2018人教版八年级数学(上)期中测试题及答案
【真题卷】人教版八年级数学上册期中试卷(含答案解析)

2018-2019学年天津市蓟州区八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.2018-2019学年天津市蓟州区八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。
2018-2019学年上学期八年级数学期中测试题(含答案)8

上学期八年级期中测试卷(满分120分,限时120分钟)一、 选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是( )DCB A2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A .5B .6C .11D .163. 一个多边形的边数每增加一条,这个多边形的( ) A .内角和增加360°B .外角和增加360°C .对角线增加一条D .内角和增加180°4. 如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°5.如图,将两根钢条AA ′、BB ′的中点 O 连在一起,使AA ′、BB ′能绕着点O 自由转动,就做成了一个测量工具,由三角形全等可知A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( )A .SASB .ASAC .SSSD .AAS6. 一个多边形的每一个内角都等于144°,则这个多边形的内角和是( ) A .720° B .900° C .1440° D .1620°7.如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .288. 小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理( )A .2;SASB .4;ASAC .2;AASD .4;SAS9. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为( ) A .30° B .60° C .90° D .120°或60°10.如图,AD 是角平分线,E 是AB 上一点,AE=AC ,EF ∥BC 交AC 于F .下列结论①△ADC ≌△ADE ;②CE 平分∠DEF ;③AD 垂直平分CE .其中正确的是( )BA ①②③B 、①C 、②D 、③二、填空题(共8小题,每小题3分,共24分)11. 一个三角形两边长分别为3和8,第三边长为奇数,则第三边长为 .12如图,点D 在BC 上,AB=AD ,∠C=∠E ,∠BAD=∠CAE ,若∠1+∠2=110°,则∠ABC 的度数是 .13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是 .(4)(3)(2)(1)14.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B=40°,则∠ACE 的大小是 度.BA15.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 度.GF EDC BA16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 17. 等腰三角形的一个角为40°,则它的顶角为 .18.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此 规律,倍长n 次后得到的△A 2016B 2016C 2016的面积为 .三、解答题(共8题,共66分)19、(本题8分)已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和对角线的条数.20.(本题8分)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.21.(本题8分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.D CFEAB22.(本题10分)如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1)由图观察易知A (0,2)关于直线l 的对称点A ′的坐标为(2,0),请在图中分别标明B (5,3)、C (﹣2,5)关于直线l 的对称点B ′、C ′的位置,并写出他们的坐标:B ′ 、C ′ ; 归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P ′的坐标为 ; 运用与拓广:xylCBA 'EDAO23.(本题10分).如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,求△ADE 的周长.24.(本题10分)如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ; (2)OC=OD ;(3)OE 是线段CD 的垂直平分线.E AO25.(本题12分)如图,已知△ABC 中,∠B=∠C ,AB=8厘米,BC=6厘米,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为t (秒)(0≤t ≤3).(1)用的代数式表示PC 的长度;(2)若点P 、Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;(3)若点P 、Q 的运动速度不相等,当点Q 的运动速度a 为多少时,能够使△BPD 与△CQP 全等?QPCBDA八年级数学期中测试题参考答案一、选择题1. B.2. C.3. D4. A.5. A.6. C.7. B.8. B.9. D.10. A二、填空题11.7或9 12. 70度13. 2n +1 14. 60 15. 15 16.十一17.40度或100度18.72016三、解答题19.边数是7,对角线是14条20.三边长是16,16,22或20,20,1421.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,∠DEC=∠AFB,∠C=∠A,DC=BA,∴△DEC≌△BFA,∴CE=AF,∴CE=5.22.解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);23. 7厘米23.解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,OC=OD,∠EUC=∠BOE,OE=OE,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴BD=4厘米,∴PC=BD,在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t=BP2=32秒,∴V Q=CQt=83厘米/秒.。
