生物可降解塑料塑料的最新研究现状
2024年聚3-羟基烷酸酯(PHA)市场发展现状

2024年聚3-羟基烷酸酯(PHA)市场发展现状1. 简介聚3-羟基烷酸酯(PHA)是一类具有生物降解性的生物塑料,可在自然环境中被微生物分解。
由于其良好的可降解性和可再生性,PHA在近年来得到了广泛的研究和应用。
本文将对PHA市场发展现状进行分析,并探讨其前景和挑战。
2. 市场规模及增长趋势根据市场研究报告,全球PHA市场规模在过去几年中呈现显著增长。
预计到2027年,全球PHA市场将达到XX亿美元,年复合增长率为XX%。
此增长主要受到环境保护意识的提高和塑料污染问题的关注所推动。
3. 应用领域分析PHA具有多种应用领域,包括包装材料、医疗器械、纺织品、土壤改良剂等。
其中,包装材料占据PHA市场的主要份额,预计在未来几年中将保持稳定增长。
医疗器械领域也是PHA的重要应用领域之一,其在医疗用品的制造中具有良好的生物相容性和生物可降解性。
4. 主要市场玩家和竞争态势全球PHA市场竞争激烈,主要市场玩家包括XX、XX、XX等。
这些公司在研发新产品和拓展市场方面具有一定的优势。
然而,PHA市场的进一步发展面临一些挑战,如生产成本较高、产品性能和稳定性等方面仍需进一步改进。
5. 技术进展与创新近年来,PHA的研发和生产技术得到了长足的发展。
新的生产方法和改进的工艺使得PHA的成本降低,推动了其市场的发展。
此外,一些创新型公司还在研究和开发PHA的新应用,如PHA材料的电学性质和导电性能等。
6. 环境影响和可持续性PHA作为一种生物降解塑料,被认为是可持续发展的替代品。
其可降解性质使得PHA对环境的影响相对较小,并能够减少塑料垃圾对生态环境的破坏。
因此,PHA 在环保意识提高的背景下具有广阔的市场前景。
7. 未来发展前景随着对环境友好材料的需求不断增加,预计PHA市场将继续保持较快的增长。
政府的环境政策和法规对PHA市场的发展也起到了积极的推动作用。
然而,PHA仍面临一些挑战,如市场竞争和成本压力等。
未来,进一步降低生产成本、改善产品性能以及拓展新的应用领域将是PHA产业发展的关键。
生物降解塑料的发展现状及应用前景探究

生物降解塑料的发展现状及应用前景探究摘要:白色污染是环境污染的重要元凶之一,可降解塑料是解决白色污染最直接的手段。
可降解塑料包括生物降解塑料、水降解塑料、光/生物降解塑料等。
为深入了解生物降解塑料的应用及价值,文章研究生物降解塑料的发展历程,并对其未来发展进行展望,一方面推动生物降解塑料的应用,另一方面了解可降解塑料使用规模,为相关人士提供参考。
关键词:生物降解塑料;发展现状;应用前景塑料是现代化工业及人类生活最重要的基础材料之一,由于传统塑料不可降解,可对环境造成可持续性损害,因此可降解塑料的研发及应用成为各国关注的热点课题。
生物降解塑料是可降解塑料的一种,据初步统计,2021年全球生物降解塑料消费量达到1200kt左右,涉及众多行业。
由此可见,生物降解塑料得到极为广泛的应用,成为健康有序地推动产业发展的重点,研究生物降解塑料的发展历程也成为学术界的核心话题之一。
1、生物可降解塑料的发展现状生物降解塑料依照程度划分可分为部分降解、完全降解两种。
部分降解包括淀粉基塑料,完全降解塑料包括聚丙交酯塑料、石油基可降解塑料等。
1.1 PLA聚丙交酯塑料即PLA,通过乳酸直接缩聚制备法制备时成品分子质量较低,适用场景相对受限。
对此,有学者对制备工艺进行优化,即先用乳酸制备丙交酯,随后在催化作用下进行开环聚合,制备分子量约为700000的聚丙交酯塑料。
乳酸分子含有手性碳原子、光学异构体,所以聚丙交酯也可称为聚左旋乳酸。
聚左旋乳酸为部分结晶性聚合物,具有质地硬的特点。
相比传统塑料,聚丙交酯没有毒害作用,和生物相容性良好,并且透明度高,满足塑料制品的使用需求。
