平面汇交力系的合成与平衡的几何法和解析法PPT课件
合集下载
第二章平面汇交力系及平面力偶系

一、几何法合成(作图法)
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至
第
终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基
础
第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα
第
一
Fy=a’ b’= - Fcosα
章
静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至
第
终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基
础
第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα
第
一
Fy=a’ b’= - Fcosα
章
静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)
第二章平面汇交力系ppt课件

⑴选箱盖为研究对象, 画它的受力图
⑵三个力必汇交于吊环 中心A。
⑶画力三角形
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
a TAC
30° W 45° c
b
TAB
如果力三角形的几何 关系不复杂,可以选 用数解法,运用三角 公式来计算:
O
F1
A
O
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
(2)平面汇交力系的合成:
应用力的多边形法则:
设刚体上受到F1、F2、F3及F4等许多力的作用, 它们的作用线在同一平面内,正汇交于O点。 (如图所示)
R RX 2 RY2 (417)20(275)20500N0
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
⑵合力的方向:
cos RX
R
4170
0.834
5000
Y RX O
Rα
X
RY
RX = ∑FX = - 4170N
⑴ 按比例先画出封闭的力多边形 ⑵ 用尺和量角器在图上直接量得所要求的
未知量
也可采用数解法,即根据图形的边角关系, 用三角公式计算出所要求的未知量。
例1 起重机吊起的减速箱盖重W=900 N, 两根钢丝绳AB和AC与沿垂线的夹角分别为 α=45°, β =30°试求箱盖匀速吊起时, 钢丝绳AB和AC的张力。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
《工程汇交力系》PPT课件

n
n
n
FR Fxi i Fyi j Fzi k
(a)
i1
i1
i1
合力
FR FRx i FRy j FRz k
(b)
FRx 、FRy 、FRz分别为合力 FR在x、y、z轴上的投影
比较(a)、(b)可得
FRx Fx FRy Fy
即空间汇交力系的合力 在任一坐标轴上的投影,等 于各力在同一轴上投影的代
过汇交点,合力的力矢由力多边形的封闭边表示。 矢量式为
n
FR F1 F2 Fn Fi 简写为 FR F i 1
二、汇交力系平衡的几何条件
汇交力系合成结果为一合力,因此,汇交力系作用下刚 体平衡的必要充分条件是力系的合力等于零。矢量形式为
平衡
FR F 0
汇交力系的合力
n
FR Fi i1
将各分力表示为
Fi Fxi i Fyi j Fzi k
Fxi 、Fyi F、zi 分别为第i个分力
在x、y、z轴上的投影
n
n
n
可得
FR Fxi i Fyi j Fzi k
(a)
i1
i1
i1
三、汇交力系合成的解析法
Fx 0 Fy 0
FOC
3 5
FBC
2 0 2
FOC
4 5
FAC
4 5
0
Fz 0
P
FAC
3 5
FBC
2 0 2
x
例4 杆OC的0端由球铰支承,C端由
绳索AC及BC系住,使杆 OC处于水平位 置如图所示。若在C点悬挂重为P= 1kN的重物,略去杆OC的重量,试求 两绳的拉力及杆OC的力。
平面汇交力系合成与平衡的几何法

BA
BC
解得 F F 11.35kN
BA
BC
选压块C
F ix
0
FCB cosθ FCx 0
解得 F F cotθ Fl 11.25kN
2 Cx
2h
F iy
0
F CBsin FCy 0
解得 FCy 1.5kN
例2-6
已知: F=1400N, θ 20 , r 60mm
O
Oy
Ox
y
x
M
O
F R
M
O
F i
M F OR
x F
i
iy
y F
i
ix
例2-1 已知: P=20kN,R=0.6m, h=0.08m: 求:
1.水平拉力F=5kN时,碾子对地面及障碍物的压力? 2.欲将碾子拉过障碍物,水平拉力F至少多大?
