浅析可生物降解泡沫塑料的现状

合集下载

生物降解塑料的发展现状及应用前景探究

生物降解塑料的发展现状及应用前景探究

生物降解塑料的发展现状及应用前景探究摘要:白色污染是环境污染的重要元凶之一,可降解塑料是解决白色污染最直接的手段。

可降解塑料包括生物降解塑料、水降解塑料、光/生物降解塑料等。

为深入了解生物降解塑料的应用及价值,文章研究生物降解塑料的发展历程,并对其未来发展进行展望,一方面推动生物降解塑料的应用,另一方面了解可降解塑料使用规模,为相关人士提供参考。

关键词:生物降解塑料;发展现状;应用前景塑料是现代化工业及人类生活最重要的基础材料之一,由于传统塑料不可降解,可对环境造成可持续性损害,因此可降解塑料的研发及应用成为各国关注的热点课题。

生物降解塑料是可降解塑料的一种,据初步统计,2021年全球生物降解塑料消费量达到1200kt左右,涉及众多行业。

由此可见,生物降解塑料得到极为广泛的应用,成为健康有序地推动产业发展的重点,研究生物降解塑料的发展历程也成为学术界的核心话题之一。

1、生物可降解塑料的发展现状生物降解塑料依照程度划分可分为部分降解、完全降解两种。

部分降解包括淀粉基塑料,完全降解塑料包括聚丙交酯塑料、石油基可降解塑料等。

1.1 PLA聚丙交酯塑料即PLA,通过乳酸直接缩聚制备法制备时成品分子质量较低,适用场景相对受限。

对此,有学者对制备工艺进行优化,即先用乳酸制备丙交酯,随后在催化作用下进行开环聚合,制备分子量约为700000的聚丙交酯塑料。

乳酸分子含有手性碳原子、光学异构体,所以聚丙交酯也可称为聚左旋乳酸。

聚左旋乳酸为部分结晶性聚合物,具有质地硬的特点。

相比传统塑料,聚丙交酯没有毒害作用,和生物相容性良好,并且透明度高,满足塑料制品的使用需求。

202等国。

美国企聚丙交酯生产企业以NatureWorks为主,是全球最大的聚丙交酯生产商,产能约为每年180000吨。

我国聚丙交酯生核心生产企业坐落在浙江,浙江海正生物材料集团产能约65000吨。

目前,我国兴起了大量的聚丙交酯生产企业,并着力研发新型生物可降解塑料,如山东同邦、浙江友诚、安徽丰源泰富等。

生物降解性塑料的研究概况

生物降解性塑料的研究概况

越引起世界各 国的重视。在 众多的环境 污染 中, 以 石油和天然气为资源合成 的通用塑料废 弃物, 特别
是塑料 包装 材料 和 泡 沫塑料 制 品 , 已对 环 境造 成 了 严 重的“ 白色污 染 ” 目前广 泛使用 的通 用塑料 主要
是聚乙烯 、 聚丙烯 、 聚苯乙烯 , 聚氯乙烯等 , 它们在 自
中图分类号 : 26 4 眄 0 .
R曲 A = Bs
文献标识鹅 : A

文章编号 :03— 22 2o )4一3 2— 2 10 6o {0 'o (4 0 2 0
Stain0 i to fⅨ 0 耀 d a d 曲

b ti h r i i t t i ' o CT T eb ctp so id rd b ep ̄ t sa dt er rs n s ac n p l a o i a o e ̄it d c d e h a y e f o ga a l ls c n J p ee t e e r ha d a p c f  ̄ s u t nw l nr u e A fw
然界 中都很稳 定 , 以降解 。解决 塑 料 污染 问题 的 难
结 晶性过高 , 机械性能差 , 耐溶剂性 差, 容易受热分 解 等特点 , 至今仍 没有得 到实 际应用 。 目前 商 品 化 的微 生 物 合 成 型 生 物 降解 性塑 料
PB H V最 先 由英 国 II 司研 制 , c公 商品 名 Boo。P i l H p
B V是 3 羟基 丁酸酯( B 和 3 一 H ) 一羟基戊酸酯(Ⅳ) } 的无 规共 聚 物 , II 司 以丙 酸 和葡 萄糖 为食 物 是 C公 碳源在 A agnsE tpa clee ur hs细菌 发 酵作 用 下合 成 的 i o