202等国。
美国企聚丙交酯生产企业以NatureWorks为主,是全球最大的聚丙交酯生产商,产能约为每年180000吨。
我国聚丙交酯生核心生产企业坐落在浙江,浙江海正生物材料集团产能约65000吨。
目前,我国兴起了大量的聚丙交酯生产企业,并着力研发新型生物可降解塑料,如山东同邦、浙江友诚、安徽丰源泰富等。
生物可降解塑料的应用研究现状及发展方向

生物可降解塑料的应用研究现状及发展方向首先,生物可降解塑料的应用研究现状主要体现在以下几个方面:1.食品包装材料:由于生物可降解塑料对食品具有良好的保护和存储性能,因此被广泛应用于食品包装领域。
如聚乳酸(PLA)被用于制作食品容器、餐具、薄膜等。
2.农业用途:生物可降解塑料在农业领域的应用主要涉及覆盖膜、育苗盘、农膜等。
这些材料具有保温、保湿、抑草、透气等特点,并且能够降解为有机肥料,不会对土壤造成污染。
3.医疗领域:生物可降解塑料在医疗器械、缝线和医药包装中得到广泛应用。
例如,聚己内酯(PCL)被用于制作可降解的缝合线,可以在人体内慢慢降解,避免了二次手术的不便。
4.一次性用品:生物可降解塑料在一次性用品领域得到广泛应用,如餐具、塑料袋等。
这些塑料制品一旦被丢弃,能够较快地降解成环境友好的物质,减少对环境造成的污染。
其次,生物可降解塑料的发展方向如下:1.提高塑料的韧性:当前生物可降解塑料在力学性能方面仍然存在挑战,比如抗拉强度低、韧性不足等问题。
因此,研究人员将致力于改善塑料的力学性能,提高其应用的范围和可行性。
2.提高生物降解速度:当前生物可降解塑料的降解速度在自然环境下较慢,有些甚至需要数年才能完全降解。
未来的研究方向是开发新的降解菌株,设计可降解塑料的结构和添加降解助剂,以提高降解的速率。
3.提高生产效率和降低成本:生物可降解塑料的生产成本较高,限制了其大规模应用。
解决这一问题的关键是开发高效的生物合成工艺,并利用廉价的原料进行生产。
4.探索新的应用领域:除了食品包装、农业和医疗领域之外,生物可降解塑料还可以在其他领域得到应用。
例如,汽车工业、建筑材料、纺织品等。
未来的研究应该重点发展这些新的应用领域,进一步推动生物可降解塑料的发展和应用。
总之,生物可降解塑料的应用研究现状已经取得了一定的进展,但仍然面临一些挑战。
通过提高塑料的力学性能、降解速度,降低生产成本等方面的研究,可以进一步推动生物可降解塑料的应用,并促进可持续发展。
2024年生物基塑料市场发展现状

2024年生物基塑料市场发展现状引言随着全球环境问题的不断加剧和人们对可持续发展的追求,生物基塑料作为一种环境友好型材料,逐渐受到市场的关注和需求的增加。
本文将对生物基塑料市场的发展现状进行分析。
生物基塑料的定义与分类生物基塑料是由可再生资源生产的塑料材料,与传统塑料相比,其生产过程中能耗较低,对环境污染的影响较小。
根据来源和降解性质的不同,常见的生物基塑料可分为淀粉基塑料、聚乳酸(PLA)塑料、聚羟基脂肪酸酯(PHA)塑料等。
生物基塑料市场规模据市场研究机构的数据显示,生物基塑料市场规模在过去几年内持续增长。
预计到2025年,全球生物基塑料市场规模将超过1000万美元。
市场增长的主要驱动因素包括政府对环境保护的支持、消费者对可持续产品的偏好以及生物基塑料的技术进步等。
生物基塑料的应用领域生物基塑料的应用领域广泛,包括包装、汽车、电子产品、医疗器械等。
其中,包装领域是最大的应用市场,占据了生物基塑料市场的约60%份额。
随着可再生资源的不断开发和生物基塑料性能的提升,其他领域对生物基塑料的需求也在逐渐增加。
生物基塑料市场的挑战与机遇尽管生物基塑料市场发展迅速,但仍面临一些挑战。
首先,生物基塑料的生产成本通常较高,限制了其在市场上的竞争力。
其次,生物基塑料的性能和稳定性相对传统塑料还有待提高。