2018-2019学年吉林省第二实验学校八年级(上)期中数学试卷新人教版含答案解析

2018-2019学年吉林省第二实验学校八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)(2017春•黄陂区期中)下列能使有意义的x的取值可以是()A.x=﹣1B.x=2C.x=3D.x=52.(3分)(2017秋•朝阳区校级期中)如果把分式中的x和y的值都扩大到原来的2倍,那么扩大后的分式的值()A.不变B.缩小到原来的C.扩大到原来的2倍D.扩大到原来的4倍3.(3分)(2017秋•朝阳区校级期中)下列根式中,与是同类二次根式的是()A.B.C.D.4.(3分)(2017秋•朝阳区校级期中)如图,字母A所代表的正方形的面积为5,字母B所代表的正方形的面积为3,则字母C所代表的正方形的面积是()A.16B.8C.2D.45.(3分)(2017秋•朝阳区校级期中)用无刻度的直尺和圆规画一个已知角的平分线,是依据三角形全等判定定理中的()A.AAS B.ASA C.SSS D.SAS6.(3分)(2018春•宁晋县期中)如图所示,数轴上A、B两点所表示的数是﹣2,0,BC 与数轴垂直,且BC=1,连结AC,以A为圆心,AC为半径画弧,交数轴于点D,则点D所表示的数为()A.B.C.D.7.(3分)(2017秋•朝阳区校级期中)如图,大正方形是由4个小正方形组成,小正方形的边长为2,连接小正方形的三个顶点,得到△ABC,则△ABC的边AC上的高为()A.B.C.D.8.(3分)(2018•台儿庄区校级自主招生)在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个二、填空题(每小题3分,共18分)9.(3分)(2019•新华区校级模拟)化简.10.(3分)(2017秋•朝阳区校级期中)△ABC为等腰三角形,AB=4,BC=9,那么△ABC 的周长为.11.(3分)(2017秋•朝阳区校级期中)写出命题“两个直角相等”的逆命题.12.(3分)(2017秋•朝阳区校级期中)用无刻度的直尺和圆规画已知线段的垂直平分线,其数学依据是.13.(3分)(2017秋•朝阳区校级期中)如图,在△ABC中,DE是边BC的中垂线,垂足是E,交AC于点D,若AB=6,△ABD的周长是15,则AC的长为.14.(3分)(2019•惠民县一模)如图,△ABC中,∠ACB=90°,AC=BC=4,点D,E 分别是AB、AC的中点,在CD上找一点P,连接AP、EP,当AP+EP最小时,这个最小值是.三、解答题(共10小题,共78分)15.(6分)(2017秋•朝阳区校级期中)计算:.16.(6分)(2017秋•朝阳区校级期中)解方程:1.17.(6分)(2017秋•朝阳区校级期中)先化简,再求值:1,其中x=3.18.(7分)(2017秋•朝阳区校级期中)已知a+b=2,ab=﹣5,求的值.19.(7分)(2015•长春二模)如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为.20.(7分)(2017秋•朝阳区校级期中)如图,在正方形网格中,每个小正方形的边长均为1,点A、B、C、D均在格点上.(1)图中线段BC的长度为;(2)求图中格点四边形ABCD的面积.21.(8分)(2017秋•朝阳区校级期中)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,按下列要求画图:(1)在图①中画一条线段MN,使点M、N在格点上,且MN.(2)以格点为顶点,在图②中画一个边长为无理数,且各边都不相等的直角△ABC.22.(9分)(2017秋•朝阳区校级期中)如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,求四边形ABCD的面积.23.(10分)(2017秋•朝阳区校级期中)探究如图①,点A在直线MN上,点B在直线MN 外,连结AB,过线段AB的中点P作PC∥MN,交∠BAM的平分线AD于点C,连结BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM交∠BAM 的平分线AD于点C;作PE∥AN,交∠BAN的平分线AF于点E,连结BC,BE.若BC =1,AC,BE,则AE的长为.24.(12分)(2018秋•新吴区校级期中)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)当t为几秒时,BP平分∠ABC?(3)问t为何值时,△BCP为等腰三角形?(4)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2018-2019学年吉林省第二实验学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2017春•黄陂区期中)下列能使有意义的x的取值可以是()A.x=﹣1B.x=2C.x=3D.x=5【解答】解:由题意得,1﹣x≥0,解得,x≤1,故选:A.2.(3分)(2017秋•朝阳区校级期中)如果把分式中的x和y的值都扩大到原来的2倍,那么扩大后的分式的值()A.不变B.缩小到原来的C.扩大到原来的2倍D.扩大到原来的4倍【解答】解:原式故选:A.3.(3分)(2017秋•朝阳区校级期中)下列根式中,与是同类二次根式的是()A.B.C.D.【解答】解:是最简二次根式,3,2,2,所以,与是同类二次根式的是.故选:C.4.(3分)(2017秋•朝阳区校级期中)如图,字母A所代表的正方形的面积为5,字母B所代表的正方形的面积为3,则字母C所代表的正方形的面积是()A.16B.8C.2D.4【解答】解:∵字母A所代表正方形面积为5,字母B所代表正方形面积为3,∴字母C所代表正方形面积为:5﹣3=2.故选:C.5.(3分)(2017秋•朝阳区校级期中)用无刻度的直尺和圆规画一个已知角的平分线,是依据三角形全等判定定理中的()A.AAS B.ASA C.SSS D.SAS【解答】解:如图,①设已知角的顶点为O,以O为圆心,任意长度为半径画圆,交角两边为A,B两点;②用直尺画一条射线,端点为M,以M为圆心,用同样的半径画圆,该圆为圆M,交射线为C点;③以A为圆心,以AB为半径画圆,然后以C点为圆心,以同样的半径画圆,交圆M于D,E两点,随意连MD或者ME;得到的∠CMD就是所求的角;由以上作角过程不难看出有三个对应边相等.∴证明全等的方法是SSS.故选:C.6.(3分)(2018春•宁晋县期中)如图所示,数轴上A、B两点所表示的数是﹣2,0,BC 与数轴垂直,且BC=1,连结AC,以A为圆心,AC为半径画弧,交数轴于点D,则点D所表示的数为()A.B.C.D.【解答】解:∵BC⊥AB,∴∠ABC=90°,∴AC,∵以A为圆心,AC为半径画弧,交数轴于点D,∴AD=AC,∴点D表示的数是:2.故选:C.7.(3分)(2017秋•朝阳区校级期中)如图,大正方形是由4个小正方形组成,小正方形的边长为2,连接小正方形的三个顶点,得到△ABC,则△ABC的边AC上的高为()A.B.C.D.