数学:第二章《圆锥曲线与方程》课件(新人教A版选修1-1)

合集下载

人教A版数学选修1-1课件第二章圆锥曲线与方程章末整合提升2

人教A版数学选修1-1课件第二章圆锥曲线与方程章末整合提升2
当 k=-89时,x2=-9<0,不合题意,舍去; 当 k=-12时,x2=12,x1=152,符合题意. 所以,k 的值为-12.
题型三 ⇨“中点弦”问题
典例 7 焦点分别为(0,5 2)和(0,-5 2)的椭圆截直线 y=3x-2 所得弦 的中点横坐标为12,求此椭圆的方程.
[思路分析] 解法一:设出椭圆的方程,再与直线方程联系消去 y,由中点 横坐标为12建立方程,再与 a2-b2=c2 解方程组即可得 a2、b2.
6.椭圆、双曲线和抛物线的基本知识见下表
曲线 性质
椭圆
双曲线
抛物线
轨迹
{M||MF1|+|MF2|=2a, {M||MF1|-|MF2|= {M||MF|=点 M 到
|F1F2|<2a}
±2a,|F1F2|>2a} 直线 l 的距离}
图形
标准方程
ax22+by22=1(a>b>0)
ax22-by22=1(a>0,b>0)
D(- 2, 22).
所以|MC|·|MD|= 25(-m+
5 2)·2 (
2+m)=54(2-m2).
又|MA|·|MB|=14|AB|2 =14[(x1-x2)2+(y1-y2)2] =156[(x1+x2)2-4x1x2] =156[4m2-4(2m2-2)]=54(2-m2), 所以|MA|·|MB|=|MC|·|MD|.
由①②得 a2=75,b2=25,∴椭圆的方程为2x52 +7y52 =1. 解法二:设椭圆方程为ay22+bx22=1(a>b>0),
直线 y=3x-2 与椭圆交于 A、B 两点,且 A(x1,y1)、B(x2,y2),则
ay212+bx212=1, ay222+bx222=1.

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.1

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[思路点拨] 第(1)问将距离|PA|的最小值问题转化为函数 最小值问题,即代数方法解决几何问题.第(2)问可用点到直线 距离公式求距离,利用函数思想求最小值,也可采用求出与已 知直线平行的抛物线的切线,再求出切点,两平行直线的距离 即为距离的最小值.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(4)抛物线的焦点在对称轴上,准线垂直于对称轴,焦点到 准线的距离为 p,它是一个不变量,不随抛物线位置的变化而变 化,焦点与准线分别在顶点的两侧,且它们到顶点的距离相等, 均为p2.
数学 选修1-1
第二章 圆锥曲线与方程
∵点 M 到焦点的距离等于点 M 到准线的距离.
∴点 M 到 x 轴的距离是1156. 答案: D
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.顶点在原点,焦点是 F(0,5)的抛物线方程是( )
A.y2=20x
B.x2=20y
C.y2=210x
D.x2=210y
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.根据下列条件求抛物线的标准方程: (1)焦点是 F(-8,0),准线是 x=8; (2)如图所示,等边三角形 OAB 的边长为 8 3,且其三个顶 点均在抛物线 E:x2=2py(p>0)上.求抛物线 E 的方程.
数学 选修1-1

新版高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2.1.2.2

新版高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2.1.2.2

两点,且|AB|=
16 5
2, 求直线������的方程.
解:(1)由题意可得
2b=4,
������ ������
=
23,
故 b=2,a2=16,c2=12.
所以所求椭圆的方程为
������2 16
+
������2 4
=
1

������2 4
+
������2 16
=
1.
M 目标导航 UBIAODAOHANG
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
2.弦长公式
剖析设直线方程为
y=kx+m(k∈R,且
k≠0),椭圆方程为
������2 ������2
+
������2 ������2
=
1(������
求椭圆的方程.
分析先由 e=
3 2
得到a

b
的关系,再将直线方程代入椭圆方程,
利用根与系数的关系及椭圆方程求出 a 或 b.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
题型一 题型二 题型三
12
解析:椭圆的方程可化为
������2 4
+
������2 2
=
1,
∴F(− 2, 0).
∵直线 AB 的斜率为 3,
∴直线 AB 的方程为 y= 3������ + 6.

