带电粒子的偏转

合集下载

带电粒子在电场中的偏转

带电粒子在电场中的偏转
U 2l qUl 2 y 2 2mv0 d 4U 1d
2
tan
eU 2l U 2l 2 mv0 d 2U 1d
2. 两个结论:
3.两种方法:
C
eU L h 2 md v0
2
先找到物理量表达式
h eL 2 U 2mdv0
2
先看常量后看变量
强化练习
qUl tan 2 mv0 d
2、质量为m、带电量为q的粒子以初速度v从中线垂
直进入偏转电场,刚好离开电场,它在离开电 场后偏转角正切为0.5,则下列说法中正确的是 A、如果偏转电场的电压为原来的一半,则粒子离 √ 开电场后的偏转角正切为0.25 B、如果带电粒子的比荷为原来的一半,则粒子离 √ 开电场后的偏转角正切为0.25 C、如果带电粒子的初速度为原来的2倍,则粒子 离开电场后的偏转角正切为0.25 D、如果带电粒子的初动能为原来的2倍,则粒子 √ 离开电场后的偏转角正切为0.25
二、加速和偏转一体 _ + + + + + -q m
U1
vy
+
+
y
φ
v0
U2
析与解
对加速过程由动能定理: qU1 2 mv0 qUl 2 2 U 2l 2 mv0 2qU1 y 2 2mv0 d 4U 1d eU 2l U 2l tan 2 2U 1d mv0 d
第二个结 - - - - - 论 L 1
侧移
U F
v0 v
l
试根据类平抛运动的知识,推导: 偏移量 y和偏转角θ
vy
偏转角
带电粒子的偏转——类平抛运动 1.加速度:
2.飞行时间:
3.侧移距离: 4.偏转角:

带电粒子先加速后偏转公式

带电粒子先加速后偏转公式

带电粒子先加速后偏转公式在咱们学习物理的奇妙世界里,带电粒子先加速后偏转的公式那可是相当重要的一部分。

咱先来说说带电粒子的加速。

当带电粒子在电场中加速时,我们可以用动能定理来描述这个过程。

假设带电粒子带电荷量为 q ,经过的电压差为 U ,那么根据动能定理,粒子获得的动能增量就等于电场力做的功,也就是 qU 。

所以,末速度 v 的平方就等于初速度 v₀的平方加上 2qU/m 。

这里的 m 是粒子的质量。

再讲讲带电粒子的偏转。

当带电粒子进入偏转电场时,它就会在电场力的作用下发生偏转。

假设偏转电场的电场强度为 E ,粒子在电场中的运动时间为 t ,粒子的水平位移为 x ,竖直位移为 y 。

那咱们来仔细分析一下这个偏转过程。

粒子在水平方向上做匀速直线运动,速度就是它进入偏转电场时的水平初速度 v₀,所以水平位移x = v₀t 。

在竖直方向上,粒子受到电场力的作用做匀加速直线运动,加速度 a = qE/m 。

竖直位移 y = 1/2at²。

我记得之前给学生们讲这个知识点的时候,有个特别有趣的事儿。

当时有个学生,叫小明,他怎么都理解不了为啥带电粒子会这样偏转。

我就给他打了个比方,我说这带电粒子就像个调皮的小孩子,在电场这个大游乐场里,被电场力这个“大力士”拉着到处跑。

然后我在黑板上一步一步地给他推导公式,边推导边解释每个量的含义。

我能看到小明那紧皱的眉头慢慢舒展开,眼睛里也开始有了亮光。

最后他恍然大悟,大声说:“老师,我懂啦!”那一刻,我心里别提多有成就感了。

回到带电粒子偏转的公式,通过一些数学推导和整理,我们可以得到一些更常用的表达式。

比如,偏转角度的正切值tanθ = at/v₀。

总之,带电粒子先加速后偏转的公式虽然看起来有点复杂,但只要咱们理解了其中的物理过程,搞清楚每个量的来龙去脉,就能够轻松应对相关的问题啦。

在学习的道路上,可别被这些公式吓住,要像勇敢的探险家一样,去探索其中的奥秘!相信大家都能在物理的世界里畅游,感受知识带来的乐趣。

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。

《带电粒子的偏转》 说课稿

《带电粒子的偏转》 说课稿

《带电粒子的偏转》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《带电粒子的偏转》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析“带电粒子的偏转”是高中物理选修3-1 中电场这一章节的重要内容。