【解答】解:△ABC的面积=4×44×22×24×2=6,由勾股定理得AC,∴AC边上的高,故选:A.8.(3分)(2018•台儿庄区校级自主招生)在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【解答】解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O 到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选:D.二、填空题(每小题3分,共18分)9.(3分)(2019•新华区校级模拟)化简3.【解答】解:原式2,=3,故答案为:3.10.(3分)(2017秋•朝阳区校级期中)△ABC为等腰三角形,AB=4,BC=9,那么△ABC 的周长为22.【解答】解:①当腰长为4时,三角形的三边长为9、4、4,不符合三角形三边关系,因此这种情况不成立;②当腰长为9时,三角形的三边长为9、9、4,能构成三角形,则其周长=9+9+4=22.故答案为:22.11.(3分)(2017秋•朝阳区校级期中)写出命题“两个直角相等”的逆命题两个相等的角是直角.【解答】解:“两个直角相等”的逆命题是:两个相等的角是直角,故答案为:两个相等的角是直角.12.(3分)(2017秋•朝阳区校级期中)用无刻度的直尺和圆规画已知线段的垂直平分线,其数学依据是三边对应相等两三角形全等,等腰三角形的等腰三角形的三线合一.【解答】解:线段AB的垂直平分线如图所示.∵AC=CB,AD=BD,CD=CD,∴△ACD∽△BCD(SSS),∴∠ACD=∠BCD,∵CA=CB,∴CD⊥AB,OA=OB(三线合一),∴CD垂直平分线段AB.这里用到的数学依据是三边对应相等两三角形全等,等腰三角形的等腰三角形的三线合一.故答案为:三边对应相等两三角形全等,等腰三角形的等腰三角形的三线合一.13.(3分)(2017秋•朝阳区校级期中)如图,在△ABC中,DE是边BC的中垂线,垂足是E,交AC于点D,若AB=6,△ABD的周长是15,则AC的长为9.【解答】解:∵△ABD的周长为15,∴AB=6.∴AD+BD=9,∵ED是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AC=9,故答案为:9.14.(3分)(2019•惠民县一模)如图,△ABC中,∠ACB=90°,AC=BC=4,点D,E 分别是AB、AC的中点,在CD上找一点P,连接AP、EP,当AP+EP最小时,这个最小值是2.【解答】解:如图,连接BE,则BE就是P A+PE的最小值,∵Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,∴CE=2cm,∴BE,∴P A+PE的最小值是2.故答案为:2.三、解答题(共10小题,共78分)15.(6分)(2017秋•朝阳区校级期中)计算:.【解答】解:原式=9﹣7+1﹣27=10﹣2.16.(6分)(2017秋•朝阳区校级期中)解方程:1.【解答】解:两边乘x﹣3得到:1+x﹣3=2﹣x2x=4x=2经检验:x=2是分式方程的解.17.(6分)(2017秋•朝阳区校级期中)先化简,再求值:1,其中x=3.【解答】解:1=x+1,当x=3时,原式=3+1=4.18.(7分)(2017秋•朝阳区校级期中)已知a+b=2,ab=﹣5,求的值.【解答】解:将a+b=2两边平方得:(a+b)2=a2+b2+2ab=4,把ab=﹣5代入得:a2+b2=14,则原式.19.(7分)(2015•长春二模)如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为7.【解答】解:∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.故答案为:7.20.(7分)(2017秋•朝阳区校级期中)如图,在正方形网格中,每个小正方形的边长均为1,点A、B、C、D均在格点上.(1)图中线段BC的长度为;(2)求图中格点四边形ABCD的面积.【解答】解:(1)由勾股定理可知,线段BC的长度为;(2)格点四边形ABCD的面积=4×42×1×22×3×2=16﹣2﹣6=8.故答案为:.21.(8分)(2017秋•朝阳区校级期中)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,按下列要求画图:(1)在图①中画一条线段MN,使点M、N在格点上,且MN.(2)以格点为顶点,在图②中画一个边长为无理数,且各边都不相等的直角△ABC.【解答】解:(1)如图(1)所示:MN即为所求;(2)如图(2)所示:△ABC即为所求.22.(9分)(2017秋•朝阳区校级期中)如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,求四边形ABCD的面积.【解答】解:连接AC,在直角△ABC中,AC为斜边,且AB=BC=2,则AC2,∵AD=1,CD=3,∴AC2+AD2=CD2,即△ACD为直角三角形,且∠DAC=90°,四边形ABCD的面积=S△ABC+S△ACD AB×BC AD×AC=2.答:四边形ABCD的面积为2.23.(10分)(2017秋•朝阳区校级期中)探究如图①,点A在直线MN上,点B在直线MN 外,连结AB,过线段AB的中点P作PC∥MN,交∠BAM的平分线AD于点C,连结BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM交∠BAM 的平分线AD于点C;作PE∥AN,交∠BAN的平分线AF于点E,连结BC,BE.若BC =1,AC,BE,则AE的长为.【解答】解:探究,∵AD是∠BAM的平分线,∴∠MAD=∠BAD,∵PC∥MN,∴∠MAD=∠ACP,∴∠ACP=∠BAD,∴P A=PC,∵P A=PB,∴P A=PB=PC,∴∠ACB=90°,即BC⊥AD.应用,由探究可知,∠ACB=90°,∠AEB=90°,在Rt△ACB中,AB,在Rt△AEB中,AE,故答案为:.24.(12分)(2018秋•新吴区校级期中)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)当t为几秒时,BP平分∠ABC?(3)问t为何值时,△BCP为等腰三角形?(4)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=10cm,BC=6cm,∴AC=8 cm,∵动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2 cm,AP=6 cm,∵∠C=90°,∴由勾股定理得PB,∴△ABP的周长为:AP+PB+AB=(16)cm.(2)如图2所示,过点P作PD⊥AB于点D,∵AP平分∠CAB,∴PD=PC.在Rt△APD与Rt△APC中,,∴Rt△APD≌Rt△APC(HL),∴AD=AC=6 cm,∴BD=10﹣6=4 cm.