生物可降解塑料PHA了解一下。

生物可降解塑料PHA了解一下。

⽣物可降解塑料PHA了解⼀下。

作者:谢⽟曼今天你是做饭还是叫外卖?你是否还陷⼊在既不想洗碗⼜不想使⽤⼀次性餐具的纠结中?想⽤⼀次性餐具⼜害怕污染环境怎么办?不要怕!⽣物可降解塑料PHA了解⼀下。

试想⼀下,如果将⼀次性餐具的材料都换成⽣物可降解塑料,吃完就扔,既不⽤洗碗还不⽤担⼼污染环境,是不是太幸福了!01 塑料之“伤”塑料⾃问世以来,因其⽅便耐⽤的特点受到⼈们⼀致追捧,并且对它的依赖越来越深。

然⽽,塑料之所以耐⽤是因为它们不可⽣物降解,这也就导致陆地和海洋中积累了⼤量的塑料废物。

据报道,在海洋垃圾总量中,塑料垃圾约占80%, 有海洋塑料垃圾摄⾷记录的海洋⽣物达600种以上,⼀年海洋污染的⾃然资本成本保守估计约为每吨海洋塑料3300美元⾄33000美元。

截⽌到2017年,全球塑料产量已达到⼤约3.48亿吨。

此外,塑料⽣产和燃烧的过程中会产⽣⼤量温室⽓体,使得地球上的环境更加恶化,塑料问题俨然成为威胁⽣态系统和⼈类健康的全球危机之⼀。

各种环境中的塑料垃圾02 什么是⽣物可降解塑料?那到底什么是⽣物可降解塑料?顾名思义,⽣物可降解塑料就是指拥有塑料性能且在⽣物化学作⽤过程或⾃然环境中可以被微⽣物降解的材料,其中包括⼀些化学合成聚合物、淀粉基⽣物可降解塑料以及微⽣物合成的聚酯类化合物等。

化学合成聚合物的代表有聚⼄⼆醇酸、聚乳酸、聚对⼰内酯、聚⼄烯醇、聚环氧⼄烷等等。

这类材料⽬前已经有⼀定的应⽤,但还是不能与塑料所有的性能相抗衡。

淀粉基⽣物可降解塑料主要是向常规的塑料中加⼊淀粉作为填充剂和交联剂,以产⽣淀粉和塑料的混合物(例如,淀粉聚⼄烯), 再利⽤⼟壤微⽣物很容易降解淀粉的性质从⽽分解聚合物, 这会显著减少塑料的降解时间。