2020秋新版高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2.2.1

2020秋新版高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2.2.1

又 c=4,则 b2=c2-a2=12.
故双曲线的标准方程为
������2 4

������2 12
=
1.
答案:���4���2

������2 12
=
1
-9-
M 2.2.1 双曲线及其标准方程
目标导航
UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
C.(±1,0) D.(0,±1)
答案:A
-8-
M 2.2.1 双曲线及其标准方程
目标导航
UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
12
【做一做 2-2】 以 F1(-4,0),F2(4,0)为焦点,且经过点 M(3, 15)
方程为
������2 ������2

������2 ������2
=
1(������
>
0,
������
>
0),
用待定系数法求得a,b;第(2)题可
先设出标准方程,然后把点 P1,P2 的坐标代入方程,联立方程组,求出
a2,b2 的值.
-16-
M 2.2.1 双曲线及其标准方程
目标导航
UBIAODAOHANG
的双曲线的标准方程为 .
解析:焦点在
x
轴上,可设标准方程为
������2 ������2

������2 ������2
=
1(������
>
0,
������

新版高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2.1.2.1

新版高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2.1.2.1
2.1.2 椭圆的简单几何性质(一)
-1-
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
1.掌握椭圆的范围、对称性、离心率等几何性质. 2.会根据椭圆的标准方程画出它的几何图形,能根据几何性质解 决一些简单的问题.
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
可结合下列图形加强对上述说法的理解.
知识拓展 椭圆的离心率在一定程度上刻画了椭圆的扁平程度.
M 目标导航 UBIAODAOHANG
题型一 题型二 题型三 题型四
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三 题型四
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
解:把已知方程化成标准方程为
������2 25
+
������2
=
1,
这里a=5,b=1,所
以 c= 25-1 = 2 6.
因此,椭圆的长轴和短轴的长分别是2a=10和2b=2,两个焦点分别
D 典例透析 IANLI TOUXI
【做一做 2】 椭圆 x2+4y2=1 的离心率为( )
A.
3 2
B.
3 4
C.
2 2
D.
2 3
解析:椭圆方程化为标准形式是
x2+
������2
1
=
1, 则a2=1,b2=
1 4
,

高中数学第二章圆锥曲线与方程本章整合课件新人教A版选修1_1

高中数学第二章圆锥曲线与方程本章整合课件新人教A版选修1_1

圆锥曲线 双曲线
焦点在������轴上:顶点( ± ������,0),焦点( ± ������,0) 渐近线方程������ = ± =0
性质 焦点在������轴上:顶点(0, ± ������),焦点(0, ± ������) 渐近线方程������ = ± 离心率:������ =
������ (������ ������
������ (0 ������
������2 -������2
< ������ < 1)
定义:||������������1 |-|������������2 || = 2������ < |������1 ������2 | = 2������ 标准方程
������2 ������2 焦点在������轴上: 2 - 2 ������ ������ ������2 ������2 焦点在������轴上: 2 - 2 ������ ������
第二章 圆锥曲线与方程 本章整合
定义:|������������1 | + |������������2 | = 2������ > |������1 ������2 | = 2������ 标准方程
������2 ������2 焦点在������轴上: ������2 + 2 ������ ������2 ������2 焦点在������轴上: 2 + 2 ������ ������
4 2
专题1
专题2
专题3
解:(1)由 e= ������ = 2 , 得3a2=4c2. 再由 c2=a2-b2,解得 a=2b. 由题意可知 2 × 2������ × 2������ = 4, 即ab=2. ������ = 2������, 解方程组 得a=2,b=1. ������������ = 2,

18学年高中数学第二章圆锥曲线与方程本章整合课件新人教A版选修1_1

18学年高中数学第二章圆锥曲线与方程本章整合课件新人教A版选修1_1
4 2
专题1
专题2
专题3
解:(1)由 e= ������ = 2 , 得3a2=4c2. 再由 c2=a2-b2,解得 a=2b. 由题意可知 2 × 2������ × 2������ = 4, 即ab=2. ������ = 2������, 解方程组 得a=2,b=1. ������������ = 2,
2 ������1 = 4������������1 , 2 ������2 = 4������������2 ,②

依题意,有
������1 ������2 · ������1 ������2
= -1,③ = -1,④
������-������1 ������-������1
������ ������1 -������2 · ������ ������1 -������2 ������1 -������2 ������1 -������2
第二章 圆锥曲线与方程 本章整合
定义:|������������1 | + |������������2 | = 2������ > |������1 ������2 | = 2������ 标准方程
������2 ������2 焦点在������轴上: ������2 + 2 ������ ������2 ������2 焦点在������轴上: 2 + 2 ������ ������
= 5 . 整理得 32k4-9k2-23=0,即(k2-1)(32k2+23)=0. 解得 k=± 1.则直线 l 的倾斜角为 或
π 4 3π . 4
4 1+������ 4 2 ,得 2 5 1+4������
4 2

