带电粒子在磁场中的偏转

合集下载

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
荣成四中高二物理组
一、带电粒子在匀强磁场中的运动规律
1、带电粒子以一定的初速度进入匀强磁场, 带电粒子将做怎样的运动?
(1)当v//B , F=0 ,带电粒子以速度v做匀速直线运 动 (2)当v⊥B,带电粒子以入射速度v做匀速圆周运动
洛伦兹力提供向 心力:
周期:
qvB mv 2 / r T 2r 2m
① 粒子进出单一直边界磁场, 入射角等于出射角。 ② 粒子进出圆边界磁场沿半径方向入,沿半径方向出。
作业题答案:
• 1D 2BD 3B 4C 5B 6A 7ABC 8ABCD 9D 10 ACD 11C
• 12 3.2X10-7m/s (π/96)X10-6S
• 0.2 0.1 3 m
• 13 V>Bqd/m t= m/2Bq
• 14 v>dBq/m( 1 cos ) • 15 U=B2L2e/2msin2
第11题、
t
2
T
T 2r 2m
v qB
R tan300 r
a VR o
r
600
c V
600
v qB
半径:
r
mv qB
2、粒子在磁场中运动的解题思路:
找圆心
利用v⊥R 利用弦的中垂线
画轨迹 利用轨迹和V相切
求半径 求时间
几何法求半径
向心力公式求半径
t
2
T
T 2r 2m
v qB
⑴粒子在磁场中运动的角度关系
偏向角 弦切角 圆心角
角度关系:2vຫໍສະໝຸດ A BvO
⑵粒子进入有界磁场的特点

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
带电粒子在磁场中的偏转是指在外加磁场作用下,带电粒子运动轨迹发生偏移的现象。

它是一种重要的物理现象,也是核物理学、凝聚态物理学、星系结构形成以及太阳物理学等诸多领域中最基本的现象之一。

在现实世界中,带电粒子的运动通常会受到外加磁场的影响,这种由外加磁场引起的偏转现象,即为“带电粒子在磁场中的偏转”。

带电粒子在磁场中的偏转,是带电粒子受到磁场作用时产生的一种物理现象,其原理可以由电磁力学来描述。

当外加磁场与带电粒子的运动方向不平行,带电粒子就会受到一个名为磁力线的力,这个力的大小与带电粒子的速度、外加磁场强度以及粒子与外加磁场方向之间的夹角有关。

这个磁力线的方向,永远是指向能让粒子的运动能量增加的方向,而磁力线的大小,则与粒子的速度成正比。

由于磁力线的作用,带电粒子的运动轨迹会受到偏转,这种偏转的大小与粒子的电荷量、其速度以及外加磁场的强度有关,并且随着粒子的磁场位置变化而变化。

由于外加磁场的方向是不断变化的,因此带电粒子在磁场中的运动轨迹也会发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

综上所述,带电粒子在磁场中的偏转是一种重要的物理现象,其本质是由外加磁场引起的磁力线对带电粒子的运动造成的影响,而这种影响会使得粒子的运动轨迹发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

它是核物理学、凝聚态物理学、星系结构形成以及太阳物理学中最基本的现象之一,对理解物质的性质、结构以及运动机制有着重要意义。

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转

一、知识归纳1、 带电粒子在电场中运动 (1)匀加速运动:2022121mv mv qU t -=注意1:求解时间时,用运动学公式注意2:求解某一方向运动时,也可利用动能定理(2)类平抛运动: ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====-==+======αθtan 22tan 21212102002022220x yt v at v at v v mv mv y d U q qEy y v v at v dm Uqm Eq a at y tv x y y o y 或2、带电粒子在磁场中运动(1)匀速直线运动:利用平衡条件。

(2)匀速圆周运动:⎪⎪⎪⎩⎪⎪⎪⎨⎧=====⇒=Bq mT t Bq mv R T Bq mv R R v m qvB θπθππ2222,其中R 、θ主要通过几何关系确定。

注意1:确定圆心方法:利用三角函数、勾股定理等注意2:确定圆心角方法:利用速度的偏转角等于圆周运动的圆心角等 3、圆周运动的圆心确定方法法1:已知轨迹上两点的速度方向 法2:已知轨迹上的两点和其中一点的速度方向 法3:已知轨迹上一点的速度方向和半径R 法4:已知轨迹上的两点和半径R 4、带电粒子在有界磁场中运动的极值问题(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速度v 一定时,弧长(或弦长)越大,圆周角越大,则时间越长。