但这种塑料在淀粉脱除后留下的碎⽚不易降解,在环境中会存留很长时间,还是治标不治本。

微⽣物合成和积累的聚酯类化合物,主要是聚羟基脂肪酸酯(polyhydroxyalkanoate,PHA),具有与各种合成热塑性塑料(如聚丙烯)相似的性能。

生物降解塑料的最新研究成果

生物降解塑料的最新研究成果

生物降解塑料的最新研究成果近年来,人们对于环保意识不断增强,全球各国也纷纷加强环保政策和生态环境建设。

因此,生物降解塑料成为许多国家政策重点之一,以此达到减少塑料污染和保护环境的目的。

随着科技的不断发展和技术的创新,生物降解塑料的研究范围也不断拓展,研究成果也层出不穷。

本文将会介绍近年来生物降解塑料的最新研究成果。

一、生物降解塑料的分类生物降解塑料可以分为完全生物降解塑料和部分生物降解塑料。

完全生物降解塑料是指能够被微生物在其自然的生活环境中分解为CO2、水和天然有机物的塑料。

目前市场上最常用的完全生物降解塑料是聚乳酸(PLA)。

PLA是从玉米淀粉中提取的天然高分子物质,不仅能够完全在自然环境中生物降解,而且性能稳定,适用于包装、农业等领域。

部分生物降解塑料是指被微生物分解为天然有机物和塑料残留物的塑料,而且其塑料残留物并不对环境产生负面影响。

部分生物降解塑料可以分为两类:光降解和酶降解。

光降解是指塑料在阳光照射下分解,其光降解残留物不会产生环境污染。

酶降解是指当塑料被微生物吸收后,微生物分泌各种伴随酶,加速塑料分解的过程。

二、近年来生物降解塑料的研究成果随着环保意识的提高和科技的快速发展,近年来生物降解塑料的研究成果相继推出,以下列举几个涉及不同领域的最新研究成果。

1、海洋生物降解塑料塑料污染已成为海洋环境中严重问题,而海洋生物降解塑料的研究成果或许可以解决这个问题。

2017年,加拿大企业Ecovative Design研发出一种名为“Mushroom Material”的生物降解材料,该材料使用真菌来消化植物残留物,制造出类似于塑料泡沫的材料。