此外,生物基塑料的降解特性和回收利用仍面临技术和经济上的限制。
然而,生物基塑料市场也面临着巨大的机遇。
政府对环境保护的政策支持将对生物基塑料市场的发展起到推动作用。
此外,技术的不断创新和塑料生产企业对可持续发展的追求将为生物基塑料市场提供更多机遇。
生物基塑料市场的发展趋势随着技术的进步和市场需求的增加,生物基塑料市场正朝着以下几个方向发展:1.材料性能的改进:生物基塑料的力学性能、热稳定性等方面的改善将使其在更多的应用领域中竞争力增强。
2.塑料回收和再利用:生物基塑料的回收利用将成为未来发展的重要方向,以降低其对环境的影响。
生物可降解塑料的应用研究现状和发展方向汇总

生物可降解塑料的应用研究现状和发展方向汇总生物可降解塑料是指由可再生生物质或微生物合成的塑料,具有优良的可降解性能,能够在自然环境中被微生物分解并最终转化为二氧化碳和水。
与传统塑料相比,生物可降解塑料具有较低的能耗、较少的污染,具有更好的环境友好性和可持续性。
以下是对生物可降解塑料的应用、研究现状和发展方向的汇总:应用领域:1.包装领域:生物可降解塑料可用于食品包装袋、一次性餐具等,符合环保和卫生要求。
2.农业领域:生物可降解塑料可以应用于农膜、肥料包装袋等,可以有效减少农业用塑料的污染。
3.医疗领域:生物可降解塑料可用于医疗器械、医疗包装等,不仅具有良好的安全性,还可以降低医疗废弃物的处理难度。
4.纺织领域:生物可降解塑料纤维可用于制造纺织品,具有抗菌性和温感性能,且易于降解。
5.3D打印领域:生物可降解塑料可应用于3D打印材料,可以减少废弃物产生,降低对环境的影响。
研究现状:1.材料种类丰富:目前已经研发出多种生物可降解塑料,包括聚乳酸(PLA)、混酯(PHA)、聚酯淀粉酯(PBS)等,可以根据具体需求选择不同的材料。
2.性能改进:研究人员正在努力改善生物可降解塑料的力学性能、氧气透过性、水分敏感性等方面的问题,以提高其实际应用性能。
3.复合材料:将生物可降解塑料与其他材料进行复合,可以获得具有更好性能的材料,如生物降解塑料与木材粉末的复合材料等。
4.微生物合成:通过微生物发酵合成生物可降解塑料,不仅可以减少对化石能源的依赖,还可以提高材料的可持续性。
发展方向:1.实现规模化生产:目前,生物可降解塑料的生产成本相对较高,规模化生产仍然是一个挑战。
未来的发展方向是降低生产成本,提高生产效率,使其能够替代传统塑料。
2.提高性能稳定性:目前生物可降解塑料在高温、高湿等环境下的稳定性较差,需要进一步提高其热稳定性、湿热稳定性等性能。
3.新材料开发:继续开发新的生物可降解原料和新型生物可降解塑料,以满足不同领域的需求。
可降解塑料的研究利用现状

可降解塑料的研究利用现状可降解塑料是一种能够在特定条件下自行分解为无害物质的塑料,并且不会对环境造成污染。
随着全球对环境保护意识的增强,可降解塑料的研究和利用越来越受到重视。
本文将从可降解塑料的定义、分类、研究现状和利用前景等方面进行讨论。
首先,可降解塑料是指能够通过微生物、光照、氧化等方式分解为无害物质的塑料。
根据分解方式的不同,可降解塑料可分为生物降解塑料和光降解塑料。
生物降解塑料主要通过微生物的作用将塑料分解为二氧化碳和水,光降解塑料则是通过光照将塑料分解为无害物质。
可降解塑料与传统塑料相比,具有环境友好、减少对地球资源的依赖、降低能源消耗等优点。
目前,可降解塑料的研究正在蓬勃发展。
例如,生物降解塑料的研究主要关注降解机制、微生物种类和塑料的降解速度等问题。
研究者通过筛选具有降解能力的微生物,利用基因工程技术改良微生物的降解能力,并研究影响微生物降解能力的因素,以提高生物降解塑料的应用效果。
光降解塑料的研究则主要关注塑料的分解路径和光降解的机理。
研究者通过控制光照条件,例如光强度和波长等,来提高塑料的降解速度。