设PC=x cm,则P A=(8﹣x)cm在Rt△BPD中,PD2+BD2=PB2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)①如图3,若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形②若P在AB边上时,有三种情况:i)如图4,若使BP=CB=6cm,此时AP=4cm,P运动的路程为4+8=12cm,所以用的时间为12s时,△BCP为等腰三角形;ii)如图5,若CP=BC=6cm,过C作CD⊥AB于点D,根据面积法得:高CD=4.8cm,在Rt△PCD中,PD=3.6cm,∴BP=2PD=7.2cm,∴P运动的路程为18﹣7.2=10.8cm,∴用的时间为10.8s时,△BCP为等腰三角形;ⅲ)如图6,若BP=CP,则∠PCB=∠B,∵∠ACP+∠BCP=90°,∠B+∠A=90°,∴∠ACP=∠A,∴P A=PC∴P A=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.综上所述,当t为6s或12s或10.8s或13s时,△BCP为等腰三角形;(3)分两种情况:①当P、Q没相遇前:如图7,P点走过的路程为tcm,Q走过的路程为2tcm,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t=12,∴t=4s;②当P、Q没相遇后:如图8,当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12s,∴当t为4秒或12秒时,直线PQ把△ABC的周长分成相等的两部分.。
【八年级数学试题】2018初二年级数学上期中试卷(含答案和解释)

2018初二年级数学上期中试卷(含答案和解释)
2018学年浙江省宁波市宁海县东片八年级(上)期中数学试卷参考答案与试题解析
一、精心选一选(本大题有10个小题,每小题3分,共30分)
1.下列各组线段为边,能组成三角形的是()
A. 4c、4c、9c B. 4c、5c、6c c. 2c、3c、5c D. 12c、5c、6c
考点三角形三边关系.
分析根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.
解答解根据三角形的三边关系,得
A、4+4<9,不能组成三角形,故此选项错误;
B、4+5>6,能够组成三角形,故此选项正确;
c、3+2=5,不能组成三角形,故此选项错误;
D、6+5<12,不能组成三角形,故此选项错误.
故选B.
点评此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
2.下列句子是命题的是()
A.画∠AB=45°
B.小于直角的角是锐角吗?
c.连结cD
D.三角形的中位线平行且等于第三边的一半
考点命题与定理.
分析根据命题的定义即可作出判断.。
人教版八年级数学上册期中测试卷

2017-2018学年山西农大附中八年级(上)期中数学试卷一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.(3分)在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.42.(3分)在平面直角坐标系中,点P(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(3分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:64.(3分)下列计算正确的是()A. =2B.•=C.﹣=D. =﹣35.(3分)如果a有算术平方根,那么a一定是()A.正数B.0 C.非负数D.非正数6.(3分)点(2,6)关于x轴对称点坐标为()A.(2,﹣6)B.(﹣2,﹣6) C.(﹣2,6)D.(6,2)7.(3分)如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)8.(3分)已知平面内有一点P,它的横坐标与纵坐标互为相反数,且与原点的距离是2,则P点的坐标为()A.(﹣1,1)或(1,﹣1)B.(1,﹣1)C.(﹣,)或(,﹣)D.(,﹣)9.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2 B.y1>y2>0 C.y1<y2 D.y1=y210.(3分)一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)如图是某校的平面示意图的一部分,若用“(0,0)”表示图书馆的位置,“(0,﹣3)”表示校门的位置,则教学楼的位置可表示为.12.(3分)的绝对值是.13.(3分)正比例函数y=kx的图象经过点(1,﹣1),则k的值是.14.(3分)已知函数:(1)图象不经过第二象限;(2)图象与直线y=x平行.请你写出一个同时满足(1)和(2)的函数关系式:.15.(3分)从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y(千米)与行驶时间t(时)的函数表达式为.16.(3分)如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,直角△CEF的面积为200,则BE的值为.三、解答题(72分)17.(16分)计算下列各题(1)++3﹣(2)3+﹣4(3)﹣1(4)(2﹣1)2.18.(8分)求下列各式中的x:(1)2x2+1=9(2)16﹣2(x﹣3)3=0.19.(6分)写出如图中△ABC各顶点的坐标且求出此三角形的面积.20.(6分)如图,等腰三角形ABC中,AB=AC,边BC上的高AD为12,且△ABC的周长为36,求腰长AB.21.(6分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?22.(10分)一次函数y=kx+b图象经过点(0,3)和(4,7).①试求k与b;②画出这个一次函数图象;③这个一次函数与x轴交点坐标是;④当x 时,y<0;⑤当x 时,y>0;⑥当0<y<7时,x的取值范围是.23.(10分)如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(3)B出发后小时与A相遇.(4)求出A行走的路程S与时间t的函数关系式.24.(10分)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长;(3)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.①请在x轴、y轴上找一点C,使△ABC为等腰三角形;(要求:用尺规画出所有符合条件的点,并用C1,C2,…,C n在图中标出所找的点.只保留作图痕迹,不写作法)②写出一个满足条件的在x轴上的点的坐标:,写出一个满足条件的在y轴上的点坐标:.参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.(3分)在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.4【解答】解:所给数据中无理数有:,π,2+,3.212212221…,共4个.