这种材料不仅能够生物降解,而且是可再生的,具有广阔的应用前景,如包装材料、玩具、家具等各种场合。

2、生物降解餐具餐具中使用的大部分是塑料成分,因此大大增加了环境污染的风险。

为了解决这个问题,生物降解餐具成为研究的新方向。

2018年,德国研究团队开发了一种由番茄制成的可生物降解餐具。

2024年聚氨酯泡沫塑料市场前景分析

2024年聚氨酯泡沫塑料市场前景分析

聚氨酯泡沫塑料市场前景分析1. 引言聚氨酯泡沫塑料是一种多功能材料,具有优异的绝缘性能和轻质化特性。

它广泛应用于建筑、交通运输、电子电器等领域。

本文将对聚氨酯泡沫塑料市场的前景进行分析。

2. 市场趋势2.1 市场规模聚氨酯泡沫塑料市场规模逐年增长,预计在未来几年内将保持良好的增长势头。

这主要得益于建筑行业和汽车行业的需求增加以及环保要求的提高。

2.2 应用领域扩大随着技术的不断进步,聚氨酯泡沫塑料在各个领域的应用得到了扩大。

除了传统的建筑和交通领域,聚氨酯泡沫塑料在电子、医疗和包装行业也有着广泛应用的潜力。

2.3 环保要求的提高聚氨酯泡沫塑料作为一种环保材料,受到了市场的追捧。

其低碳、低污染的特性符合现代社会对环保材料的需求。

随着环保要求的提高,聚氨酯泡沫塑料的市场前景将更加广阔。

3. 竞争分析3.1 市场竞争格局聚氨酯泡沫塑料市场存在着激烈的竞争格局。

主要的竞争者包括国内外一些知名的化工企业。

这些企业通过技术创新、产品质量和价格竞争来争夺市场份额。

3.2 技术创新的重要性在竞争激烈的市场环境下,技术创新对于企业的发展至关重要。

通过不断进行研发和创新,企业可以提高产品的性能和降低成本,从而在市场上占据竞争优势。

4. 市场驱动因素4.1 建筑行业的需求增加建筑行业是聚氨酯泡沫塑料的主要应用领域之一。

随着全球城市化的加速推进,建筑行业的需求持续增加,为聚氨酯泡沫塑料市场的发展提供了动力。

4.2 汽车行业的发展汽车行业对聚氨酯泡沫塑料的需求也在不断增加。

聚氨酯泡沫塑料在汽车制造过程中能提供隔音、保温、减震等优势,因此受到汽车制造商的青睐。

4.3 环保意识的增强全球范围内环保意识的增强也成为聚氨酯泡沫塑料市场发展的重要驱动因素。

作为一种环保材料,聚氨酯泡沫塑料在减少能源消耗和碳排放方面具有优势,符合当今社会对可持续发展的要求。

5. 市场挑战5.1 原材料价格波动聚氨酯泡沫塑料的生产过程中需要用到一些特定的原材料,其价格的波动会对企业的成本造成压力。

生物可降解塑料塑料的最新研究现状

生物可降解塑料塑料的最新研究现状

⽣物可降解塑料塑料的最新研究现状⽣物可降解塑料的研究现状摘要:⽣物可降解材料因其具有可降解的特性越来越受到⼈们的关注。

本⽂主要介绍⽣物可降解塑料的应⽤背景,塑料的最新研究及其成果。

其中可降解塑料包括淀粉基⾼分⼦材料、聚乳酸和PHB。

关键词:⽣物可降解塑料⽩⾊污染淀粉基材料聚乳酸PHB现代材料包括⾦属材料、⽆机⾮⾦属材料和⾼分⼦材料作为现代⽂明三⼤⽀柱(能然、材料、信息)之⼀在⼈类的⽣产活动中起着越来越重要的作⽤。

[1]传统的⾼分⼦塑料在给国民经济带来快速发展,⼈民⽣活带来巨⼤改变的同时也给⼈类的⽣存环境带来了巨⼤的破坏。

当今社会“⽩⾊污染”的问题变得越来越受关注。

这类塑料由于在⾃然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草⽊⼀样被⽣物降解,还常常引起动物误⾷,并造成⼟壤环境恶化。

塑料制品在⾷品⾏业中⼴泛使⽤,⾼温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗⼊到⾷物中,会对⼈的肝脏、肾脏及中枢神经系统造成损害。

塑料的⼤量使⽤必然会带来如何处理废弃塑料的难题。

传统的塑料处理⽅法主要包括直接填埋、焚烧、⾼温炼油等⽅法。

这些处理⽅法不仅对环境造成破坏,同时也对⼈类健康构成巨⼤威胁。

⽯油、天然⽓等能然已⾯临危机,以⽯油为原料的塑料⽣产将受到很⼤的阻⼒。

为了减少废弃塑料对环境的污染和缓解能然危机,多年来⼈们努⼒开发⽣物可降解材料,⽤以替代普通塑料。

⽣物可降解塑料是指⼀类由⾃然界存在的微⽣物如细菌、霉菌(真菌)和藻类的作⽤⽽引起降解的塑料。

理想的⽣物降解塑料是⼀种具有优良的使⽤性能、废弃后可被环境微⽣物完全分解、最终被⽆机化⽽成为⾃然界中碳素循环的⼀个组成部分的⾼分⼦材料。

⽣物降解过程主要分为三个阶段:(1)⾼分⼦材料表⾯被微⽣物粘附;(2)微⽣物在⾼分⼦表⾯分泌的酶作⽤下,通过⽔解和氧化等反应将⾼分⼦断裂成相对分⼦量较低的⼩分⼦化合物;(3)微⽣物吸收或消化⼩分⼦化合物,经过代谢最终形成⼆氧化碳和⽔。

微生物对塑料的降解

微生物对塑料的降解

2020年02月微生物对塑料的降解程若瑶(河南大学迈阿密学院,河南开封475000)摘要:如今塑料制品以其轻便快捷等优点被越来越多的人所使用,但看似方便的背后实则也给环境带来了巨大的压力。

文章综述了目前学术界已经研究出来的微生物对塑料降解的技术以及新的研究进展,并明确了今后的研究方向。

关键词:微生物;降解;塑料在我们日常生活中使用着各种一次性塑料制品,如在食堂买饭时使用的塑料袋、塑料饭盒,还有一次性的塑料瓶等,塑料制品充斥在人类衣食住行的方方面面。

但是这些传统的一次性塑料制品多由聚苯乙烯、聚丙烯等高分子化合物制成,其化学结构复杂多变,并且化学性质十分稳定,在环境中自然降解的时间要长达200年,因此对环境造成了严重的污染[1]。