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.1

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)方法一:若焦点在 x 轴上, 设双曲线的标准方程为ax22-by22=1(a>0,b>0). 因为 M(1,1),N(-2,5)在双曲线上,
a12-b12=1, 所以-a222-5b22=1, 若焦点在 y 轴上,
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.根据下列条件,求双曲线的标准方程: (1)双曲线的中心在原点,焦点在 y 轴上,且经过点(0,2)与 ( 5,2 2); (2)c= 6,经过点(-5,2),焦点在 x 轴上.
数学 选修1-1
第二章 圆锥曲线与方程
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
双曲线的定义
定义
平面内与两个定点F1,F2的距离的_差__的__绝__对__值_ _是__常__数___的点的轨迹叫做双曲线
焦点 焦距 集合语言
_两__个__定__点__F_1,__F__2 _叫做双曲线的焦点
合作探究 课堂互动
高效测评 知能提升
1.了解双曲线的定义、几何图形和标准方程的推导过 程.
2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问 题.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队 远赴亚丁湾,在索马里流域执行护航任务.
自主学习 新知突破
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 y2 (1) 1 36 16
x2 y2 1 9 16
x2 y2 1 和 16 36
(2)求与双曲线 有共同渐近线,且过 2 )的双曲线方程; 点(-3, 3
4 x2 y2 (2) 1 9 4
(3)一动圆M和直线l:x=-2相切,并且经过点 2 F(2,0),则圆心M的轨迹方程是 y 8 x .
∵2c=6 ,2a=12 , ∴ c=3 , a=6 于是得动圆圆心的轨迹方程为
ks5u精品课件
x2 y2 1 36 27
3x2+4y2-108=0
∴b2=36-9=27
x2 y2 1 36 27
这个动圆圆心的轨迹是椭圆,它的长轴、短轴分别为 12、 3. 6
三、课堂练习
1. 动点P 到直线 x+4=0 的距离减去它到点M(2,0)的距 离之差等于2,则点P 的轨迹是 ( D) A.直线 B.椭圆 C.双曲线 D.抛物线
ks5u精品课件
做练习
3.过点P( 0 , 4 )与抛物线y2=2x只有一个公共点的 直线有 3 条。 4、直线 y=kx+1与焦点在x轴上的椭圆 x2/5+y2/m=1 总有
公共点,则m的取值范围是
[1,5) 。
5、过点M(-2,0)的直线l与椭圆 x2+2y2=2 交于P1、P2
两点,线段P1P2的中点为P,设直线 l 的斜率为k1(k1≠0),
ks5u精品课件
例3.一圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0
内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线
Y
解法1:如图:设动圆圆心为P(x,y), 半径为R,两已知圆圆心为O1、O2。 分别将两已知圆的方程 x2+y2+6x+5=0 x2+y2-6x-91=0 配方,得(x+3)2+y2=4 (x-3)2+y2=100
双曲线
X轴,实轴长2a, Y轴,虚轴长2b
抛物线
X轴
焦点坐标
离心率 e= c/a 准线方程
(±c,0)
(±c,0)
(p/2,0)
c2=a2-b2
c2=a2+b2
0<e<1 x=±a2/c
e>1 x=±a2/c
y=±(b/a)x
e=1 x=-p/2
渐近线方程
ks5u精品课件
二、应用举例
例1.求双曲线9y – 16x =144的实半轴与虚 半轴长,焦点坐标,离心率及渐进线方程.
x2 y2 x2 y2 2 1(a b 0) 2 2 1(a 0, b 0) 2 a b a b
y 2 2 px ( p 0)
图 形
顶点坐标
(±a,0),(0,±b)
ks5u精品课件
(±a,0)
(0,0)Leabharlann 椭圆、双曲线、抛物线的标准方程和图形性质
椭圆 对称性
X轴,长轴长2a, Y轴,短轴长2b
x 3 5
则:y 1 5
A(3 5,1 5); B(3 5,1 5) 1 5 1 5 kOB , kOA , 3 5 3 5 1 5 1 5 1 5 kOB kOA 1 3 5 3 5 95
∴OA⊥OB
ks5u精品课件
ks5u精品课件
F1 o F2
四、小结:
1、本节课的重点是掌握圆锥曲线的定义及性质在解 题中的应用,要注意两个定义的区别和联系。
2、利用圆锥曲线的定义和性质解题时,要注意曲线 之间的共性和个性。
3、利用圆锥曲线的定义和性质解题时,要加强数形 结合、化归思想的训练,以得到解题的最佳途径。
ks5u精品课件
化简并整理,得 即可得
所以,动圆圆心的轨迹是椭圆,它的长轴、短轴分别 为 12、 3. 6 ( x 3) 2 y 2 ( x 3) 2 y 2 12 解法2:同解法1得方程 即,动圆圆心P(x,y)到点O1(-3,0)和点O2(3,0)距离的和 是常数12,所以点P的轨迹是焦点为(-3,0)、(3,0), 长轴长等于12的椭圆。于是可求出它的标准方程。
2 2
解:把方程化成标准方程: -- -=1 16 25
y2
x2
∴ c=√16+9 =5.
故 实半轴长a=4,虚半轴长b=3 ________
∴ e=-
3
5
4
故 渐进线方程为:y=±-x 4
ks5u精品课件
例2.直线y=x-2与抛物线y2=2x相交于A、B 求证:OA⊥OB。 证法1:将y=x-2代入y2=2x中,得 化简得 解得: x2-6x+4=0 (x-2)2=2x
ks5u精品课件
一、知识回顾
圆 锥 曲 线

