《数字信号处理教程》程佩青-课后答案
程佩青《数字信号处理教程》(第4版)(课后习题详解 数字滤波器的基本结构)

则
6 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平 台
即 h(n)是偶对称,对称中心在 5-5 所示。
处,N 为奇数(N=5)。线性相位结构如图
图 5-5
5-6 设滤波器差分方程为
(1)试用直接工型、典范型及一阶节的级联型、一阶节的并联型结构实现此差分方 程;
8 / 40
圣才电子书
并联结构见图 5-6(d)。
十万种考研考证电子书、题库视频学习平 台
(2)由题意可知
图 5-6(d)
可推出
幅度为
相位为
(3)输入正弦波为 x(t)=5sin(2πt·103)
由 ΩT1=2π×103T1=2π,可得周期
又抽样频率为 10kHz,即抽样周期为
(1)根据 H(z)的表达式,可画出卷积型(直接型)结构如图 5-1(a)所示。
(2)可将 H(z)改写为
图 5-1(a)
相应的级联型结构如图 5-1(b)所示。 (3)将图 5-1(b)中两个延时链子系统的次序交换,并将有相同输出的中间两延时
链加以合并,可得出如图 5-1(c)所示直接Ⅱ型结构图。
图 5-3(1)
图 5-3(2) 5-4 用频率抽样结构实现以下系统函数:
4 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平
台
抽样点数 N=6,修正半径 r=0.9。
解:FIR 滤波器修正后的频率抽样结构(当 N 为偶数时)有以下关系
其中 θ(k)=arg[H(k)]。因而有 因为 N=6,所以根据公式可得
(2)根据图 5-7(b)可通过对各结点的求解来获得:即将输入结点和输出结点分别 用中间结点 x1 表示,然后将中间结点消去,即可得到输入结点与输出结点之间的关系,从 而求得系统函数。所设结点可得
《数字信号处理教程》程佩青(第三版)清华大学出版社课后答案

结果 y (n ) 中变量是 n ,
∞
∞
∑ ∑ y (n ) =
x ( m )h (n − m ) =
h(m)x(n − m) ;
m = −∞
m = −∞
②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,
(4)相加,求得一个 n 的 y(n) 值 ,如此可求得所有 n 值的 y(n) ;
10
T [ax1(n)+ bx2 (n)] =
n
∑
[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
(3) y(n) = δ (n − 2) * 0.5n R3(n) = 0.5n−2 R3(n − 2) (4) x(n) = 2n u(−n −1) h(n) = 0.5n u(n)
当n ≥ 0 当n ≤ −1
∑ y(n) = −1 0.5n−m 2m = 1 ⋅ 2−n
m = −∞
3
y(n) = ∑n 0.5n−m 2m = 4 ⋅ 2n
+ 1)
−
x1 (n
+ 1)]
=
−a n
综上 i) , ii) 可知: y1 (n) = −a nu(−n − 1)
(b) 设 x(n) = δ (n − 1)
i)向 n > 0 处递推 ,
程佩青《数字信号处理教程》(第4版)(课后习题详解 无限长单位冲激响应(IIR))

7.2 课后习题详解7-1 用冲激响应不变法将以下Ha (s )变换为H (z ),抽样周期为T 。
(1)H a (s )=(s +a )/[(s +a )2+b 2];(2)H a (s )=A/(s -s 0)n0,n 0为任意正整数。
解:(1)冲激响应不变法满足h (n )=h a (t )|t =nT =h a (nT ),T 为抽样间隔。
这种变换法必须让H a (s )先用部分分式展开。
由推出由冲激响应不变法可得(2)先引用拉氏变换的结论,可得按且可得可以递推求得7-2 设计一个模拟低通滤波器,要求其通带截止频率f p=20Hz,其通带最大衰减为R p=2dB,阻带截止频率为f st=40Hz,阻带最小衰减为A s=20dB,采用巴特沃思滤波器,画出滤波器的幅度响应。
解:巴特沃思模拟低通滤波器设计流程为:①利用教程(7-5-24)式求解滤波器阶次N;②利用教程(7-5-27a)式求解3dB截止频率Ωc;③查教程表7-2或表7-4获得归一化巴特沃思低通滤波器的系统函数H an(s);④将H an(s)根据Ωc的值去归一化求得所需的系统函数H a(s)。
已知Ωp=2π×20rad/s,Ωst=2π×40rad/s,R p=2dB,A s=20dB。
(1)按给定的参数由教程(7-5-24)式可求得取N=4。
(2)按教程(7-5-27a)式可求得巴特沃思滤波器3dB处的通带截止频率Ωc为(3)查教程表7-2可得N=4时归一化巴特沃思低通滤波器H an(s)(4)去归一化,求得所需的H a(s)为滤波器的幅度响应如图7-1所示。
图7-17-3 设计一个模拟高通滤波器,要求其阻带截止频率f st=30Hz,阻带最小衰减为A s=25dB,通带截止频率为f p=50Hz,通带最大衰减为R p=1dB。
(1)采用巴特沃思滤波器;(2)采用切比雪夫滤波器;(3)利用MATLAB工具箱函数设计椭圆函数滤波器。
(完整版)数字信号处理教程程佩青课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
程佩青《数字信号处理教程(第三版)》课后习题答案精编版