而生物降解因其低能耗并且降解的最终产物均为二氧化碳和水这种环境友好型产物,所以广泛受到人们关注,国内外研究学者也一直在致力于研究用生物来降解塑料的方法。

1生物可降解塑料生物可降解塑料是由生物可降解型高分子构成,它是指通过自然界中已有的微生物(如细菌、真菌、放线菌等)的生理作用而发生降解并且以无毒害的产物回归大自然参与到碳素循环中的一种高分子。

所以并不是所有的塑料都可以被生物所降解,生物可降解型塑料主要分为两种[2],一种是以石油为主要的原料再经过一系列的生产加工得到的生物可降解型塑料,如聚己内酯(Polycaprolacton ,PCL)、聚琥珀酸丁二醇酯(Poly (bu⁃tylene succinate ),PBS )、聚乙烯醇(polyvinyl alcohol ,PVA)等;另一种则是以可再生的植物资源如作物中的淀粉,或是碳源经过各种化学反应如发酵得到的不同结构的聚合物为原料生产出来的生物质塑料,如聚羟脂肪酸酯(polyhydroxyalkano⁃ates ,PHA)、聚乳酸(Polylac_x0002_tic acid ,PLA)等[3-4]。

(目前国际上早已形成了完整的可降解塑料的标准测试方法体系[5]。

可降解塑料的概述及其发展

可降解塑料的概述及其发展

可降解塑料的概述及其发展韩尧褚天李晶黄重行摘要 随着塑料制品在人们生活生产中的越发重要,它对于环境的破坏作用也已经被越来越多的关注。

对可降解塑料的研究和开发刻不容缓。

本文从可降解塑料的分类、机理、目前研究状况、发展方向及其不足之处展开讨论,综合性地对可降解塑料进行了介绍。

关键词塑料,降解,分类,现状,发展方向1 引言一百多年前,塑料从一位摄影师手中诞生,经过几十年的飞速发展,人们已经无法想象缺少了这种色彩鲜艳,重量轻,不怕摔,经济耐用,实用方便的材料的生活该是怎样的了,我们没有一刻可以离开塑料。

但是,在塑料给人们生活带来便利,改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的自认环境造成了不可忽视的负面影响。

据统计,全世界的高分子塑料的年产量已经超过1.4亿吨,消耗量正以年平均10%以上的速度增长;废弃塑料大约8000万吨/年,且每年正以惊人的速度增加。

我国是世界上十大塑料制品生产和消费国之一。

1995年,我国塑料产量为519万吨,进口塑料近600万吨,当年全国塑料消费总量约1100万吨,其中包装用塑料达211万吨。

据调查,北京市生活垃圾的3%为废旧塑料包装物,每年总量约为14万吨;上海市生活垃圾的7%为废旧塑料包装物,每年总量约为19万吨。

天津市每年废旧塑料包装物也超过10万吨。

北京市每年废弃在环境中的塑料袋约23亿个,一次性塑料餐具约2.2亿个,废农膜约675万平方米。

包装用塑料的大部分以废旧薄膜、塑料袋和泡沫塑料餐具的形式,被丢弃在环境中。

这些废旧塑料包装物散落在市区、风景旅游区、水体、道路两侧,不仅影响景观,造成“视觉污染”,而且因其难以降解对生态环境造成潜在危害。

过去,对废旧塑料的处理办法主要是土埋和焚烧。

土埋浪费大量的土地,焚烧则会产生大量的二氧化碳及其他对环境有害的氮、硫、磷、卤素等化合物,助长了温室效应和酸雨的形成。

而且这些方法是治标不治本,治理必须要从源头做起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析可生物降解泡沫塑料的现状【摘要】泡沫塑料是一种使用广泛,性能优异的材料,但是用于泡沫塑料制备的高分子材料一般是不可降解的,而可生物降解泡沫塑料能很好地解决这一问题。