故选D.2.(3分)在平面直角坐标系中,点P(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:∵3>0,﹣2<0,∴点P(3,﹣2)在第四象限.故选D.3.(3分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.4.(3分)下列计算正确的是()A. =2B.•=C.﹣=D. =﹣3【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.5.(3分)如果a有算术平方根,那么a一定是()A.正数B.0 C.非负数D.非正数【解答】解:∵a有算术平方根,∴a≥0.故选C.6.(3分)点(2,6)关于x轴对称点坐标为()A.(2,﹣6)B.(﹣2,﹣6) C.(﹣2,6)D.(6,2)【解答】解:点(2,6)关于x轴对称点坐标为(2,﹣6),故选:A.7.(3分)如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.8.(3分)已知平面内有一点P,它的横坐标与纵坐标互为相反数,且与原点的距离是2,则P点的坐标为()A.(﹣1,1)或(1,﹣1)B.(1,﹣1)C.(﹣,)或(,﹣)D.(,﹣)【解答】解:设点P的横坐标与纵坐标分别为x、﹣x,所以x2+(﹣x)2=22,解得,,,所以,,所以P点的坐标为(,﹣),(﹣,).故选C.9.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2 B.y1>y2>0 C.y1<y2 D.y1=y2【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.10.(3分)一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选A.二、填空题(每小题3分,共18分)11.(3分)如图是某校的平面示意图的一部分,若用“(0,0)”表示图书馆的位置,“(0,﹣3)”表示校门的位置,则教学楼的位置可表示为(5,0).【解答】解:∵“(0,0)”表示图书馆的位置,“(0,﹣3)”表示校门的位置,∴教学楼的坐标位置可表示为(5,0).故答案为:(5,0).12.(3分)的绝对值是﹣2 .【解答】解:∵﹣2>0,∴|﹣2|=﹣2.故答案为:﹣2.13.(3分)正比例函数y=kx的图象经过点(1,﹣1),则k的值是﹣1 .【解答】解:∵正比例函数y=kx的图象经过点(1,﹣1),∴﹣1=k,解得:k=﹣1.故答案为:﹣1.14.(3分)已知函数:(1)图象不经过第二象限;(2)图象与直线y=x平行.请你写出一个同时满足(1)和(2)的函数关系式:y=x﹣1 .【解答】解:设直线解析式为y=kx+b,∵图象不经过第二象限,∴k>0,b≤0,∵图象与直线y=x平行,∴k=1,∴当b取﹣1时,解析式为y=x﹣1.故答案为y=x﹣1.15.(3分)从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y(千米)与行驶时间t(时)的函数表达式为y=60﹣35t .【解答】解:由题意得:y=60﹣35t,故答案为:y=60﹣35t.16.(3分)如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,直角△CEF的面积为200,则BE的值为12 .【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D=∠ABC=∠BCD=90°,∴∠CBE=90°,∵∠ECF=90°,∴BCE=∠DCF,在△BCE和△DCF中,,∴△BCE≌△DCF(ASA),∴CE=CF,∴△CEF是等腰直角三角形,∴△CEF的面积=CE•CF=CE2=200,∴CE=20,∵正方形ABCD的面积为256,∴BC==16,∴BE===12.故答案为:12.三、解答题(72分)17.(16分)计算下列各题(1)++3﹣(2)3+﹣4(3)﹣1 (4)(2﹣1)2.【解答】解:(1)原式=4﹣3+3﹣3=﹣2+3(2)原式=9+﹣2=8;(3)原式=﹣1=﹣1=2;(4)原式=12+1﹣4=13﹣4.18.(8分)求下列各式中的x:(1)2x2+1=9(2)16﹣2(x﹣3)3=0.【解答】解:(1)方程变形得:x2=4,解得:x=±2;(2)方程变形得:(x﹣3)3=8,开立方得:x﹣3=2,解得:x=5.19.(6分)写出如图中△ABC各顶点的坐标且求出此三角形的面积.【解答】解:根据图形得:A(2,2)、B(﹣2,﹣1)、C(3,﹣2),三角形的面积是5×4﹣6﹣2.5﹣2=9.5.20.(6分)如图,等腰三角形ABC中,AB=AC,边BC上的高AD为12,且△ABC的周长为36,求腰长AB.【解答】解:如图,∵在△ABC中,AB=AC,AD为BC上的高,∴BD=CD.故设AB=AC=x,BD=CD=y.则由题意,得,解得,,所以AB的长为13.21.(6分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5,∴蚂蚁爬行的最短距离是25.22.(10分)一次函数y=kx+b图象经过点(0,3)和(4,7).①试求k与b;②画出这个一次函数图象;③这个一次函数与x轴交点坐标是(﹣3,0);④当x <﹣3 时,y<0;⑤当x >﹣3 时,y>0;⑥当0<y<7时,x的取值范围是﹣3<x<4 .【解答】解:①把点(0,3)和(4,7)代入y=kx+b得,解得;②函数的图象如图:③由图象可知这个函数图象与x轴的交点坐标为(﹣3,0);④当x<﹣3时,y<0;⑤当x>﹣3时,y>0;⑥当0<y<7时,x的取值范围是﹣3<x<4.故答案为:(﹣3,0),<﹣3,>﹣3,﹣3<x<4.,23.(10分)如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距10 千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 1 小时.(3)B出发后 3 小时与A相遇.(4)求出A行走的路程S与时间t的函数关系式.【解答】解:(1)由图形可得B出发时与A相距10千米;(2)在图中发现0.5至1.5小时,自行车没有行走,故可得出修理所用的时间为1小时.(3)图中两直线的交点是B与A相遇的时刻,即出发3小时后与A相遇.(4)设函数是为S=kt+b,且过(0,10)和(3,22.5),则,解得:.故S与时间t的函数关系式为:S=t+10.24.(10分)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长;(3)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.①请在x轴、y轴上找一点C,使△ABC为等腰三角形;(要求:用尺规画出所有符合条件的点,并用C1,C2,…,C n在图中标出所找的点.只保留作图痕迹,不写作法)②写出一个满足条件的在x轴上的点的坐标:(﹣1,0),写出一个满足条件的在y轴上的点坐标:(0,2+).【解答】解:(1)由图可得,×(a+b)(a+b)=ab+c2+ab,整理得,∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.(2)当a=2,b=4时,可得:c=;如图1:所以四边形的周长为:8+4;(3)如图2:一个满足条件的在x轴上的点的坐标:(﹣1,0);一个满足条件的在y轴上的点的坐标:(0,2+).故答案为:(﹣1,0);(0,2+),专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
