基本定律
1、安培环路定律
定律内容: 沿任何一条闭合磁回路L,磁场强度H 的
线积分等于该闭合回线所包围的电流的代数和 。
如何写数学表达式 e N d
dt
正方向的规定:
2)按右手螺旋关系规定正方向
磁通的参考 方向朝上
右手判定 电流方向 A→X
e的正方向 从A指向X
e N d dt
-i +
常用铁磁材料及其特性
铁心的增磁功能
思考:铁心环与塑料环中的磁场强度和磁通密度有何区别?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本篇主要介绍了磁路、变压器、异步电动机和控制 电机等。从应用的角度出发,讲解异步电机的工作 原理和基本使用控制方法,重点放在电机的外特性 上。最后借助经典的继电接触器控制概念,介绍了 PLC(可编程序控制器)控制技术。
第7章 磁路
7.1 磁场的基本物理量 一、磁感应强度(磁通密度)
磁路中的 欧姆定律
注:由于磁性材料 是非线性的,磁路欧姆定律多用作定性
分析,不做定量计算。
7.4 直流磁路
直流磁路的励磁线圈中通入的是直流电流,磁路的磁通势和磁通都是恒定的。 下面就通过两道例题,介绍简单直流磁路的计算方法。 例1 一个环形线圈如图所示,其外径D1=86mm,内径D2=74mm,线圈匝数 N=100,励磁电流I=1.25A。若环形线圈的心子分别采用铸钢、电工钢片和非磁性 材料塑料制成,试分别计算磁路中的磁通和它们的磁导率。
图 a 软磁和硬磁材料的磁滞回线 图b 矩磁材料的磁滞回线
7.3 磁路的概念及磁路的基本定律
7.3.1 磁路的概念
i
u1
s
线圈通入电流后,产
生磁通,分主磁通和漏磁
通。
:主磁通
u2
s :漏磁通
铁心
(导磁性能好
线圈
的磁性材料)
磁路:主磁通所经过的闭合路径。
典型磁路示意图
7.3.2 磁路的基本定律
一. 安培环路定律(全电流律):ቤተ መጻሕፍቲ ባይዱ
磁场中任何闭合回路磁场强度的线积分,等 于通过这个闭合路径内电流的代数和。
Hdl I
I2
I3
I1
电流方向和磁场强度的方向
H
符合右手定则的,电流取正;
否则取负。
在无分支的均匀磁路(磁路的材料和截面积相同, 各处的磁场强度相等)中,安培环路定律可写成:
NIHL
NI:称为磁动势。
一般用 F 表示。
线圈 匝数N
如果上述环形线圈的铁心由磁性材料做成,且在铁心上开一个很小的空气隙, 如图所示(图中励磁线圈略去未画),这时铁心中的磁通如何改变?
图 包含气隙的环形铁心
例题2 一线圈,匝数 N1000,绕在铸钢制成的铁心上,铁心截面积S=20 cm 2 铁心平均长度 l 50cm,该磁路如图所示。
(1)欲在铁心中产生磁通 0.002Wb,应在绕组中通入多大的直流励磁电流?
H 500
(H/m)
塑料是非磁性树料,它的其磁导率是已知的,041 07H/m,所以其磁感应强度
B 0 H 4 1 7 0 5 0 6 .2 0 1 8 40 (T)
B S 6 . 2 1 8 4 2 0 . 8 1 3 5 1 0 . 7 1 8 8(0 Wb)
磁场强度是计算磁场所用的物理量,其大 小为磁感应强度和导磁率之比。
H B
单位:
B :特斯拉
:亨/米
H:安/米
四、磁导率 :表征各种材料导磁能力的物理量
真空中的磁导率( 0 )为常数
0 4107 (亨/米)
一般材料的磁导率 和真空中的磁导率之比,
称为这种材料的相对磁导率 r
r
0
r 1,则称为磁性材料
图 例1的图 解 这是一个没有分支的均匀磁路,已知磁通势NI,要求计算磁通。无分支磁路是 指只有一个回路的磁路,均匀磁路是指磁路中各处材料相同且质地均匀、截面积相等。 这个问题不能直接用磁路的欧姆定律求解。因为对于磁性材料来说,其磁导率µ不是 常数,它是随激励电流的大小不同而变化的,现为未知数,所以磁阻Rm为未知。但 是可以应用磁路的有关定律和公式,按如下顺序求解:
H B ,最后再计算出磁导率µ。
磁路的平均长度
l D 1 D 2 8 6 7 4 0 .2 5 m
2
2
H
N
I
l
1001.25500(A/m) 0.25
查阅图7-4可得,当H=500A/m时,铸钢的磁感应强度B=0.64T, 电工硅钢片的磁感应强度B=1.25T。
环形铁心的截面积
s D 1 4D 2 22 8 .3 (m m )22 .8 3 1 0 5(m )2
当材料是铸钢时
B S 0 . 6 2 . 4 8 1 3 5 0 1 . 8 1 1 5 (W0 b)
B0.641.2 81 03
H 500
(H/m)
当材料是电工硅钢片时
B S 1 . 2 2 . 8 5 1 3 5 0 3 . 5 1 4 5(0 Wb)
B1.252.51 03
(2)若在贴心中加入一个0.2cm的空气隙,欲保持磁通不变,通入绕组的直流 励磁电流I=?
图 例2的图
解 本例题是已知磁路中的磁通 ,求励磁电流(磁通势 NI)。
(1)当磁路完全由铸钢制成时,是均匀磁路。
BS200 .0100421 (T)
查图知铸钢材料在B=1T时,
H=1000A/m
IH l10 000 .50.5 (A)
I
磁路 长度L
F=NI
HL:称为磁压降。
在非均匀磁路(磁路的材料或截面积不同,或磁场
强度不等)中,总磁动势等于各段磁压降之和。
NIHL
总磁动势
I
例:
N
l0
N IHIH0l0
l
二. 磁路的欧姆定律:
对于均匀磁路
NIHL BL L I S
N
令:
l
Rm s
Rm 称为磁阻
S L
则: FNI LRmφ S
r 1,则称为非磁性材料
7.2 磁性材料
7.2.1 磁性材料的主要特性
B ( ) 大 小
H (I) 1. 非线性
B
H 2. 磁饱和性
B H
3. 磁滞性
7.2.2 磁性材料的分类 根据磁性能,磁性材料又可分为三种:软磁材料
(磁滞回线窄长。常用做磁头、磁心等);永磁材料 (磁滞回线宽。常用做永久磁铁);矩磁材料(滞回 线接近矩形。可用做记忆元件)。
N 1000
(2) 如果磁路由不同材料或者不同截面积的几段组成,则成为不均匀磁路。现磁路中加入 了空气隙是不均匀磁路。这时可根据安培环路定律,进行分段积分,可得计算磁路的基
本公式 NlH 1l1H 2l2
计算步骤:
B 第一,对于不同截面积的磁路,分别计算各段的磁感应强度
。无分支磁路磁通 处处相等。
与磁场方向相垂直的单位面积上通过的磁 通(磁力线)。
B S
B 的单位:特斯拉(Tesla)
1 Tesla = 104 高斯
单位:韦伯
二、磁通
磁感应强度B与垂直与磁场方向的面积S 的乘积,称为通过该面积的磁通。
BS
B 单位:特斯拉(T)
单位:韦伯(Wb)
e N d dt
单位:伏秒
三、磁场强度 H