本文简明扼要地分析了可生物降解泡沫塑料的主要类型及其研究现状,为下一步发展提供借鉴。

【关键词】可生物降解泡沫塑料目前,塑料制品的广泛使用在带给人们生活便利的同时,也给人类赖以生存的环境造成了日益严重的污染,其中,泡沫塑料制品所占比例较为突出。

如果采用可生物降解材料生产泡沫塑料,在微生物或生物酶的作用下可使制品降解成为“零污染”的二氧化碳和水,即可解决困扰全球的环境污染问题。

可生物降解泡沫塑料的研究主要集中于淀粉类泡沫塑料、纤维素泡沫塑料,以及可生物降解聚酯泡沫塑料,其中,可生物降解聚酯泡沫塑料是研究较为深入的一类。

1 淀粉类泡沫塑料淀粉是一种来源广泛的可再生资源,价格低廉,但是淀粉结晶性强,加工成型困难,产品的力学性能也较差,而且淀粉是亲水性的,纯淀粉制品对环境湿度的要求较高,因此一般要对淀粉进行改性,以满足应用要求。

近年来,在对淀粉进行改性的基础上,淀粉类泡沫塑料大致可以分为淀粉泡沫塑料和淀粉类复合泡沫塑料两大类。

淀粉泡沫塑料:主要包括天然淀粉泡沫塑料和变性淀粉泡沫塑料。

天然淀粉主要是小麦淀粉、玉米淀粉、土豆淀粉等,含有不同比例的支链和直链结构。

变性淀粉主要是醚化淀粉、酯化淀粉、接枝共聚改性淀粉等。

普通淀粉泡沫塑料多为开孔结构,泡孔不均匀,泡体易脆;高直链淀粉泡沫塑料多是闭孔结构,泡孔小而均匀,脆性降低。

由乙酸酯淀粉制得的泡沫塑料,耐水、表面光滑,压缩强度、密度均高于聚苯乙烯泡沫塑料,但弹性稍差,加工时易发生部分降解。

而由聚乙烯醇和高直链玉米淀粉制备的泡沫塑料在性能上已可取代聚苯乙烯泡沫塑料。

淀粉类复合泡沫塑料:指将淀粉与可生物降解的聚合物共混,制备的泡沫塑料。

常用的聚合物有天然聚合物(纤维素等)、可生物降解聚合物(聚酯等)、以及可与淀粉反应的聚合物。

体系中常添加纤维以使泡沫塑料具有较高强度,尤其是在温度较低及湿度较高时作用比较明显,纤维搭建的网络结构在淀粉因湿度降低变脆时,起到“桥梁”的作用,连接断裂面;当湿度较高时,增加制品强度。