2018-2019学年最新人教版八年级数学上学期期中考试模拟检测卷及答案-精编试题

八年级上学期期中模拟检测数学试题一、选择题(共10小题,每小题2分,满分20分)1.在△ABC中,∠A=30°,∠B=60°,则∠C=()A.30°B.45°C.60°D.90°2.已知三角形的两边长分别是5、7,则第三边长a的取值范围是()A.2<a<12 B.2≤a≤12 C.a>2 D.a<123.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.2,4,5 D.1,7,94.如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE=()A.10°B.15°C.20°D.30°5.观察下列图形,是轴对称图形的是()A.B.C.D.6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN8.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.49.如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A.55°B.65°C.75°D.85°10.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠AED D.DE=BC二、填空题(共6小题,每小题3分,满分18分)11.线段是轴对称图形,它的对称轴有条.12.一个多边形的内角和是720°,这个多边形的边数是.13.已知点A(3,1),则点A关于x轴的对称点A1的坐标是.14.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.15.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.16.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在图5中,互不重叠的三角形共有个.三、解答题(共9小题,满分62分)17.如图,已知AC=AD,∠CAB=∠DAB,求证:BC=BD.18.如图,在△ABC中,AB=AC.(1)利用尺规作图法作边BC的高AD,垂足为D,(要求:保留作图痕迹,不写作法).(2)求证:BD=CD.19.如图.(1)求图形中的x的值;(2)求:∠A、∠B、∠C、∠D的度数.20.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1.21.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=6cm,DE=4cm,求BE的长度.23.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.24.如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.25.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.在△ABC中,∠A=30°,∠B=60°,则∠C=()A.30°B.45°C.60°D.90°【考点】三角形内角和定理.【分析】三角形内角和是180°,据此进行计算即可.【解答】解:∵在△ABC中,∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°,故选(D)2.已知三角形的两边长分别是5、7,则第三边长a的取值范围是()A.2<a<12 B.2≤a≤12 C.a>2 D.a<12【考点】三角形三边关系.【分析】根据三角形的第三边大于两边之差小于两边之和,即可解决问题.【解答】解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是5、7,则第三边长a的取值范围是2<a<12.故选A.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.2,4,5 D.1,7,9【考点】三角形三边关系.【分析】根据两边之和大于第三边即可判断.【解答】解:A、错误.因为3+4<8.B、错误.因为5+6=11.C、正确.因为2+4>5.D、错误.因为1+7<9.故选C.4.如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE=()A.10°B.15°C.20°D.30°【考点】等腰三角形的性质.【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD=∠B+22°,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论.【解答】解:∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=∠B+20°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠C+∠EDC=∠ADC﹣∠EDC=∠B+20°﹣∠EDC,解得∠EDC=10°.故选A.5.观察下列图形,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的特点对选项进行一一分析,即可得出答案.【解答】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.故选:C.7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.8.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.4【考点】角平分线的性质;三角形的外角性质.【分析】过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,根据角平分线性质得出PQ=PR,即可得出答案.【解答】解:过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,∵△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,∴PQ=PW,PW=PR,∴PR=PQ,∵点P到AC的距离为3,∴PQ=PR=3,则点P到AB的距离为3,故选C.9.