3.力F沿什么方向拉动碾子最省力,及此时力F多大?
求:此力系的合力。
解:用解析法
FRx F ix F1 cos30 F2 cos60 F3 cos45 F4 cos45 129.3N
F Ry
F iy
F sin 30 1
F 2
sin 60
F sin 45 3
F 4
sin 45
112.3N
解: CD为二力杆,取踏板
由杠杆平衡条件
F cos yB F sin xB FCD l 0
解得
FCD
F
cos
yB
l
理论力学课件-平面汇交力系

o
9
(2)确定合力的大小和方向 )
FR = FRx 2 + FRy 2 = 129.32 + 112.32 N = 171.3N
FRx ∑ Fix 129.3 cos α = = = = 0.7548 FR FR 171.3
cos β =
FRy FR
∑F =
FR
ix
112.3 = = 0.6556 171.3
FAC
2 4 = P−F⋅ 5 3
FBC
3 1 4 = F− P−F⋅ 5 5 3
为使两根绳索保持张紧, 为使两根绳索保持张紧,则 FAC > 0,且 FBC > 0 由此得到F 的取值范围为: 由此得到 的取值范围为 290.34 N < F < 667.5 N
17
y
:(1) 解:( )计算合力的投影 由合力投影定理,得合力的投影 由合力投影定理,
F2
60 45o
o
FR F 1
30o
45o
x
F4
F3
o o o
FRx = F1 cos 30 − F2 cos 60 − F3 cos 45 + F4 cos 45 = 129.3N
FRy = F1 sin 30o + F2 sin 60o − F3 sin 45o − F4 sin 45o = 112.3N
F = Fx + Fy = Fx i + Fy j
6
二、合力投影定理
y
d2 c2 e2 b2 a2
d
c
F2
F3
F4
e
FR
FR x = F x + F2x + F x + F4x 1 3
平面汇交力系的合成与平衡的几何法和解析法

Fx2 Fy2
cosb Fy
Fx2 Fy2
式中cosa 和cosb 称为力 F的方向余弦。
理论力学电子教案
平面汇交力系
14
思 考 题 2- 2
试分析在图示的非直角坐标系中,力 F沿 x、y 轴方向的分力的大小与力 F在x、y 轴上的投影的大
小是否相等?
理论力学电子教案
平面汇交力系
15
2. 合力投影定理
理论力学电子教案
平面汇交力系
26
思 考 题 2- 4
如图所示,匀速起吊 重为 P的预制梁,如果
要求绳索AB、BC 的拉力 不超过 0.6P ,问a 角应在
什么范围内?
答:P
2sina
≤0.6P
56.4°≤a < 90°
理论力学电子教案
平面汇交力系
27
第2章结束
平面汇交力系的合成(简 化)和平面汇交力系的平衡。
研究方法: 几何法和解析法。
理论力学电子教案
平面汇交力系
3
§2-1 平面汇交力系合成与平衡的几何法
1. 合成
连续应用力的三角形法则,将各力依次合成。
ABCD称为力多边形。用几何作图求合力的方法,
称为几何法。F RF 1F 2F 3
F RF 1 F 2...F n F i
合力在任一轴上的投影等于各分力在同一轴上投 影的代数和。
x1 ab , x2 bc ,FRx ac FRx x1 x2 同理
FRy y1 y2 推广之
FRxx1x2xn FRy y1y2yn
理论力学电子教案
平面汇交力系
16
3. 合成
F RF Rx2F Ry2
tan a FR y
FR x
cosb Fy
Fx2 Fy2
式中cosa 和cosb 称为力 F的方向余弦。
理论力学电子教案
平面汇交力系
14
思 考 题 2- 2
试分析在图示的非直角坐标系中,力 F沿 x、y 轴方向的分力的大小与力 F在x、y 轴上的投影的大
小是否相等?