此外,还有一些新型可降解塑料的研究,如PHB、PCL等,这些塑料以天然物质为原料,具有很好的可降解性能。
可降解塑料的利用前景广阔。
一方面,可降解塑料具有广泛的应用领域,如包装材料、农业薄膜、医疗器械等。
在这些领域中,可降解塑料不仅能够满足使用需求,还能够减少塑料垃圾对环境的影响。
另一方面,可降解塑料的研究和利用将推动塑料循环利用的发展。
当前,塑料垃圾污染严重,垃圾填埋和焚烧等处理方式造成了严重的环境问题。
而可降解塑料的使用可以减少塑料垃圾的产生,并在分解过程中产生无害物质,为塑料资源的循环利用创造条件。
然而,可降解塑料的研究和利用还面临一些挑战。
首先,可降解塑料的成本较高,目前无法与传统塑料相竞争。
其次,可降解塑料的降解速度和降解产物对环境的影响仍需进一步研究。
另外,可降解塑料的大规模生产和使用需要与政府、企业和公众共同努力,形成全社会的共识和行动。
生物可降解塑料塑料的最新研究现状
⽣物可降解塑料塑料的最新研究现状⽣物可降解塑料的研究现状摘要:⽣物可降解材料因其具有可降解的特性越来越受到⼈们的关注。
本⽂主要介绍⽣物可降解塑料的应⽤背景,塑料的最新研究及其成果。
其中可降解塑料包括淀粉基⾼分⼦材料、聚乳酸和PHB。
关键词:⽣物可降解塑料⽩⾊污染淀粉基材料聚乳酸PHB现代材料包括⾦属材料、⽆机⾮⾦属材料和⾼分⼦材料作为现代⽂明三⼤⽀柱(能然、材料、信息)之⼀在⼈类的⽣产活动中起着越来越重要的作⽤。
[1]传统的⾼分⼦塑料在给国民经济带来快速发展,⼈民⽣活带来巨⼤改变的同时也给⼈类的⽣存环境带来了巨⼤的破坏。
当今社会“⽩⾊污染”的问题变得越来越受关注。
这类塑料由于在⾃然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草⽊⼀样被⽣物降解,还常常引起动物误⾷,并造成⼟壤环境恶化。
塑料制品在⾷品⾏业中⼴泛使⽤,⾼温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗⼊到⾷物中,会对⼈的肝脏、肾脏及中枢神经系统造成损害。
塑料的⼤量使⽤必然会带来如何处理废弃塑料的难题。
传统的塑料处理⽅法主要包括直接填埋、焚烧、⾼温炼油等⽅法。
这些处理⽅法不仅对环境造成破坏,同时也对⼈类健康构成巨⼤威胁。
⽯油、天然⽓等能然已⾯临危机,以⽯油为原料的塑料⽣产将受到很⼤的阻⼒。
为了减少废弃塑料对环境的污染和缓解能然危机,多年来⼈们努⼒开发⽣物可降解材料,⽤以替代普通塑料。
⽣物可降解塑料是指⼀类由⾃然界存在的微⽣物如细菌、霉菌(真菌)和藻类的作⽤⽽引起降解的塑料。
理想的⽣物降解塑料是⼀种具有优良的使⽤性能、废弃后可被环境微⽣物完全分解、最终被⽆机化⽽成为⾃然界中碳素循环的⼀个组成部分的⾼分⼦材料。
⽣物降解过程主要分为三个阶段:(1)⾼分⼦材料表⾯被微⽣物粘附;(2)微⽣物在⾼分⼦表⾯分泌的酶作⽤下,通过⽔解和氧化等反应将⾼分⼦断裂成相对分⼦量较低的⼩分⼦化合物;(3)微⽣物吸收或消化⼩分⼦化合物,经过代谢最终形成⼆氧化碳和⽔。
生物降解塑料的发展现状
生物降解塑料的发展现状随着环保意识的不断提高,塑料污染问题成为了现代社会的一大难题。
传统的塑料制品通常采用石化原料,难以降解,对环境造成了严重的影响。
为此,科学家们一直在探索新型的生物降解塑料。
生物降解塑料,也称为可降解塑料,指的是在自然环境中能够被微生物完全分解的塑料。
与传统的塑料制品不同,生物降解塑料具有良好的环保性能,且不会对环境造成污染。
目前,生物降解塑料已经成为全球环保领域的一个研究热点。
一、生物降解塑料的分类生物降解塑料按照来源可以分为三大类:植物来源、动物来源、微生物合成。
1、植物来源植物来源的生物降解塑料主要从淀粉类和纤维类制品中提取原料制备而成。
淀粉类生物降解塑料是以玉米、木薯或其他淀粉质材料为原料生产的,具有优秀的生物降解性能,并且其可生产成本相比其他生物降解塑料较低。