椭圆
标准方程
几何性质 第二定义
综合应用
双曲线 标准方程 几何性质 第二定义 统一定义 抛物线 标准方程
ks5u精品课件
几何性质
椭圆、双曲线、抛物线的标准方程和图形性质
椭圆 几何条件 标准方程 双曲线 抛物线
与一个定点和 一条定直线的距 离相等 与两个定点 与两个定点的 的距离的和等于 距离的差的绝对 常数 值等于常数
直线OP的斜率为k2,则 k1k2 的值为
1 ( ) 2
ks5u精品课件
思考题
x y 已知椭圆 1中,F1、F2 分 4 2 1 别为其 左、右焦点和点A 1, ,试在 2 椭圆上找一点 P,使 y
2 2
(1)PA PF2 取得最小值;
P
A
P x
(2)PA
2 PF1取得最小值.
证法2:同证法1得方程
x2-6x+4=0
由一元二次方程根与系数的关系,可知 x1+x2=6, x1·2=4 x
∵y1=x1-2 , y2=x2-2; ∴y1·2=(x1-2)(x2-2)=x1·2-2(x1+x2)+4 y x =4-12+4=-4
kOA kOB
∴OA⊥OB
y1 y2 y1 y2 4 1 x1 x2 x1 x2 4
P
X
O1
O2
当⊙P与⊙O1: (x+3)2+y2=4外切时,有 |O1P|=R+2

当⊙P与⊙O2: (x-3)2+y2=100内切时,有 |O2P|=10-R ②
①、②式两边分别相加,得 |O1P|+|O2P|=12 即
( x 3) 2 y 2 ks5u精品课件 2 y 2 12 ( x 3)
圆锥曲线小结
ks5u精品课件
1)掌握椭圆的定义,标准方程和椭圆的 几何性质
复习目标
2)掌握双曲线的定义,标准方程和双曲 线的几何性质 3)掌握抛物线的定义,标准方程和抛物 线的几何性质
4)能够根据条件利用工具画圆锥曲线的 图形,并了解圆锥曲线的初步应用。
ks5u精品课件
课前热身
(1) 求长轴与短轴之和为20,焦距为4 5 的 椭圆的标准方程_________________
五、布置作业:
P80 A组 B组 1 10 2 5 补充:在△ABC中,BC固定,顶点A移动.设 |BC|=m,当三个角A,B,C有满足条件 |sinC-sinB|=sinA时,求顶点A的轨迹方 程.
ks5u精品课件
ks5u精品课件
2.P是双曲线 x2/4-y2=1 上任意一点,O为原点,则OP 线段中点Q的轨迹方程是( B ) y2 y2 2 2 2 2 2 C . x 2 1 D.4 y x 1 A. x 1 B. x 4 y 1 4 4
3.和圆x2+y2=1外切,且和x轴相切的动圆圆心O的轨迹 x2=2|y|+1 。 方程是
相关文档
最新文档