理论力学电子教案
平面汇交力系
15
2. 合力投影定理
理论力学电子教案
平面汇交力系
26
思 考 题 2- 4
如图所示,匀速起吊 重为 P的预制梁,如果
要求绳索AB、BC 的拉力 不超过 0.6P ,问a 角应在
什么范围内?
答:P
2sina
≤0.6P
56.4°≤a < 90°
理论力学电子教案
平面汇交力系
27
第2章结束
平面汇交力系的合成(简 化)和平面汇交力系的平衡。
研究方法: 几何法和解析法。
理论力学电子教案
平面汇交力系
3
§2-1 平面汇交力系合成与平衡的几何法
1. 合成
连续应用力的三角形法则,将各力依次合成。
ABCD称为力多边形。用几何作图求合力的方法,
称为几何法。F RF 1F 2F 3
F RF 1 F 2...F n F i
合力在任一轴上的投影等于各分力在同一轴上投 影的代数和。
x1 ab , x2 bc ,FRx ac FRx x1 x2 同理
FRy y1 y2 推广之
FRxx1x2xn FRy y1y2yn
理论力学电子教案
平面汇交力系
16
3. 合成
F RF Rx2F Ry2
tan a FR y
FR x
平面汇交力系课件-PPT

5
c F3 d
2.1.2平面汇交力系平衡的几何条件 F2
F4 e
b
平衡条件 Fi 0
F1
FR
a
平面汇交力系平衡的必要和充衡的情形下,力多边形中最后一力的终 点与第一力的起点重合,此时的力多边形称为封 闭的力多边形。于是,平面汇交力系平衡的必要 与充分条件是:该力系的力多边形自行封闭,这 是平衡的几何条件。
各力矢与合力矢构成的多边形称为力多边形。 用力多边形求合力的作图规则称为力的多边形法则。
4
结论:平面汇交力系可简化为一合力,其合力的大小 与方向等于各分力的矢量和(几何和),合力的作用线 通过汇交点。 用矢量式表示为:
FR F1 F2 Fn F
如果一力与某一力系等效,则此力称为该力系的合力。
2.2.3 平面汇交力系合成的解析法
合力的大小为: F F 2 F 2
R
Rx
Ry
tan FRy Fy
FRx
Fx
14
例2-3
已知:图示平面共点力系; 求:此力系的合力.
解:用解析法
F Rx
F ix
F cos 30 1
F 2
cos 60
F 3
cos 45
F 4
cos 45
129.3N
平衡方程
Fx 0
Fy 0
平面汇交力系平衡的必要和充分条件是:各力在 作用面内两个坐标轴上投影的代数和等于零。上式称 为平面汇交力系的平衡方程。
16
例2-4 已知:系统如图,不计杆、轮自重,忽略滑轮大小, P=20kN; 求:系统平衡时,杆AB,BC受力.
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图. 建图示坐标系
10
c F3 d
2.1.2平面汇交力系平衡的几何条件 F2
F4 e
b
平衡条件 Fi 0
F1
FR
a
平面汇交力系平衡的必要和充衡的情形下,力多边形中最后一力的终 点与第一力的起点重合,此时的力多边形称为封 闭的力多边形。于是,平面汇交力系平衡的必要 与充分条件是:该力系的力多边形自行封闭,这 是平衡的几何条件。
各力矢与合力矢构成的多边形称为力多边形。 用力多边形求合力的作图规则称为力的多边形法则。
4
结论:平面汇交力系可简化为一合力,其合力的大小 与方向等于各分力的矢量和(几何和),合力的作用线 通过汇交点。 用矢量式表示为:
FR F1 F2 Fn F
如果一力与某一力系等效,则此力称为该力系的合力。
2.2.3 平面汇交力系合成的解析法
合力的大小为: F F 2 F 2
R
Rx
Ry
tan FRy Fy
FRx
Fx
14
例2-3
已知:图示平面共点力系; 求:此力系的合力.