这部分知识是对电场性质和力学知识的综合应用,具有较强的综合性和实践性。

通过对带电粒子在电场中的偏转运动的研究,学生能够深入理解电场力的作用效果,掌握运用牛顿运动定律和运动学公式解决问题的方法。

同时,也为后续学习带电粒子在复合场中的运动奠定了基础。

本节课在教材中的地位十分重要,它不仅是知识的延伸和拓展,更是培养学生综合分析问题和解决问题能力的重要环节。

二、学情分析学生在之前的学习中,已经掌握了电场的基本概念、电场力的性质和能的性质,以及牛顿运动定律和运动学公式等相关知识。

但是,对于带电粒子在电场中的偏转运动,学生可能会感到抽象和难以理解。

在学习能力方面,高中生已经具备了一定的逻辑思维能力和抽象思维能力,但对于复杂的物理问题,还需要进一步的引导和训练。

三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)学生能够理解带电粒子在匀强电场中的偏转规律。

(2)掌握带电粒子偏转问题的分析方法和计算方法。

2、过程与方法目标(1)通过对带电粒子偏转问题的分析和推导,培养学生运用物理规律解决实际问题的能力。

(2)通过实验观察和理论分析相结合的方法,提高学生的观察能力和思维能力。

3、情感态度与价值观目标(1)让学生体会物理知识与实际生活的紧密联系,激发学生学习物理的兴趣。

(2)培养学生严谨的科学态度和实事求是的精神。

四、教学重难点1、教学重点(1)带电粒子在匀强电场中的偏转规律。

(2)带电粒子偏转问题的分析方法和计算方法。

2、教学难点(1)带电粒子偏转运动的综合分析。

(2)运用数学知识处理物理问题的能力。

五、教法与学法为了实现教学目标,突破教学重难点,我将采用以下教法和学法:1、教法(1)讲授法:讲解带电粒子偏转的基本概念和规律,使学生建立起初步的认识。

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。

M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。

高中物理课件-加速和偏转电场

高中物理课件-加速和偏转电场

vy v
求: 偏转角θ和偏移量y
偏转角
三、带电粒子的加速与偏转
+++++++++
A
B
+
++ v0
F电
--------
y v0
++ θ
U0
tan U1l
l y U1l 2 vy
v
2U 0 d
4U0d
见骄子P169考点三解题技巧
三、带电粒子的加速与偏转
+++++++++
A
B
+
++ v0
F电
--------
P (x,y)
α vx
内水平位移的中点。
y
vy v
xoB
xBA
xoA 2
时间为t 时,物体运动到点P处
三、带电粒子的加速与偏转
+++++++++
A
B
+
++ v0
F电
--------
l
U0 P169变式2、典例5 P36611
光屏
y1
++ θ v0
y
y2
vy v
+
l2
四、示波管工作原理 使电子沿Y
一、带电粒子的加速 二、带电粒子的偏转
一、带电粒子的加速
A
B
E +
1
qU0 = 2
mv2
v 2qU0 m
U0