将淀粉与聚乙烯醇共混烘焙制备所得的泡沫塑料,当湿度较低时,醇解度低的聚乙烯醇对泡沫塑料强度的提高较大,湿度较高时,则是醇解度高的较大。

同时,泡沫塑料的弯曲强度随聚乙烯醇分子量的增加而提高。

2 纤维素泡沫塑料纤维素是植物细胞壁的主要成分,是地球上最丰富的可再生资源之一。

据估计,总量约达26×1010t。

由纤维素制成的发泡制品既不污染环境,其制备技术也比较简单,且制品防震性能较好。

纤维素泡沫材料的发泡方法可分为两种,一是化学发泡法,二是水蒸气发泡法。

化学发泡法是常规方法,发泡时,将原料制浆、入模,随着温度的不断上升,发泡剂分解、产生气体,在浆料中其他助剂的共同作用下形成稳定而均匀的泡体。

但是若选用的化学发泡剂不当,会在生产或后处理过程中产生污染。

水蒸气发泡方法不使用化学发泡剂,对环境无污染,但其生产设备复杂,成本较高,发泡工艺难以控制。

广东工业大学研究提出了纸浆低温发泡方法,并发现发泡剂的含量直接影响泡沫制品的拉伸强度。

还有研究人员将植物秸秆粉碎,与粘接剂混合后,经过发泡等一系列工艺流程,制备得到泡沫包装材料。

木质素是纤维素之外另一来源丰富的天然高分子。

除了可降解的特性之外,它还有合成高分子具有的热塑性等特性,因此在工业生产中应用广泛。

但木质素结构复杂,难以用明确的分子式表示,使其在泡沫材料的应用上有一定的困难,目前仅是作为泡沫材料的添加剂使用,尚未见到以木质素为原料制备泡沫材料的相关报道。

3 可生物降解聚酯泡沫塑料目前,可生物降解聚酯材料通过乳液冷冻干燥、相分离等方法,可制得具有开孔结构,规模较小的泡沫材料,主要用于药物缓释控制和组织工程。

但若将其大规模应用于生产和生活中,上述方法是行不通的,只有通过成熟的物理发泡或化学发泡方法实现。

聚乳酸(PLA)、聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)是用于可生物降解聚酯泡沫塑料研究的主要基体材料。

聚乳酸由乳酸经化学合成得到,而乳酸是植物中提取的淀粉经过酶的分解生成葡萄糖,再经过乳酸菌发酵而生成的。

因此,聚乳酸有很好的生物相容性和生物可吸收性,是一种重要的可生物降解材料,广泛应用于医疗行业,尤其是药物缓释体系。

但是,聚乳酸一般分子量分布宽、强度低、易脆、抗冲击性差,并且热变形温度较低,热稳定性较差,在加工时易发生热降解,从而使分子量下降。

同时,原料乳酸价格以及聚合工艺导致聚乳酸有较高的生产成本,使其价格也比较高。

上述因素均限制了聚乳酸的广泛应用。

聚乳酸泡沫塑料的制备研究尚处于起步阶段,有研究表明可将物理发泡剂加入到粒径较小的聚乳酸粒子中,再进行发泡,但是这一方法加工困难,不适宜大规模推广应用。

也可将物理发泡剂和化学发泡剂同时混入聚乳酸中,采用直接挤出工艺制备,但得到的泡沫塑料易脆,耐冲击性能较差。

此外,可采用添加扩链剂或过氧化物的方法对聚乳酸进行改性,再进行发泡,但通过这两种方法制得的泡沫产品结构不均匀。

和聚乳酸一样,聚己内酯也是脂肪族聚酯,其合成主要是通过己内酯单体的开环聚合或配位聚合制得。

聚己内酯有较好的药物通透性,同样在医学领域应用广泛。

在力学性能方面,聚己内酯和聚乙烯的力学性能相当,但其玻璃化转变温度和熔点较低,因此聚己内酯不能单独用于制备塑料制品,需要和其他高分子材料混合使用或进行改性处理。

聚己内酯泡沫塑料的制备可通过常规的物理或化学发泡方法实现。

利用辐射交联技术对PCL改性后制备的泡沫塑料,其密度最小可达79Kg/cm3,但材料力学性能下降较多;也可以使用过氧化物,如过氧化苯甲酰,对PCL进行交联改性后,通过化学发泡方法制备泡沫材料,得到的泡沫塑料密度为0.04~0.30g/cm3,并且泡沫塑料性能受泡孔密度、泡孔壁厚度的影响明显,但一定尺寸范围内的泡孔大小对泡沫材料的压缩性能影响较小[1]。

同时,为了降低因PCL 的高价格带来的高成本,可将无机填料加入到发泡体系中,使用辐射交联或过氧化物交联技术制备PCL泡沫塑料。

聚丁二酸丁二醇酯是综合性能较优异的一类可生物降解脂肪族聚酯材料,由1,4-丁二醇和1,4-丁二酸缩聚得到,各项物理性能与聚丙烯、低密度聚乙烯、高密度聚乙烯相近,广泛应用于包装领域。

但是PBS的熔体强度低,难以发泡,将PBS应用于泡沫塑料领域尚未工业化生产。

相比于聚乳酸和聚己内酯,关于聚丁二酸丁二醇酯泡沫塑料的研究更为深入。

采用辐射交联、过氧化物交联、紫外光交联等多种交联方法对PBS进行改性,可以提高材料熔体强度,改善其在熔融状态下因熔体强度低导致的串泡、泡孔塌陷和气泡过大等问题,同时辅以其他改性方法,进而制备泡沫塑料。