解:用解析法
F Rx
F ix
F cos 30 1
F 2
cos 60
F 3
cos 45
F 4
cos 45
129.3N
平衡方程
Fx 0
Fy 0
平面汇交力系平衡的必要和充分条件是:各力在 作用面内两个坐标轴上投影的代数和等于零。上式称 为平面汇交力系的平衡方程。
16
例2-4 已知:系统如图,不计杆、轮自重,忽略滑轮大小, P=20kN; 求:系统平衡时,杆AB,BC受力.
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图. 建图示坐标系
10
理论力学课件 4.1 平面汇交力系合成与平衡的几何法

平面汇交力系和平面力偶系
各力的作用线都汇交于一点的力系。可分为空间汇交 力系和平面汇交力系。
合力
多个力汇交于一点,如果能用一个力来等效替换, 此力称为合力。简言之:如果一个力与某一力系等 效,则称此力为该力系的合力。
平面汇交力系和平面力偶系
(1)两个共点力的合成
力三角形规则
尾 首
1、平面汇交力系合成与平衡 的几何法
注意:力三角形规则求出的是合力的大小与方向, 作用点仍在交汇点。
力多边形规则 力多边形 不唯一
注意:力多边形规则求出的是合力的大小与方向, 作用点仍在交汇点。
1、平面汇交力系合成与平衡 的几何法
平面汇交力系和平面力偶系
(3)汇交力系平衡的几何条件
å 平衡条件 FR = Fi = 0
汇交力系平衡的必要和充分条件是:
该力系的力多边形自行封闭 平衡的几何条件
1、平面汇交力系合成与平衡 的几何法
平面汇交力系和平面力偶系
平面汇交力系和平面力偶系
本讲主要内容
1、平面汇交力系合成与平衡的几何法 2、平面汇交力系合成与平衡的解析法 3、平面力对点的矩和平面力偶 4、平面力偶系的合成和平衡条件
平面汇交力系和平面力偶系
1、平面汇交力系合成与平衡 的几何法
平面汇交力系和平面力偶系
汇交力系
1、平面汇交力系合成与平衡 的几何法
解:CD为二力杆,取AB杆为研究对象,画受力图
E
1、平面汇交力系合成与平衡 的几何法
FA θ
FC 45°
F
A
C
B
汇交力系,利用平衡的几何条件,画封闭的力三角形.
c
b
FA
a
θ
FC
F 45°bF源自FCaFA c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面汇交力系的合成(简 化)和平面汇交力系的平衡。
研究方法: 几何法和解析法。
理论力学电子教案
平面汇交力系
3
§2-1 平面汇交力系合成与平衡的几何法
1. 合成
连续应用力的三角形法则,将各力依次合成。
ABCD称为力多边形。用几何作图求合力的方法,
称为几何法。FR
F1 F2 F3
FR F1F2 ... Fn Fi
理论力学电子教案
平面汇交力系
20
பைடு நூலகம்
例 题 2- 3
由于求出的
FAB
和
FCB都是正值,所以原先假设
的方向是正确的,即 BC 杆承受拉力,AB 杆承受压
力。若求出的结果为负值,则说明力的实际方向与
原假定的方向相反。
理论力学电子教案
平面汇交力系
21
注意:为避免解联立方程,可把一个轴放在与一个 未知力的作用线相垂直的位置上,这个未知力在轴 上的投影为零,于是投影方程中就只有一个未知数, 不必解联立方程。如在下例中
但是当Ox、Oy 两轴不正
交时,则没有这个关系。
理论力学电子教案
平面汇交力系
13