带电粒子在电场中的加速和偏转的运动

带电粒子在电场中的加速和偏转的运动资料1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量. 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动).(2)运动的分析方法(看成类平抛运动):①沿初速度方向做速度为v 0的匀速直线运动.②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少?解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qUL at 0== 离子离开偏转电场时的偏转角度θ可由下式确定:d mv qUL v v 200Ítan ==θ 电荷射出电场时的速度的反向延长线交两板中心水平线上的位置确定:如图所示,设交点P 到右端Q 的距离为x ,则由几何关系得:x y /tan =θ21/2/tan 20202===∴dmv qLU d mv U qL y x θ电荷好像是从水平线OQ 中点沿直线射出一样,注意此结论在处理问题时应用很方便.例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .U edhB .edUhC .dh eUD .d eUh 解析:电子从O 点到A 点,因受电场力作用,速度逐渐减小,根据题意和图示可知,电子仅受电场力,由能量关系:OA eU mv =2021,又E =U /d ,h d U Eh U OA ==,所以deUh mv =2021 . 故D 正确. 例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计)分析:带电粒子在水平方向做匀速直线运动,在竖直方向做匀加速运动.电场力做功导致电势能的改变.解析:水平方向匀速,则运动时间t =L/ v 0 ①竖直方向加速,则侧移221at y =② 且dmqU a = ③ 由①②③得2022mdv qUL y = 则电场力做功20222220222v md L U q mdv qUL d U q y qE W =⋅⋅=⋅= 由功能原理得电势能减少了2022222v md L U q 例4如图1—8-5所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转图1—8—4电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时的横向偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tgθ解析:①不管加速电场是不是匀强电场,W =qU 都适用,所以由动能定理得:0121mv qU = mqU v 20=∴ ②由于偏转电场是匀强电场,所以离子的运动类似平抛运动.即:水平方向为速度为v 0的匀速直线运动,竖直方向为初速度为零的匀加速直线运动.∴在水平方向102qU m l v l t == ③d U E 2=F =qE =.d qU 2④md qU m F a 2== ⑤.mU q d l U qU m l md qU at v y 121222=•== ⑥1242222212220U md U ql U qd v v v y +=+=⑦1221222422121dU U l qU m l md qU at y =•==(和带电粒子q 、m 无关,只取决于加速电场和偏转电场)解题的一般步骤是:(1)根据题目描述的物理现象和物理过程以及要回答问题,确定出研究对象和过程.并选择出“某个状态”和反映该状态的某些“参量”,写出这些参量间的关系式.(2)依据题目所给的条件,选用有关的物理规律,列出方程或方程组,运用数学工具,图1—8-5对参量间的函数关系进行逻辑推理,得出有关的计算表达式.(3)对表达式中的已知量、未知量进行演绎、讨论,得出正确的结果.练习:一、选择题(不定项)某电场的部分电场线如图所示,A、B是一带电粒子仅在电场力作用下运动轨迹(图中虚线)上的两点,下列说法中正确的是: ( )A.粒子一定带负电 B.粒子在A点的加速度大于它在B点的加速度C.粒子不可能是从B点向A点运动 D.电场中A点的电势高于B点的电势2、一带电粒子射入一固定正点电荷Q形成的电场中,并沿图中虚线由a运动到b点,a、b 两点到点电荷Q的距离分别为r a、r b,且r a>r b,若粒子只受电场力作用,这一过程中: ()A.电场力对粒子做负功 B.粒子在b点电势能小于在a点的电势能C.粒子在b点动能小于在a点的动能 D.粒子在b点加速度大于在a点的加速度3、如图5所示,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。

带电粒子在电场中偏转的三个重要结论—打印

带电粒子在电场中偏转的三个重要结论L板间距例:如图所示,质量为m电荷量为q的带电粒子以平行于极板的初速度v离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量.结论一、不同带电粒子从静止进入同一电场加速后再垂直进入同一偏转电场,射出时的偏转角度和位移偏转量y是相同的,与粒子的q、m无关。

例1.如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是()A.U1变大、U2变大 B.U1变小、U2变大C.U1变大、U2变小 D.U1变小、U2变小结论二、粒子垂直进入电场偏转射出后,速度的反向延长线与初速度延长线的交点为粒子水平位移中点。

(粒子好像是从中点直线射出!)结论三、粒子垂直飞入电场偏转射出时,速度偏转角正切值()等于位移偏转角正切值()的两倍()。

例3.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。

上述m、q、l、t0、B为已知量。

(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。

(2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时刻进入两极板的带电粒子在磁场中的运动时间最短?求此最短时间。

带电粒子在磁场中的偏转

带电粒子在有界磁场中运动当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在匀强电场中的偏转(解析版)

带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。

现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。

【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。

(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。

【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】 一. 教学内容: 复习第六章 电场——带电粒子在电场中的运动 电容器

二. 重点、难点: (一)带电粒子在电场中的运动 1. 带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做匀加(减)速直线运动。 2. 带电粒子(若重力不计)由静止经电场加速如图所示,可用动能定理:

表达式为

3. 带电粒子在匀强电场中的偏转(重力不计),如图所示。 (1)侧移:结合加速时的表达式可得: ,可知在加速电压、偏转极板的长度和极板间距不变的情况下,侧向位移y与偏转电压成正比。

(2)偏角: 注意到,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。这一点和平抛运动的结论相同。两样,在加速电压、偏转极板的长度和极板间距不变的情况下,偏角的正切与偏转电压成正比。 (3)穿越电场过程的动能增量:(注意,一般来说不等于)

(二)电容器 1. 电容器:两个彼此绝缘又相隔很近的导体都可以看成一个电容器。 2. 电容器的电容:电容是表示电容器容纳电荷本领的物理量,定义式(比值定义法),电容是由电容器本身的性质(导体大小、形状、相对位置及电介质)决定的。