5、对称规律解题法(1)从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。

(2)在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

(3)在圆形磁场区域内,不沿径向射入的粒子,也满足对称性。

1. 关于带负电的粒子(重力可忽略不计),下面说法中准确的是① 沿电场线方向飞入匀强电场,电场力做功,动能增加 ② 垂直电场线方向飞入匀强电场,电场力做功,动能增加 ③ 垂直磁感线方向飞入匀强磁场,磁场力不做功,动能不变 ④ 沿磁感线方向飞入匀强磁场,磁场力做功,动能增加 A. ①② B. ②③ C. ③④ D. ①④2、如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上。

带电粒子在磁场中偏转历年高考题详解

带电粒子在磁场中偏转历年高考题详解

7.〔08四川卷〕24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。

整个空间存在匀强磁场,磁感应强度方向竖直向下。

一电荷量为q 〔q >0〕、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。

球心O到该圆周上任一点的连线与竖直方向的夹角为θ〔0<θ<)2π。

为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。

重力加速度为g 。

解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。

P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率。

洛仑兹力f 的方向指向O ’。

根据牛顿第二定律0cos =-mg N θ ②θsin sin 2R v m N f =- ③ 由①②③式得0cos sin sin 22=+-θθθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22gR m qBR -⎪⎭⎫ ⎝⎛=∆≥0 ⑤ 由此得B ≥θcos 2R g q m⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q mB =⑦ 此时,带电小球做匀速圆周运动的速率为mR qB v 2sin min θ= ⑧ 由⑦⑧式得θθsin cos gR v = ⑨ 8.〔08重庆卷〕25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角〔纸面内〕从C 射出,这些离子在CM 方向上的分速度均为v 0.假设该离子束中比荷为q m的离子都能会聚到D ,试求: 〔1〕磁感应强度的大小和方向〔提示:可考虑沿CM 方向运动的离子为研究对象〕; 〔2〕离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; 〔3〕线段CM 的长度.解析:〔1〕设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由12R '=200mv qv B R = R=d得B =0mv qd磁场方向垂直纸面向外〔2〕设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0得v =0cos v θR ′=mv qB=cos d θ 方法一:设弧长为st =s vs=2(θ+α)×R ′ t =02v R '⨯+)(αθ 〔09年全国卷Ⅰ〕26〔21分〕如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外。

带电粒子的偏转公式

带电粒子的偏转公式

带电粒子的偏转公式在物理学中,带电粒子的偏转公式可是一个相当重要的知识点呢!咱们先来说说带电粒子在电场中的偏转。

想象一下,一个小小的带电粒子,就像一个调皮的小精灵,在电场的作用下左冲右突。

这时候,就轮到我们的偏转公式大显身手啦!带电粒子在电场中的偏转公式为:y = (qUL²) / (2mdv₀²) 。

这里的y 表示带电粒子在电场中的偏转位移,q 是粒子的电荷量,U 是电场的电压,L 是电场的长度,m 是粒子的质量,v₀是粒子进入电场时的初速度。

咱们来举个例子感受一下这个公式的威力。

假设在一个实验室里,有一个带电的小粒子,电荷量为 1.6×10⁻¹⁹库仑,质量是 9.1×10⁻³¹千克,它以 1×10⁶米每秒的初速度水平进入一个长度为 0.1 米,电压为 100 伏的电场。