注意:力的投影是代数量,而力的分量是矢量; 投影无所谓作用点,而分力作用在原力的作用点。 Fy,则反力之F, 的若大已小知和力方F向在为两:正交坐标轴上的投影为Fx、
F Fx2 Fy2
cos Fx
Fx2
F
2 y
cos Fy
理论力学电子教案
平面汇交力系
4
2. 平衡 平面汇交力系平衡的必要和充分条件是合力为零,
即:
FR=0 ;在几何法中,合力为零即为力多边形自
行封闭。
理论力学电子教案
平面汇交力系
5
3. 三力平衡汇交定理
若刚体受三个力作用而平衡,且其中两个力的 作用线相交于一点,则其余一个力的作用线必汇交 于同一点,而且三个力的作用线在同一平面内。
x1 ab , x2 bc , FRx ac FRx x1 x2 同理
FRy y1 y2 推广之
FRx x1 x2 xn FRy y1 y2 yn
理论力学电子教案
平面汇交力系
16
3. 合成
FR FR x 2 FR y 2
tan FR y
FR x
FRx Fx
P
2 cos
即力在某个轴上的投影等于力的模乘以力与该轴的
正向间夹角的余弦。当a、b 为锐角时,Fx、Fy 均为 正值;当a、b 为钝角时,Fx、Fy 为负值。故力在坐
标轴上的投影是个代数量。
理论力学电子教案
平面汇交力系
12
而如将力 F沿正交的
x、y 坐标轴方向分解,则 所 小得与分 力力F在相Fx应、轴Fy上的的大投 影Fx、Fy的绝对值相等。
有三个力:重力 P;BC 杆的约束力FCB(设为拉力) 及AB杆的约束力 FAB(设为压力),列出平衡方程
Fx 0, FCBcos 30 FABcos 45 0 Fy 0, P FCBsin 30 FABsin 45 0
P mg 联立上述两方程,解得:
FAB= 88.0 N, FCB= 71.8 N。
由于提供的独立的方程有两个,故可以求解两 个未知量。
理论力学电子教案
平面汇交力系
18
例 题 2- 3
重物质量m =10 kg,悬 挂在支架铰接点 B 处,A、 C 为固定铰支座,杆件
位置如图示,略去支架 杆件重量,求重物处于
平衡时, 杆AB、BC所受
的力。
理论力学电子教案
平面汇交力系
19
例 题 2- 3 解:取铰B为研究对象,其上作用
A
FR y
F y
应用合力投影定理,用解析计算的方法求合力 的大小和方向,称为解析法。
理论力学电子教案
平面汇交力系
17
4. 平衡
FR FR x 2 FR y 2 0
FRx Fx 0
A
FR y
F 0 y
即平面汇交力系平衡的解析条件是:力系中各力在
x轴和y轴上的投影之代数和均等于零。
理论力学电子教案
例 题 2- 1
平面汇交力系
6
利用三力平衡汇交定理确定铰A
处约束力的方位。
理论力学电子教案
平面汇交力系
7
思 考 题 2- 1
试指出图示各力之间的关系。
(a)
(b)
(c)
(d)
理论力学电子教案
平面汇交力系
8
例 题 2- 2
水平梁 AB 中点 C 作用着力 F,其大小等于 20 kN,方向与梁的轴线成 60º角,支承情况如图所 示。试求固定铰链支座 A 和活动铰链支座 B 的约束 力。梁的自重不计。
Fx2
F
2 y
式中cos 和cos 称为力 F的方向余弦。
理论力学电子教案
平面汇交力系
14
思 考 题 2- 2
试分析在图示的非直角坐标系中,力 F沿 x、y 轴方向的分力的大小与力 F在x、y 轴上的投影的大 小是否相等?