如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A.55°B.65°C.75°D.85°【考点】轴对称的性质.【分析】根据三角形的内角和等于180°求出∠BAC的度数,再根据轴对称的性质可得∠DAC=∠BAC.【解答】解:∵∠BCA=35°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣35°﹣80°=65°,∵△ABC与△ADC关于AC所在的直线对称,∴∠DAC=∠BAC=65°.故选B.10.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠AED D.DE=BC【考点】等腰三角形的性质;平行线的性质.【分析】由DE与BC平行,得到三角形ADE与三角形ABC相似,由相似得比例,根据AB=AC,得到AD=AE,进而确定出DB=EC,再由两直线平行同位角相等,以及等腰三角形的底角相等,等量代换得到∠ADE=∠AED,而DE 不一定为中位线,即DE不一定为BC的一半,即可得到正确选项.【解答】解:∵DE∥BC,∴=,∠ADE=∠B,∵AB=AC,∴AD=AE,DB=EC,∠B=∠C,∴∠ADE=∠AED,而DE不一定等于BC,故选D.二、填空题(共6小题,每小题3分,满分18分)11.线段是轴对称图形,它的对称轴有 2 条.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:线段是轴对称图形,它的对称轴有2条.故答案为:2.12.一个多边形的内角和是720°,这个多边形的边数是 6 .【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.已知点A(3,1),则点A关于x轴的对称点A1的坐标是(3,﹣1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:点A(3,1)关于x轴的对称点A1的坐标是(3,﹣1).故答案为:(3,﹣1).14.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.【考点】等边三角形的性质.【分析】根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.15.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.16.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在图5中,互不重叠的三角形共有16 个.【考点】规律型:图形的变化类.【分析】根据图形结合题目所给数据寻找规律,发现图2比图1多3个互不重叠的三角形,即4+3个;图3比图2多3个互不重叠的三角形,即4+3×2个;依此类推,图n中互不重叠的三角形的个数是4+3(n﹣1),即3n+1个.【解答】解:图1中互不重叠的三角形有4个图2中互不重叠的三角形有7=4+3个图3中互不重叠的三角形有10=4+3×2个按此规律图n中互不重叠的三角形有4+3(n﹣1)=3n+1个,∴当n=5时,3n+1=16,故答案为:16.三、解答题(共9小题,满分62分)17.如图,已知AC=AD,∠CAB=∠DAB,求证:BC=BD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ACB和△ADB中,,∴△ACB≌△ADB(AAS),∴BC=BD.18.如图,在△ABC中,AB=AC.(1)利用尺规作图法作边BC的高AD,垂足为D,(要求:保留作图痕迹,不写作法).(2)求证:BD=CD.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)分别以点BC为圆心,以大于BC为半径画圆,两圆相交于点E,连接AE,交线段于点D,则点D即为垂足;(2)根据HL定理得出△ABD≌△ACD,进而可得出结论.【解答】(1)解:如图,点D即为所求;(2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD与△ACD中,∵,∴△ABD≌△ACD(HL),∴BD=CD.19.如图.(1)求图形中的x的值;(2)求:∠A、∠B、∠C、∠D的度数.【考点】多边形内角与外角.【分析】(1)根据四边形内角和等于360°列出方程求解即可;(2)把x的值代入计算即可求解.【解答】解:(1)依题意有:3x+3x+4x+2x=360°,解得x=30°;(2)∠A=∠B=3×30°=90°,∠C=2×30°=60°,∠D=4×30°=120°.20.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【考点】作图-轴对称变换;点的坐标.【分析】(1)利用轴对称性质,作出A、B、C关于y轴的对称点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)根据点关于y轴对称的性质,纵坐标相同,横坐标互为相反数,即可求出A1、B1、C1各点的坐标.【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).21.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【考点】等腰三角形的性质.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=6cm,DE=4cm,求BE的长度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)求出∠E=∠ADC=∠ACB=90°,∠CAD=∠BCE,根据AAS推出即可;(2)根据全等三角形的性质求出CE=AD=6cm,BE=CD,即可得出答案.【解答】(1)证明:∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠E=∠ADC=∠ACB=90°,∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS);(2)解:∵△ADC≌△CEB,AD=6cm,∴CE=AD=6cm,BE=CD,∵DE=4cm,∴BE=CD=CE﹣DE=6cm﹣4cm=2cm.23.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.24.如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.【考点】等边三角形的性质;对顶角、邻补角;全等三角形的判定与性质.【分析】(1)根据△ABC、△ADE都是等边三角形,得到AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,推出∠BAD=∠CAE,得到△BAD≌△CAE,根据全等三角形的性质得到BD=EC,即可推出答案;(2)由(1)知:△BAD≌△CAE,根据平角的意义即可求出∠ECD的度数.【解答】证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC,∵BD=BC+CD=AC+CD,∴CE=BD=AC+CD;(2)由(1)知:△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ECD=60°.25.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.新课标精品卷--------期中模拟试题2017年2月15日。