3. 平行板电容器的电容的决定式是:,其中,k为静电力常量,S为正对面积,是电介质的介电常数。 4. 两种不同变化:电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化。这里一定要分清两种常见的变化: (1)电键K保持闭合,则电容器两端的电压U恒定(等于电源电动势),这种情况下

带电荷量,而,。 (2)充电后断开K,保持电容器带电荷量Q恒定,这种情况下

5. 常用电容器有:固定电容器和可变电容器,电解电容器有正负极,不能接反。

【典型例题】

电场中常见问题: (一)平行板电容器的动态分析 平行板电容器动态分析这类问题关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量。 讨论电容器动态变化问题时一般分两种基本情况: 1. 充电后仍与电源连接,则两极板间电压U保持不变。 2. 充电后与电源断开,则带电荷量Q保持不变。 进行讨论的物理依据主要有:①平行板电容器的电容C与极板距离d,正对面积S,介质介电常数间的关系;②平行板电容器内部是匀强电场或正比于电荷面密度;③电容器所带电荷量。 处理平行板电容器E、U、Q变化问题的基本思路是: (1)确定不变量:C与电源相连时,极板间电压不变;电容器先充电后与电源脱离,所带电量不变。 (2)用决定式分析平行板电容器电容的变化。 (3)用定义式分析电容器所带电量或两极板间电压的变化。 (4)用分析电容器极板间场强的变化。 例1. 两块大小、形状完全相同的金属平板平行放置,构成一平行板电容器,与它相连接的电路如图所示。接通开关K,电源即给电容器充电,则( ) A. 保持K接通,减小两极板间的距离,则两极板间电场的电场强度减小 B. 保持K接通,在两极板间插入一块介质,则极板上的电荷量增大 C. 断开K,减小两极板间的距离,则两极板间的电势差减小 D. 断开K,在两极板间插入一块介质,则两极板间的电势差增大

解析:K始终接通,则电容器上电压U不变,板间距离d减小,场强增大,A错。插入电介质后,由可知,电容C增大,由,U不变,则电荷量Q增大,B对。

断开K后,电容器所带电荷量Q不变,减小d,电容C增大,由可知,电势差U减小,C对。插入电介质,则电容C增大,板间电势差U减小,D错。 答案:BC

(二)带电粒子在电场中平衡问题或做匀变速直线运动 带电粒子在电场中平衡问题或做匀变速直线运动问题与力学中的这类问题的处理方法相同,只是受力分析时多出一个电场力(对于基本粒子一般还忽略其重力)。 在对带电粒子进行受力分析时,要注意两点: 1. 要掌握电场力的特点,如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电荷量和电性有关;在匀强电场中,同一带电粒子所受的电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受的电场力的大小和方向都可能不同;等等。 2. 是否考虑重力要依据具体情况而定: (1)基本粒子:如电子、质子、粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。 (2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。 例2. 如图所示,水平放置的A、B两平行金属板相距h,上板A带正电,现有质量为m,带电量为+q的小球在B板下方距离为H处,以初速度竖直向上从B板小孔进入板间电场,欲使小球刚好打到A板,A、B间电势差为多少

解析:先分析物理过程:小球运动过程分两个阶段,在B板下方时,只受重力作用,做竖直向上抛运动;进入电场后,受向下的重力、电场力作用,向上做匀减速直线运动,选用不同的方法解题。 解法一:力的观点 对第一个过程: 对第二个过程:设加速度为a,mg+Eq=ma 由题意有: 注意到平行板电容器内部匀强电场的场强与电势差的关系,有 联立以上各式解得: 解法二:能的观点 将动能定理用于运动全过程,注意在全过程中重力做负功,在第二个运动中电场力做负功,则得:

解得:

(三)带电粒子在电场中的偏转 1. 运动特点 电场中偏转,一般指带电粒子以速度垂直进入匀强电场后的运动,该运动类似平抛运动,分析时一般都是分解为两个方向的分运动来处理,即垂直于电场方向的匀速运动

()和平行于电场方向的匀加速直线运动(),并且通过两分运动时间的同时性得出。 2. 规律 (1)偏转距离规律 (2)偏转角规律 (3)同一方向同位置入射的带电粒子,不论m、q、如何,其射出电场时的方向的