理论力学电子教案
平面汇交力系
15
2. 合力投影定理
合力在任一轴上的投影等于各分力在同一轴上投 影的代数和。
理论力学电子教案
平面汇交力系
1
第 2 章 平面汇交力系
§2-1 平面汇交力系合成与平衡的几何法 §2-2 平面汇交力系合成与平衡的解析法
理论力学电子教案
平面汇交力系
2
平面汇交力系的定义:
若力系中各力的作用线在同一平面内且相交于 一点的力系,称为平面汇交力系。
刚体静力学中平面汇交力系可以简化为平面共 点力系。 本章研究的两个问题:
理论力学电子教案
平面汇交力系
9
例 题 2- 2
解:1. 取梁AB为研究对象。
2. 根据三力平衡汇交定理 画出受力图。 3. 选定合适的比例尺作出 相应的力三角形。
4. 由力三角形中量出:
FA = 17.0 kN , FB = 10.0 kN
它们的方向如图所示。 可见用几何法可以求解两个未知量。
理论力学电子教案
图(a)
图(b) 这样建立坐标系 FT 和FN相互耦合
图(c) ∑Fx=0, FT-P ·sin30°=0 可求得FT
理论力学电子教案
平面汇交力系
22
思 考 题 2- 3
重量为 P 的钢管C 搁在斜槽中,如图所示。试 问平衡时是否有 FA = P cosq,FB = P cosq ?为什么?
答:FA
平面汇交力系
10
§2-2 平面汇交力系合成与平衡的解析法
1. 力在坐标轴上的投影
图(a)平行光线照射 下物体的影子
图(b)力在坐标轴 上的投影
理论力学电子教案
平面汇交力系
11
由图知,若已知力 的
大小为F 及其与x轴、y轴的 夹角分别为a、b,则
Fx F cos Fy F cos F sin
研究方法: 几何法和解析法。
理论力学电子教案
平面汇交力系
3
§2-1 平面汇交力系合成与平衡的几何法
1. 合成
连续应用力的三角形法则,将各力依次合成。
ABCD称为力多边形。用几何作图求合力的方法,
称为几何法。FR
F1 F2 F3
FR F1F2 ... Fn Fi
理论力学电子教案
平面汇交力系
20
பைடு நூலகம்
例 题 2- 3
由于求出的
FAB
和
FCB都是正值,所以原先假设
的方向是正确的,即 BC 杆承受拉力,AB 杆承受压
力。若求出的结果为负值,则说明力的实际方向与
原假定的方向相反。
理论力学电子教案
平面汇交力系
21
注意:为避免解联立方程,可把一个轴放在与一个 未知力的作用线相垂直的位置上,这个未知力在轴 上的投影为零,于是投影方程中就只有一个未知数, 不必解联立方程。如在下例中
但是当Ox、Oy 两轴不正
交时,则没有这个关系。
理论力学电子教案
平面汇交力系
13
注意:力的投影是代数量,而力的分量是矢量; 投影无所谓作用点,而分力作用在原力的作用点。 Fy,则反力之F, 的若大已小知和力方F向在为两:正交坐标轴上的投影为Fx、
F Fx2 Fy2
cos Fx
Fx2
F
2 y
cos Fy
理论力学电子教案
平面汇交力系
4
2. 平衡 平面汇交力系平衡的必要和充分条件是合力为零,
即:
FR=0 ;在几何法中,合力为零即为力多边形自
行封闭。
理论力学电子教案
平面汇交力系
5
3. 三力平衡汇交定理
若刚体受三个力作用而平衡,且其中两个力的 作用线相交于一点,则其余一个力的作用线必汇交 于同一点,而且三个力的作用线在同一平面内。
x1 ab , x2 bc , FRx ac FRx x1 x2 同理
FRy y1 y2 推广之
FRx x1 x2 xn FRy y1 y2 yn
理论力学电子教案
平面汇交力系
16
3. 合成
FR FR x 2 FR y 2
tan FR y
FR x
FRx Fx
P
2 cos
即力在某个轴上的投影等于力的模乘以力与该轴的
正向间夹角的余弦。当a、b 为锐角时,Fx、Fy 均为 正值;当a、b 为钝角时,Fx、Fy 为负值。故力在坐