这时候,我们把这些数值代入公式,就能算出这个小粒子在电场中的偏转位移啦。

还记得我当年在学校学习这个知识点的时候,老师为了让我们更深刻地理解,专门在课堂上做了一个实验。

老师拿出一个类似示波器的装置,在上面调整各种参数,然后让我们观察带电粒子的运动轨迹。

那时候,我们一群同学都瞪大了眼睛,紧紧盯着那个小小的屏幕,心里充满了好奇和期待。

当看到带电粒子按照我们计算的轨迹偏转时,那种兴奋和成就感简直难以言表。

再来说说带电粒子在磁场中的偏转。

带电粒子在磁场中的偏转公式是:r = mv / (qB) 。

这里的 r 表示带电粒子在磁场中的偏转半径,m 还是粒子的质量,v 是粒子的速度,q 是电荷量,B 是磁场的磁感应强度。

比如说,有一个带电粒子,质量为 1×10⁻²⁷千克,电荷量为1.6×10⁻¹⁹库仑,速度是 1×10⁷米每秒,处在一个磁感应强度为 1 特斯拉的磁场中。

我们把这些数值代入公式,就能算出偏转半径啦。

学习带电粒子的偏转公式,就像是掌握了一把解开物理世界神秘大门的钥匙。

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
直线边界粒子进出磁场具有对称性voobbvvvvbvoabc例11线如图直线mn上方存在范围足够大的磁感应强度为b的匀强磁场一质子质量为m为电荷量为e以速度v从从o点沿与mn成成30角的方向射入磁场中若不计质子重力则a
一、轨道圆的“三个确定”:
(1)如何确定“圆心”
①由两点 O 和两线确 定圆心 。 M
3
312
A. 3 B. 2 C.2 D.3
O1 1 甲 乙
2
O2
【例 3】如图,半径为 R 的圆是一圆柱形匀强磁场区域的横截面(纸面), 磁感应强度大小为 B,方向垂直于纸面向外,一电荷量为 q(q>0)、质量 为 m 的粒子沿平行于直径 ab 的方向射入磁场区域,射入点与 ab 的距 离为R2.已知粒子射出磁场与射入磁场时运动方向间的夹角为 60°,则粒 子的速率为(不计重力)( ).
(1)四个点: 入射点、出射点、轨迹圆心和入射速度直线与出射速度
直线的交点. (2)三个角:
速度偏转角、圆心角、弦切角,其中偏转角等于圆心角, 也等于弦切角的2倍.
情形一 直线边界(进出磁场具有对称性) 1.直线边界(粒子进出磁场具有对称性)
v
B
v
B
O
O
a
v
bv
B v
c
v
O
【例 1】如图,直线 MN 上方存在范围足够大的磁感应强度为 B 的匀
强磁场,一质子(质量为 m、电荷量为 e)以速度 v 从 O 点沿与 MN 成
30°角的方向射入磁场中,若不计质子重力,则( )
qBR qBR 3qBR 2qBR A. 2m B. m C. 2m D. m
v 审题设疑
(1)粒子刚进入磁场时,所受洛伦兹力的方