第一章 离散时间信号与系统
1 .直接计算下面两个序列的卷积和 y( n ) = x( n )* h( n )
h (n )
=
⎧an ⎨
⎩0
, 0 ≤ n ≤ N −1 , 其他n
x (n )
=
⎧⎪ β ⎨
n−n 0
⎪⎩ 0
,n0 ≤ n , n < n0
请用公式表示。
分析:
①注意卷积和公式中求和式中是哑变量 m ( n 看作参量),
y (n ) ={1,2,3,3,2,1} ;
②δ (n)* x(n) = x(n) , δ (n − m)* x(n) = x(n − m) ;
③卷积和求解时, n 的分段处理。
6
解:(1) y(n) = x(n) * h(n) = R5(n) (2) y(n) = x(n) * h(n) = {1,2,3,3,2,1}
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
∑ ∑( ) n α m−n0 n−m = β α = β m=n0
nn β
n0
α
n β −n0
− β n0
α
β n +1 α
1
−
β α
α β =
− n +1− n0
数字信号处理教程-程佩青-课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
程佩青《数字信号处理教程》(第4版)(课后习题详解 快速傅里叶变换(FFT))

4.2 课后习题详解4-1 如果一台通用计算机的速度为平均每次复乘40ns ,每次复加5ns ,用它来计算512点的DFT[x (n )],问直接计算需要多少时问?用FFT 运算需要多少时间?若做128点快速卷积运算,问最低抽样频率应是多少?解:①直接利用DFT 计算:复乘次数为N 2,复加次数为N (N-1)。
②利用FFT计算:复乘次数为,复加次数为N㏒2N 。
(1)直接计算复乘所需时间复加所需时间所以(2)用FFT 计算复乘所需时间复加所需时间所以4-2 N =16时,画出基-2按频率抽选法的FFT 流图采用输入自然顺序,输出倒位序),统计所需乘法次数(乘±1,乘±j 都不计在内)。
根据任一种流图确定序列x (n )=4cos (n π/2)(0≤n ≤15)的DFT 。
解:按频率抽取法的FFT 流图中的复数乘法出现在减法之后,其运算量为复数乘法:;复数加法:;由于N =16,有,,,不需要乘法。
按频率抽取,见图4-1(a )。
图4-1(a )运算量:复数乘法:由于,,,不需要乘法。
由图P4.2(a )可知,共有的个数为1+2+4+8=15有的个数为1+2+4=7所以总的乘法次数为32-15-7=10(个)复数加法:举例:对序列x (n )=4cos (n π/2)(0≤n ≤15)可表示为由于N =16,可采用P4.2(b )的流图。
设Xi (k )=(i =1,2,3,4)分别为第i 级蝶形结构的输出序列,则由P4.2(b )的流图可知由于采用的是顺序输入、逆序输出的结构,因此输出X (k )与X 4(k )为逆序关系,即,为k 二进制逆序值由此可知,x (n )的DFT 为X (4)=X 4(2)=32,X (12)=X 4(3)=12图4-1(b )4-3 用MATLAB 或C 语言编制以下几个子程序。
(1)蝶形结运算子程序;(2)求二进制倒位序子程序;(3)基-2 DIT FFT 流程图,即迭代次数计算子程序。
(完整word版)数字信号处理(程佩青)课后习题解答(3)