延长线交点一定在金属板的L处的O点(因),如图所示。 若我们从右向左侧看去,会感觉带电粒子像是从O点沿直线射出一样。

3. 讨论:从侧移量y与偏转角的表达式可以看出决定它的大小因素有三个:带电粒子自身的参量——质量m、电量q;电场自身的因素——电势差U;以及带电粒子进入电场时的初始条件——初速度。 (1)对于同一粒子,以不同的速度进入同一偏转电场,匀强电场的参量L、d、U均为

定值,所以侧移距离。粒子进入偏转场时的初速率越大,偏转距离越小;初速率越小,偏转距离越大。 若粒子以相同速度进入电场,偏转电压U不同时,则。故调节偏转电压U可使偏转距离y符合要求。在示波管和显像管中都是调节偏转电压U的大小来调节电子打在荧光屏上的位置。 (2)对不同粒子进入同一偏转电场,则L、d、U相同。粒子偏转距离y与粒子自身参量q、m、有关。按粒子的初动能、初动量、来自前级同一加速电场分别讨论偏转距离。

①当初速度相同时: ②当初动能相同时:

③当初动量相同时: ④当粒子从静止开始在同一加速电场加速时

可见,经同一电场加速,又在同一电场中发生偏转的不同带电粒子,穿出电场时的偏转距离相同(偏转角度也相同)。 例3. 如图所示为真空示波管的示意图,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压加速,从A板中心孔沿中心线KO射出,然后进入由两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入偏转电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P点。已知M、N两板间的电压为,两板间的距离为d,板长为,板右端到荧光屏的距离为,电子质量为m,电荷量为e。求: (1)电子穿过A板时的速度大小; (2)电子从偏转电场射出时的侧移量; (3)P点到O点的距离。

解析:(1)设电子经电压加速后的速度为,根据动能定理得:,解得:。 (2)电子以速度进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动。设偏转电场的电场强度为E,电子在偏转电场中运动的时间为,电子的加速度为a,离开偏转电场时的侧移量为,根据牛顿第二定律和运动学公式

得:, 解得:。 (3)设电子离开偏转电场时沿电场方向的速度为,根据运动学公式得。 电子离开偏转电场后做匀速直线运动,设电子离开偏转电场后打在荧光屏上所用的时间为,电子打到荧光屏上的侧移量为,如图所示。

由, 解得: P到O点的距离为

(四)带电粒子在复合场中的运动 1. 处理带电粒子在电场中运动的一般步骤: (1)分析带电粒子的受力情况,尤其要注意是否应该考虑重力,电场力是否为恒力等。 (2)分析带电粒子的初始状态及条件,确定带电粒子做直线运动还是曲线运动。 (3)建立正确的物理模型,进而确定解题方法是动力学、能量观点,还是动量守恒、能量守恒等。 (4)利用物理规律或其他手段(如图线等)找出物理量间的关系,建立方程组。 2. 带电粒子受力分析注意点: (1)对于基本粒子如电子、质子、原子核及离子等,一般不考虑重力。 (2)对于带电的颗粒、液滴、油滴、小球、尘埃等,除在题目中有明确说明或暗示外,一般均应考虑重力。 (3)除匀强电场中电荷量不变的带电粒子受恒定的电场力外,一般电场中的电场力多为变力。 注:如带电粒子是恒力作用下(包含电场力)的曲线运动,则运用运动的分解和合成往往可以简化问题。否则,若是变力作用的情况下,往往用能量的观点考虑。 (4)把复合场等效为一个等效力场,是处理问题的一个好方法。 例4. 如图,一带正电的小球,系于长为l的不可伸长的轻线一端,线的另一端固定在O点,它们处在匀强电场中,电场的方向水平向右,场强的大小为E。已知电场对小球的作用力的大小等于小球的重力。现先把小球拉到图中的处,使轻线拉直,并与场强方向平行,然后由静止释放小球。已知小球在经过最低点的瞬间,因受线的拉力作用,其速度的竖直分量突变为零,水平分量没有变化,则小球到达与点等高的点时速度大小为( ) A. B. C. D. 0

解析:根据题意,当把小球拉到图中的处,由静止释放小球时,在电场力和重力的合力作用下,由静止开始做匀加速直线运动,因为qE=mg,所以运动方向与水平方向成角。因此运动到O点正下方的最低点恰与绳绷直,其速度的竖直分量突变为零(如图所示),只剩下水平分量,接着开始做圆周运动,对第一个过程,求出小球在最低点速度的水平分量。 由水平方向的分运动可知:

对第二个过程的圆周运动,由动能定理可得:

相关文档
最新文档