纤维类生物降解塑料则采用棉、麻、草等植物纤维为原料制成,具有良好的生物降解性能,但是在工业化生产上还存在一定的技术难点。
2、动物来源与植物来源的原料不同,动物来源的生物降解塑料以动物骨骼、蹄、角等无害原料为材料,通过一系列生物发酵、浸出、精制等工艺制成。
这些生物降解塑料具有优秀的可降解性能和高强度,广泛应用于医疗、食品、包装等领域。
3、微生物合成微生物合成的生物降解塑料是使用微生物发酵法合成的,是目前生物降解塑料的新兴领域。
微生物合成的生物降解塑料因为采用微生物发酵法制成,相较于其他生物降解塑料,其制备工艺更为复杂,成本相对较高,但是其生物降解性能极佳,能够在自然环境中快速分解,不会造成环境污染。
二、生物降解塑料的应用前景生物降解塑料不仅可以代替传统的塑料制品,还可以在农业生产、医疗、包装等领域产生广泛应用。
在农业生产方面,生物降解塑料可以制作成农膜、果膜等农业材料,具有良好的降解性能,不会对土壤造成二次污染。
在医疗器械方面,生物降解塑料可以用来制作医用注射器、培养皿等,具有较高的生物安全性能,能够减少污染源。
生物降解塑料替代传统塑料材料可行性分析
生物降解塑料替代传统塑料材料可行性分析引言:随着全球塑料污染问题的日益严重,人们对于塑料替代品的需求逐渐增加。
生物降解塑料作为一种环境友好的替代材料,引起了广泛的关注。
本文将对生物降解塑料替代传统塑料材料的可行性进行分析,并探讨其优势和挑战。
一、生物降解塑料的定义和特点生物降解塑料是指能够在自然环境中被微生物分解并最终转化为无害物质的塑料材料。
相比传统塑料材料,生物降解塑料具有以下特点:1. 环境友好:生物降解塑料不会造成长期的环境污染,因为它可以被自然界中的微生物分解。
2. 资源可再生:生物降解塑料大部分是由可再生原料制成,如植物淀粉、蔗糖等,相对于石油等非可再生资源,更具有可持续性。
3. 降解速度可控:生物降解塑料可以根据需要进行设计,可以有不同的降解速度,从几个月到几年不等。
二、生物降解塑料的优势1. 环境友好替代品:生物降解塑料可以有效减少塑料污染对环境带来的负面影响,降低海洋生物和陆地生态系统的生态风险。
2. 减少对非可再生资源的依赖:生物降解塑料主要由可再生资源制成,如玉米淀粉、纸浆等,有助于减少对石油等非可再生资源的需求。
3. 可持续发展:生物降解塑料的生产过程相对于传统塑料材料来说能够减少温室气体的排放,具有更好的可持续性。
三、生物降解塑料的挑战1. 降解速度不一致:由于不同的生物降解塑料具有不同的降解速度,需要根据实际应用情况进行选择。
而且,一些生物降解塑料在实际环境中的降解速度可能会受到环境条件(如温度、湿度)的影响。
2. 成本较高:与传统塑料材料相比,生物降解塑料的生产成本较高,这使得其在某些领域的应用受到限制。
3. 污染源控制困难:生物降解塑料需要在特定的环境中进行降解,如果随意丢弃,可能导致污染。
因此,控制生物降解塑料的污染源仍然是一个技术和管理上的挑战。
四、生物降解塑料的应用前景生物降解塑料在一些特定的领域具有广阔的应用前景,如日用品、包装材料、农业用品等。
1. 包装材料:生物降解塑料的应用可以显著减少传统塑料包装材料对环境的影响,降低塑料污染。
2023年淀粉基生物降解塑料行业市场分析现状
2023年淀粉基生物降解塑料行业市场分析现状淀粉基生物降解塑料行业是一种新兴的塑料制品行业。
它以淀粉为主要原料,经过一系列的物理和化学处理后,可以制成可降解的塑料制品。
与传统的塑料相比,淀粉基生物降解塑料具有更好的降解性能和环境友好性,因此受到了越来越多消费者的关注和认可。
目前,淀粉基生物降解塑料行业市场呈现出以下几个现状:一、市场规模持续扩大淀粉基生物降解塑料市场的规模正呈现出持续扩大的趋势。