辐射交联:辐射可以在PBS中有效引入交联结构,提高熔体强度,采用化学发泡方法进行泡沫塑料的制备,发现泡孔直径随熔体强度的增加而降低,并且随着发泡剂含量的增加,泡孔直径增大,相应的泡孔密度降低。

同时,多官能团单体、无机材料、玻璃纤维的添加对PBS辐射交联效果均具有正面的影响。

在这些体系中,材料的机械性能和热稳定性提高,并且交联没有破坏材料的可生物降解性,材料仍然是可降解的。

但是,这些研究未能进一步研究材料发泡性能的变化。

也可将PBS和PCL共混进行辐射处理,熔体强度的提高有效改善了材料的发泡性能,并且随着辐射剂量的升高,泡孔直径减小,因此可以通过控制辐射剂量来调节发泡后的泡孔结构。

但是,辐射处理过程的操作和维护技术复杂,运行中安全防护要求高,对形状不规则的制品及厚制品实现均匀交联难度高,而且投资较大,因此目前尚未大规模应用。

过氧化物交联:常用过氧化二异丙苯(DCP)作为交联剂,DCP在一定温度下产生活性基团,使PBS产生交联结构,并且随DCP含量的增加,交联程度提高,材料拉伸性能提高。

DCP也可使PBS的共聚物-聚己二酸/丁二酸-丁二酯实现有效交联,并采用化学发泡方法制备得到泡沫塑料制品[2]。

研究表明,添加3份DCP,可得到具有闭孔结构、高发泡倍率(密度为0.05g/cm3)的泡沫塑料。

同时,体系中添加无机粉体,可使泡孔结构在生长过程中稳定下来,制备得到泡沫密度低于0.05g/cm3的泡沫塑料。

然而,过氧化物在使材料产生交联的同时,也易导致材料降解,从而降低材料性能,并且在反应过程中需控制温度,防止焦化现象出现影响产品质量或损坏设备,这些缺点均限制了过氧化物的应用范围。

紫外光交联:在光引发剂、交联剂的作用下,通过紫外光辐照,可使PBS 交联,并且控制交联度。

交联提高了材料的熔体弹性和熔体强度,通过化学发泡方法,可制备得到泡孔细密均匀的泡沫塑料。

其中,合适的交联度是制备PBS 泡沫塑料的重要因素,交联度过低,熔体强度得不到有效提高,交联度过高,发泡过程中又容易限制气泡生长,因此,需将其控制在适当的范围内。

同时,在PBS主链上引入柔性链段,合成聚酯聚醚嵌段共聚物,同样采用紫外交联方法,可实现共聚物的交联,并且嵌段共聚物自身发泡性能优于均聚物的发泡性能,交联也使共聚物的发泡性能得到进一步提高。

在常规的发泡方法之外,采用新型微胶囊发泡剂进行发泡也可以得到泡沫塑料。

4 结语可生物降解泡沫塑料的原料可以从天然植物中提取,或者通过化合物加工得到,具有环保、完全可降解的特点,是地球上宝贵的资源,也代表了泡沫塑料的发展方向。

世界各国都加快了对可生物降解泡沫塑料的研究,我国也积极利用现有技术手段和资源进行深层次的开发,希望在不久的将来,能够突破发展瓶颈,实现从实验室研究阶段进入大批量的产业化生产。

参考文献:[1]Liu H,et al.Study on the Cell Structure and Compressive Behavior of Biodegradable Poly(ε-caprolactone)Foam. Polymer Engineering and Science,2008,2432.[2]D.J.Kim,et al.Foaming of Aliphatic Polyester Using Chemical Blowing Agent.Journal of Applied Polymer Science,2001,81,2443.。

相关文档
最新文档