标轴上的投影是个代数量。
理论力学电子教案
平面汇交力系
12
而如将力 F沿正交的
x、y 坐标轴方向分解,则 所 小得与分 力力F在相Fx应、轴Fy上的的大投 影Fx、Fy的绝对值相等。
有三个力:重力 P;BC 杆的约束力FCB(设为拉力) 及AB杆的约束力 FAB(设为压力),列出平衡方程
Fx 0, FCBcos 30 FABcos 45 0 Fy 0, P FCBsin 30 FABsin 45 0
P mg 联立上述两方程,解得:
FAB= 88.0 N, FCB= 71.8 N。
由于提供的独立的方程有两个,故可以求解两 个未知量。
理论力学电子教案
平面汇交力系
18
例 题 2- 3
重物质量m =10 kg,悬 挂在支架铰接点 B 处,A、 C 为固定铰支座,杆件
位置如图示,略去支架 杆件重量,求重物处于
平衡时, 杆AB、BC所受
的力。
理论力学电子教案
平面汇交力系
19
例 题 2- 3 解:取铰B为研究对象,其上作用
A
FR y
F y
应用合力投影定理,用解析计算的方法求合力 的大小和方向,称为解析法。
理论力学电子教案
平面汇交力系
17
4. 平衡
FR FR x 2 FR y 2 0
FRx Fx 0
A
FR y
F 0 y
即平面汇交力系平衡的解析条件是:力系中各力在
x轴和y轴上的投影之代数和均等于零。
理论力学电子教案
例 题 2- 1
平面汇交力系
6
利用三力平衡汇交定理确定铰A
处约束力的方位。
理论力学电子教案
平面汇交力系
7
思 考 题 2- 1
试指出图示各力之间的关系。
(a)
(b)
(c)
(d)
理论力学电子教案
平面汇交力系
8
例 题 2- 2
水平梁 AB 中点 C 作用着力 F,其大小等于 20 kN,方向与梁的轴线成 60º角,支承情况如图所 示。试求固定铰链支座 A 和活动铰链支座 B 的约束 力。梁的自重不计。
Fx2
F
2 y
式中cos 和cos 称为力 F的方向余弦。
理论力学电子教案
平面汇交力系
14
思 考 题 2- 2
试分析在图示的非直角坐标系中,力 F沿 x、y 轴方向的分力的大小与力 F在x、y 轴上的投影的大 小是否相等?
理论力学电子教案
平面汇交力系
15
2. 合力投影定理
合力在任一轴上的投影等于各分力在同一轴上投 影的代数和。
理论力学电子教案
平面汇交力系
1
第 2 章 平面汇交力系
§2-1 平面汇交力系合成与平衡的几何法 §2-2 平面汇交力系合成与平衡的解析法
理论力学电子教案
平面汇交力系
2
平面汇交力系的定义:
若力系中各力的作用线在同一平面内且相交于 一点的力系,称为平面汇交力系。
刚体静力学中平面汇交力系可以简化为平面共 点力系。 本章研究的两个问题:
理论力学电子教案
平面汇交力系
9
例 题 2- 2
解:1. 取梁AB为研究对象。
2. 根据三力平衡汇交定理 画出受力图。 3. 选定合适的比例尺作出 相应的力三角形。
4. 由力三角形中量出:
FA = 17.0 kN , FB = 10.0 kN
它们的方向如图所示。 可见用几何法可以求解两个未知量。
理论力学电子教案
图(a)
图(b) 这样建立坐标系 FT 和FN相互耦合
图(c) ∑Fx=0, FT-P ·sin30°=0 可求得FT
理论力学电子教案
平面汇交力系
22
思 考 题 2- 3
重量为 P 的钢管C 搁在斜槽中,如图所示。试 问平衡时是否有 FA = P cosq,FB = P cosq ?为什么?
答:FA
平面汇交力系
10
§2-2 平面汇交力系合成与平衡的解析法
1. 力在坐标轴上的投影
图(a)平行光线照射 下物体的影子
图(b)力在坐标轴 上的投影
理论力学电子教案
平面汇交力系
11
由图知,若已知力 的
大小为F 及其与x轴、y轴的 夹角分别为a、b,则
Fx F cos Fy F cos F sin