随着人们对环境污染问题日益关注,对可降解塑料需求的增加,以及政府对环保产业的支持与鼓励,淀粉基生物降解塑料市场的潜力巨大。
根据市场研究机构的预测,未来几年淀粉基生物降解塑料市场的年均复合增长率将保持在20%以上。
二、产品应用范围日益广泛淀粉基生物降解塑料的应用范围正在不断扩大。
传统的塑料制品主要用于包装、建材等领域,而淀粉基生物降解塑料可以被广泛应用于包装、农业、医疗等多个领域。
例如,可降解的咖啡杯、食品包装袋、土壤增效剂等产品已经开始进入市场,并受到消费者的欢迎。
三、技术创新推动行业发展淀粉基生物降解塑料行业的发展受益于技术的不断创新。
随着科技的进步,生物降解塑料的降解速度和性能得到了极大的提升,使其在实际应用中更具可行性。
同时,新的生产技术和加工工艺的推出使淀粉基生物降解塑料的生产成本得到有效控制,提高了产品的竞争力。
四、市场竞争日益激烈随着市场规模的扩大,淀粉基生物降解塑料行业的竞争也日益激烈。
目前,国内外已有多家企业投入到该行业中。
国内企业如恒大集团、维尔康等已经开展了大规模的生产,并在市场中占据一定份额。
同时,国际上的一些大型企业如美国的Dorphun公司、德国的BASF公司等也纷纷进入了中国市场,推动了行业的发展。
总的来说,淀粉基生物降解塑料行业市场发展前景广阔,市场规模不断扩大,产品应用范围日益广泛,技术创新推动着行业的进步,但市场竞争也越来越激烈。
对企业而言,应密切关注市场变化,提高产品质量和竞争力,加大技术研发力度,寻求差异化发展的机会,以及参与国内外的合作与竞争。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物可降解塑料的研究现状摘要:生物可降解材料因其具有可降解的特性越来越受到人们的关注。
本文主要介绍生物可降解塑料的应用背景,塑料的最新研究及其成果。
其中可降解塑料包括淀粉基高分子材料、聚乳酸和PHB。
关键词:生物可降解塑料白色污染淀粉基材料聚乳酸PHB现代材料包括金属材料、无机非金属材料和高分子材料作为现代文明三大支柱(能然、材料、信息)之一在人类的生产活动中起着越来越重要的作用。
[1]传统的高分子塑料在给国民经济带来快速发展,人民生活带来巨大改变的同时也给人类的生存环境带来了巨大的破坏。
当今社会“白色污染”的问题变得越来越受关注。
这类塑料由于在自然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草木一样被生物降解,还常常引起动物误食,并造成土壤环境恶化。
塑料制品在食品行业中广泛使用,高温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗入到食物中,会对人的肝脏、肾脏及中枢神经系统造成损害。
塑料的大量使用必然会带来如何处理废弃塑料的难题。
传统的塑料处理方法主要包括直接填埋、焚烧、高温炼油等方法。
这些处理方法不仅对环境造成破坏,同时也对人类健康构成巨大威胁。
石油、天然气等能然已面临危机,以石油为原料的塑料生产将受到很大的阻力。
为了减少废弃塑料对环境的污染和缓解能然危机,多年来人们努力开发生物可降解材料,用以替代普通塑料。
生物可降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。
理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。
生物降解过程主要分为三个阶段:(1)高分子材料表面被微生物粘附;(2)微生物在高分子表面分泌的酶作用下,通过水解和氧化等反应将高分子断裂成相对分子量较低的小分子化合物;(3)微生物吸收或消化小分子化合物,经过代谢最终形成二氧化碳和水。
一、生物可降解材料的种类按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性材料、微生物合成高分子材料和化学合成高分子材料。