第三章 离散傅立叶变换1.如下图,序列x(n)是周期为6的周期性序列,试求其傅立叶级数的系数。
∑∑=-===562650)(~)(~)(X ~:n nkj nkn e n x W n x k π解kj k j k j k j kj e e e e e 562462362262621068101214πππππ-----+++++=计算求得:。
339)5(~; 33)4(~ ; 0)3(~; 33)2(~;339)1(~;60)0(~j X j X X j X j X X +=-==+=-==。
并作图表示试求设)(~),(~)(~ .))(()(~),()(.264k X n x k X n x n x n R n x == ∑∑=-===56265)(~)(~)(~:n nk jnk n en x W n x k X π解k j k j k j e e e πππ---+++=3231。
计算求得: 3)5(~; 1)4(~ ; 0)3(~ ;1)2(~; 3)1(~ ; 4)0(~j X X X X j X X ====-==。
的周期卷积并作图与试求令其它,设 )(~)(~,))(()(~,))(()(~,)2()(,040,1)(.3464n h n x n h n h n x n x n R n h nn n n x ==-=⎩⎨⎧≤≤+=解:在一个周期内的计算值等各序列。
试画出所示如图已知)())((),())3((,))(()())((),())((,))((,13)(.47755633665n R n x n R n x n x n R n x n R n x n x P n x ----)(~)(~*)(~)(~m n h n h n x n y -==)(~)(~*)(~)(~m n h n h n x n y -==)()()5()(x(n)(4)N n 0 ),n -(n )()3()()()2()()(cos )()1()(52000n R n n x n nR n x n R a n x n R n a n x DFT N N N N n N ==<<===δω闭合形式表达式点试求以下有限长序列的])21sin()2sin()21sin()2sin([21])()()()([21)(]1111[)(][)(])([)()(cos )()()(cos )(:0)2(21020)2(2102)2(21)2(21)2(21222)2(21)2(21)2(21222)()(211)(10)(2110211000000000000000000002002002022002ϖπϖϖπϖωωϖπϖϖπϖϖπϖπϖπϖϖϖϖπϖπϖπϖϖϖωωωωωωωωππππππ-++⋅=--+--=--+--=+=+===---+---------+-++-----+---=---=+--=---=-∑∑∑∑k N e N e k N eN e a e ee e e e eeeee e a k R ee ee a k R eea k R e e e a k R en a k X n R n a n x k N j N j k Nj Njk Nj k Nj k Nj NjNjN jk Nj k N j k Nj NjNjNjN k j N j k j N j N N n nj N n nk j N N n nkj n j n j N n N nkj N N N N N N N 解)(111121)(21)()(21)()(cos )( )()(cos )( ) 1 (:)2()2(10)2(10)2(1020010200000k R e e e e a k R e e a k R e e e a k Re n a k X n R n a n x N k N j N j k Nj Nj N N n nN j N n nk N j N N n nk N j n j n j N n N nk N j N ⎥⎥⎦⎤⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+===--+---=---=+--=---=-∑∑∑∑ωπωωπωωπωππωωπωω解⎥⎥⎥⎦⎤---⎢⎢⎢⎣⎡--=------+-++---)()()()(21)2(21)2(21)2(21222)2(21)2(21)2(212220000000ωπωπωπωωωωπωπωπωωωk Nj k N j k N j N jN jNjk N j k N j k N j Nj N j N j e e e eeee e e e e e a⎥⎥⎥⎥⎦⎤--⎢⎢⎢⎢⎣⎡+⋅=--+--)21sin()2sin()21sin()2sin(210)2(21020)2(21020000ωπωωπωωπωωπωk N e Nek N e Ne a k Nj Njk N j N jk Nj N N n nk Njn N n aea ea k X n R a n x ππ210211)()()((2)--=---===∑)( )()( )()()( 0,)()( (3)02102010200k Re k Re n n k Re n x k X N n n n n x Nk n N j NN n nk N j N n NnkN j πππδδ--=--=-=-==<<-=∑∑)(1)( 11)1()())1(()(])1)2( 2[)1( 32()1)(()()()()( )()(411)1(32)1(321)1(110)1(1k R W Nk X N W W N k R W N k R N W N W W W N W W W nW nWW k X k R nW k X W k R nW k X n nR n x N kNkNkN N N n nk N N k N N k N k N k N N kN k N k N N n kn N N n nk Nk NN n N k n N k NN n N nkN N --=∴-=--+--=+--=-+-+++--++++=-=-==∴=∑∑∑∑∑-=---=+-=-=+-=••••••)(kNN N n nkNN W Nk X n nR n x W n k X n R n n x --===∴=∑-=1)()()()4()( )()(5111022,则小题的结论根据第)(221111122)1(232)1(23210)1(2121)1(2)1()2()(12)2()(2)2(2)2()12()1(]1()2(4[)1(94)1)(()(k N kN kNN n nk NN n nkNk N N kN k N k N N k N k N k N N n kn NN n nk NkNN n k n Nk NW N W N N k X W NN N k X N N nWN N W n N N W N W W W N W W W W n W nW k X Wn k X W ---=∴----=+--=+--=-+--=-+-+++--++++=-=-=∑∑∑∑∑-=-=---=+-=-=+••••••)•••±±±===∑-=,6,4,2,0)(~)3(?])0([)()2(?)()1(:;)(~1)(~).(~.61)/2(k k x X k X k X e k X Nn x n x N k nk N j 哪些序列列能做到成虚数外除时间原点使所有的哪些序列能够通过选择成为实数时间原点使所有的哪些序列能够通过选择问傅里叶级数这些序列可以表示成列如图画出了几个周期序π条件。