磁场对带电粒子轨迹的偏转效应

磁场对带电粒子轨迹的偏转效应

磁场对带电粒子轨迹的偏转效应在物理学领域中,我们经常会接触到磁场与带电粒子的相互作用。

这种相互作用产生了一种被称为磁场对带电粒子轨迹的偏转效应。

在这篇文章中,我将介绍磁场对带电粒子的影响机制以及相关的实际应用。

首先,我们需要了解磁场与带电粒子之间的相互作用原理。

根据安培定律,当带电粒子在磁场中运动时,会受到一个垂直于其速度方向和磁场方向的洛伦兹力的作用。

这个力的方向垂直于速度方向和磁场方向,并且大小随着粒子带电量和速度的增加而增加。

洛伦兹力的方向使带电粒子的运动轨迹发生弯曲,即带电粒子受到磁场力的作用而偏转。

实际上,这种偏转效应在很多领域中都有重要的应用。

其中一个典型的例子是粒子加速器。

当带电粒子被加速到高速时,它们在磁场中的偏转效应会使其运动轨迹变得弯曲。

利用这个原理,粒子加速器可以通过调节磁场的大小和方向,来控制带电粒子的运动轨迹,从而将其加速到更高的能量水平。

此外,在医学上也存在磁场对带电粒子轨迹的偏转效应的应用。

例如,在核磁共振成像(MRI)中,通过使用强磁场来对带电粒子(如氢离子)施加一个恒定的力,可以使其运动呈螺旋状,从而产生信号用于成像。

这种技术已经广泛应用于医学诊断领域,成为了一种非侵入性的影像检查方法。

此外,磁场对带电粒子轨迹的偏转效应还在科学研究中扮演着重要的角色。

在高能物理实验中,磁场被用于对带电粒子进行精确的测量和分析。

通过测量带电粒子在磁场中的偏转角度以及轨迹曲线的形状,科学家们能够研究粒子的性质、相互作用以及宇宙中的基本物理规律。

最后,让我们简要探讨一下磁场对带电粒子轨迹的偏转效应的基本过程。

当带电粒子进入磁场区域时,它会受到洛伦兹力的作用,使其运动方向发生变化。

这个偏转角度取决于粒子的电荷量、速度以及磁场的大小。

当粒子的速度越大、电荷量越大或者磁场的强度越大时,其偏转角度也会增大。

除了上述讨论的内容之外,磁场对带电粒子轨迹的偏转效应在许多其他领域也有广泛的应用。

例如,磁共振成像技术在材料科学和地质学中也被使用,用于研究物质的结构和性质。

带电粒子的偏转

带电粒子的偏转

带电粒子的偏转
带电粒子的偏转是指在磁场中,带电粒子受到磁场力的作用而发生的偏转现象。

这个现象在物理学中被广泛应用,比如在核物理、粒子物理、天体物理等领域都有重要应用。

首先,我们需要了解磁场力的作用原理。

磁场力是由磁场对带电粒子的作用力所引起的,其大小和方向都与粒子的电荷量、速度和磁场的强度和方向有关。

当带电粒子进入磁场时,由于磁场力的作用,粒子会发生偏转,其轨迹会呈现出圆弧状或螺旋状。

在实际应用中,带电粒子的偏转可以用来测量粒子的电荷量、质量、速度等物理量。

例如,在粒子物理实验中,通过测量带电粒子在磁场中的偏转,可以确定其电荷量和质量。

在核物理中,通过测量带电粒子在磁场中的偏转,可以确定核的磁矩和核自旋等重要物理量。

此外,带电粒子的偏转还可以用来研究宇宙射线和太阳风等天体物理现象。

宇宙射线中含有大量的高能带电粒子,它们在地球磁场中的偏转轨迹可以被探测器所测量,从而研究宇宙射线的来源和性质。

太阳风中也含有大量的带电粒子,它们在太阳系磁场中的偏转轨迹可以被探测器所测量,从而研究太阳风的来源和性质。

总之,带电粒子的偏转是一种重要的物理现象,它在物理学的各个领域都有广泛
的应用。

通过对带电粒子在磁场中的偏转轨迹的测量和分析,可以深入研究物质的基本结构和性质,以及宇宙中的各种物理现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

qBR qBR 3qBR 2qBR A. 2m B. m C. 2m . m
v 审题设疑
(1)粒子刚进入磁场时,所受洛伦兹力的方
向怎样?在磁场中运动情况怎样?
(2)“粒子射出磁场与射入磁场时运动方
60°
向间的夹角为60°” 隐含了什么条件?
(3)怎样画辅助线并由几何关系求半径?
规律方法 带电粒子在有界磁场中的常用几何关系
情形三 圆形边界
特点:沿径向射入必沿径向射出.
【例 2】如图示,半径为 R 的圆形区域内存在垂直纸面向外的匀强磁场, C、D 是水平线与圆周的交点,且 CD=R,AO 是水平半径。甲、乙两粒 子从 A 点以不同速度沿 AO 方向同时垂直射入匀强磁场中,甲、乙两粒子 恰好同时分别击中 C、D 两点,不计粒子重力和粒子间的相互作用,则甲、 乙两粒子的速度之比为( )
一、轨道圆的“三个确定”:
(1)如何确定“圆心”
①由两点 O 和两线确 定圆心 。 M
B v
N v
②由一点 O 和三线确 定圆心 。 M
B
N v
(2)如何确定“半径”
方法一:物理方程求解.半径R=mv/Bq; 方法二:几何方法求解.一般由数学知识 (勾股定理、三角函数等)计算来确定.
(3)如何确定“圆心角与时间”
B O
θ
圆心角 M φ v
弦切角
①α=θ=2φ v
α
N
②t=2θπ·T
速度的 偏向角
情形一 直线边界(进出磁场具有对称性) 1.直线边界(粒子进出磁场具有对称性)
v
B
v
B
O
O
a
v
bv
B v
c
v
O
【例 1】如图,直线 MN 上方存在范围足够大的磁感应强度为 B 的匀
强磁场,一质子(质量为 m、电荷量为 e)以速度 v 从 O 点沿与 MN 成
(1)四个点: 入射点、出射点、轨迹圆心和入射速度直线与出射速度
直线的交点. (2)三个角:
速度偏转角、圆心角、弦切角,其中偏转角等于圆心角, 也等于弦切角的2倍.
30°角的方向射入磁场中,若不计质子重力,则( )
A.质子从磁场中射出时距 O 点的距离为mqBv
B.质子从磁场中射出时距 O 点的距离为
3mv qB
C.质子在磁场中运动的时间为35πqmB
r
D.质子在磁场中运动的时间为53πqmB
v
(1)半径:R=mv/Bq
(2)运动时间:t=2θπ·T
情形二 平行边界(存在临界条件)
3
312
A. 3 B. 2 C.2 D.3
O1 1 甲 乙
2
O2
【例 3】如图,半径为 R 的圆是一圆柱形匀强磁场区域的横截面(纸面), 磁感应强度大小为 B,方向垂直于纸面向外,一电荷量为 q(q>0)、质量 为 m 的粒子沿平行于直径 ab 的方向射入磁场区域,射入点与 ab 的距 离为R2.已知粒子射出磁场与射入磁场时运动方向间的夹角为 60°,则粒 子的速率为(不计重力)( ).
相关文档
最新文档