天然高分子中含量最丰富的资源包括纤维素、甲壳素、木质素、淀粉、各种动植物蛋白质以及多糖类等,他们具有多种官能团,可通过物理或化学的方法改性成为新材料,也可通过物理、化学及生物技术降解成单体或低聚物用作能源及化工原料。
微生物合成高分子降解塑料是由生物发酵方法制的一类材料。
二、最新研究成果及其应用2.1天然高分子及其改性材料天然合成高分子降解塑料天然高分子大多数可以生物降解,但热学、力学性能差,不能满足工程材料的性能要求。
通过对天然高分子改性可以得到能有实用价值的天然高分子降解塑料。
其中天然高分子聚合物降解塑料包括淀粉、纤维素、木质素、多糖以及蛋白质等为基材的复合材料。
淀粉是植物经光合作用而形成的碳水化合物,由于其来源广泛、价格低廉、降解后仍以二氧化碳和水的形式回归到自然,被认为是完全没有污染的可再生能源,以淀粉基高分子材料的塑料制品已在非食用领域得到了广泛的开发和研究。
淀粉基高分子材料包括淀粉填充塑料和完全淀粉基塑料。
其中,淀粉基填充塑料主要是指以淀粉作为填充剂,与PE、PP等通用塑料共混。
[2]传统的淀粉填充材料通过挤压、注塑、吹塑、流延等方法制得,由于这些疏水性的高聚物与亲水性的淀粉没有相互作用的功能官团,因而它们之间相容性很差。
通过在亲水性淀粉和非极性高分子塑料之间添加增容剂,可以增强淀粉/塑料共混体系的相容性,增强材料的机械性能。
美国农业部研制的PE与淀粉的共聚物,采用乙烯-丙烯酸共聚物(EAA)作为增容剂,利用EAA中和淀粉链上的烃基起反应生成脂类,改变了淀粉的表面特性,在其表面形成了一层与聚乙烯相容性很好的表面层大,大大增加了聚乙烯与淀粉之间的结合力。
[3]高建平等研究表明,在淀粉中加入多元醇,由于多元醇类具有与淀粉形同的羟基,与淀粉具有很好的相容性。
随着纳米技术的发展,越来越多的研究者着力于淀粉纳米复合机材料。
Evans[4]等发现淀粉能够与钠基蒙脱石、天然锂蒙脱土、季铵盐改性的锂蒙脱土分粉形成纳米复合材料,淀粉材料的模量获得提高,淀粉的耐水性也得到了改善。
淀粉的化学改性是指用化学试剂来处理淀粉,处理过程中有酯化、醚化、氧化、交联等化学反应发生,使淀粉的基本结构发生改变从而达到该行的目的。
在那海宁的试验中,通过先糊化、后共混、再交联的薄膜制备工艺过程,能够获得高淀粉填充量的淀粉/聚乙烯完全生物降解塑料薄膜。
刘伯业的试验中,通过对大豆蛋白和淀粉进行辐照处理,一定的热压温度促使结晶区内残存的自由基移入非结晶区的分子链,从而使结晶区内部分子挣脱束缚参与交联,可以提高材料的力学性能、耐水性。
在张跃峰[5]的研究中,将自制的醋酸酯淀粉(SA)和醋酸纤维(CA)溶于丙酮溶剂中,在柠檬酸三丁酯(TBC)为交联剂的作用下进行交叉克莱森酯缩合反应,制备出了淀粉基材料含量不同的可降解塑料薄膜。
淀粉填充型塑料混入的塑料不具备降解性,其降解主要依靠淀粉组分的分解,并非真真意义上的降解塑料。
完全淀粉基塑料是以淀粉为主体,加入适量的可降解添加剂,生产生物可降解塑料。
在付秀娟等人的试验中,将该性淀粉、甘油、增容剂、增塑剂与聚乙烯醇溶液共混,在水浴沸腾中状态下糊化1h左右,制得糊化完全且分散均匀的树脂,具有透明度好,机械性能好,可用于农用薄膜及餐具。
意大利的Novamont 公司生产了淀粉/聚乙烯醇共混合金,商品商标为Mater-Bi,它有三种不同产品系类。
A系列基本成分是淀粉、乙稀-乙烯醇共聚物和普通的增塑剂,这类材料主要用于注射成型制品;Z系列主要是淀粉、乙稀-乙烯醇共聚物和普通的增塑剂,这类材料主要用于生产薄膜和片材。
V系列主要成分是淀粉,用于生产产泡沫材料。
[3]2.2化学合成高分子材料完全生物降解性塑料在化学方法合成时利用脂肪族聚脂、聚乙烯醇(PVA)和聚乙二醇生产容易降解。
利用这些高分子易生物降解的特性对生物降解塑料进行研究开发。
目前,脂肪族聚酯主链大都由脂肪族结构单元通过易水解的酯键连接而成,易被自然界中的多种微生物或动植物体内酶分解、代谢,最终生成二氧化碳和水,是生物降解材料种最具发展前景的一类高分子材料,包括聚烃基脂肪酸酯、聚已内酯、聚乳酸,以及由二元酸、二元醇制成的聚酯等。
其中,以乳酸为原料生产的聚乳酸,性能优于聚乙烯、聚丙乙烯、聚苯乙烯等材料,被产业界称为21世纪最有发展前途的新型包装材料。
聚乙烯以玉米、小麦、木薯等植物中的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后得到乳酸,单个乳酸分子包含一个-COOH和-OH个,多个聚乳酸分子通过-COOH和-OH间的脱水缩合反应最终得到高纯度的聚乳酸(PLA)。
聚乳酸的合成主要采用直接缩聚法、丙交酯开环聚合(两部法)法。
通过在聚乳酸合成过程中将蒙脱土、滑石粉、纳米碳酸钙、硫酸钡等无机物成核剂均匀分散到聚乳酸基体中,可以提高聚乳酸的结晶速率,从而大大而提高聚乳酸的耐热性和力学性能。
聚乳酸在水体系中可以分解,在人体内的降解具有与酶无关的特性,而在土壤、海水中也能接受微生物多酶的作用。
聚乳酸无毒,无刺激性气味,易加工成型,具有较好的机械性能和生物相容性,被广泛用作农用薄膜或城市工程或食品、饮料化学品包装袋。
聚乳酸在人体内可以被可以被吸收,在生物医学上可以用作外科手术缝合线、药物控制释放系统、组织工程方面的应用、骨折内固定材料、基因治疗载体以及眼科材料等。
2.3微生物合成高分子材料微生物是生物界中最小的生物,其形体微小,外貌不显,但它的作用却是不可估量。
随着现代生物技术的发展,有益微生物在社会生产力的发展中发挥着重要作用,微生物生产已与动植物生产并列成为生物产业三大支柱之一。
微生物在新陈代谢过程中,在合成蛋白质、核酸和多糖等大分子物质的同时, 在细胞内还贮存聚烃基烷酸(PHA)。
已鉴定的PHA约有40种,其中PHB(聚-β-羟丁酸)是PHA的典型代表。
这是一种塑料样的可生物降解的高分子材料。
它存在于许多细菌细胞质内属于类脂性质的碳源类贮藏物,它的主要生产菌种是真养产碱杆菌、固氮菌和假单胞菌。
目前PHB大规模工业生产的最大障碍是价格太高,必须设法降低其成本。
通过对原始菌株的诱变、基因工程等技术和方法选育出产PHB的优良的菌株。
在季爱云等试验中,对生产PHB的细菌进行紫外诱变,得到突变菌株uZ-13,大大提高了PHB的产率。
清华大学生物系陈国强教授采用基因工程菌生产PHB,产品已实现产业化,市场前景看好。
微生物发酵的条件对PHB的产量产生有影响。
在韩厚平等的研究中,通过对从活性污泥中筛选出的高产PHB菌株LY-1进行发酵条件优化,采用控制变量法以及正交试验等方法确立其各自培养基的最佳温度、最适生长pH、最佳碳源和氮源,使得PHB生物产量得到明显提升。
PHB具有良好的生物降解性,用PHB制成的塑料制品的废弃物在土壤中被微生物所分泌的胞外降解酶分解,且其分解产物可全部为生物利用,对环境无任何污染,因而在可降解塑料工业中占据重要地位。
PHB具有生物相容性、生物可降解性、无刺激性、无免疫原性和组织相容性等特殊性能,、在医学上具有广阔前景。
研究表明,用PHBHHX含量为60%(wt)的PHBHHx/PHB 制成的支架具有较强的骨细胞生产增殖能力,是一种很有发展前途的组织工程材料,用作药物载体、手术缝合线、绷带、医用手套、止血塞、人工食道和人造血管,心脏阀门,心血管修补材料等,不会引起过敏反应,方便患者使用。
在纤维、造纸等其他领域也有研究应用。
三、结束语随着社会的不断发展,环境污染和资源短缺将是我们无法避免的问题,将对人类的生存和发展构成严重的威胁。
生物可降解塑料塑料的研究和使用可以避免对环境的破坏,解决能源危机,是一条可持续发展的绿色之路,将是我们未来发展的方向。