人教版八年级数学上册期中测试卷

人教版八年级数学试题2017-2018学年陕西省西安市蓝田县八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分)1.下列各数中描述无理数的是()A.﹣3.14 B. C.D.2.在平面直角坐标系中,点A(5,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限3.用a,b,c作为三角形的三边,其中不能构成的直角三角形的是()A.b2=(a+c)(a﹣c)B.a:b:c=:2:C.a=9,b=16,c=25 D.a=6,b=8,c=104.正比例函数y=(2k﹣3)x的图象过点(3,﹣9),则k的值为()A.0 B.1 C.2 D.35.如图,在Rt△ABC中,∠A=90°,斜边BC的垂直平分线交BC于点D,交AB 于点E,连接CE,若AE=3,BE=5,则BC的长为()A.8 B.6 C.4 D.26.如图,A,B是数轴上两点,过点B作BC⊥x轴,若BC=2,以A为圆心,AC 为半径作圆弧交数轴于点P,若点P所表示的数是﹣2,则点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.07.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2 C.它的图象经过点(﹣2,0)D.函数图象与y轴的交点坐标是(0,4)8.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(1,2)表示小明的位置,(﹣1,1)表示小刚的位置,则小红的位置可表示为()A.(﹣3,﹣2)B.(﹣3,﹣1)C.(﹣2,﹣2)D.(﹣2,﹣1)9.满足﹣<x<的所有整数x的和是()A.7 B.9 C.11 D.1310.一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,下列说法不正确的是()A.汽车在行驶途中停留了0.5小时B.汽车在行驶途中的平均速度为千米/小时C.汽车共行驶了240千米D.汽车自出发后3小时至4.5小时之间行驶的速度是80千米/小时二、填空题(共4小题,每小题3分,计12分)11.的绝对值是.12.已知点P(﹣4,2)关于y轴的对称点为Q(m,n),则m﹣4n的值是.13.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是.14.为了测算出学校旗杆的高度,爱动脑筋的小明这样设计出了一个方案如图,将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,则旗杆的高度是米.三、解答题(共11小题,计78分)15.计算:×+÷﹣8×.16.已知正比例函数图象上一个点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,求该正比例函数的表达式.17.已知x=2﹣3,求x2﹣(2+3)x﹣5的值.18.已知x+4的平方根是±3,3x+y﹣1的立方根是3,求y2﹣x2的算术平方根.19.某居民生活小区需要建一个大型的球形储水罐,需储水36立方米,这个球形蓄水池的半径约为多少米?(球的体积V=πr3,r是球的半径,π取3.14,结果精确到0.01米)20.如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(﹣2,2),(2,0),完成以下问题.(1)请根据题意在图上建立直角坐标系;(2)写出图上其它地点的坐标;(3)在图中标出体育馆(﹣5,4)的位置.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)画出△ABC关于x轴对称的图形△A1B1C1;(点A与点A1对应,点B与点B1对应,点C与点C1对应)(2)画出(1)中得到的△A1B1C1关于y轴对称的△A2B2C2,并写出点C1的对应点C2的坐标.22.如图,已知AB=,AC=2,AB⊥AC,BD=3,CD=4.(1)求BC的长度;(2)求四边形ABDC的面积.23.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)当x=2200时,方案A和方案B哪种方案付款少?(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,他应选择哪种方案?24.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线﹣﹣螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30cm,绕一圈升高(即圆柱的高)40cm,则它爬行一圈的路程是多少?(2)如果树干的周长为80cm,绕一圈爬行100cm,它爬行10圈到达树顶,则树干高多少?25.甲、乙两车分别从A,B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;(2)当乙车行驶多少时间时,甲乙两车的距离是280千米.2017-2018学年陕西省西安市蓝田县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.下列各数中描述无理数的是()A.﹣3.14 B. C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣3.14,,是有理数,是无理数,故选:B.2.在平面直角坐标系中,点A(5,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:A(5,﹣4)在第四象限,故选:D.3.用a,b,c作为三角形的三边,其中不能构成的直角三角形的是()A.b2=(a+c)(a﹣c)B.a:b:c=:2:C.a=9,b=16,c=25 D.a=6,b=8,c=10【考点】勾股定理的逆定理.【分析】根据选项中的数据,由勾股定理的逆定理可以判断a、b、c三边组成的三角形是否为直角三角形.【解答】解:∵b2=(a+c)(a﹣c),∴b2=a2﹣c2,∴a2=c2+b2,根据勾股定理的逆定理可得,用a、b、c作三角形的三边,能构成直角三角形,故选项A错误;∵a:b:c=:2:,∴设a=x,b=2x,c=x,∵(x)2+(2x)2=(x)2,∴用a、b、c作三角形的三边,能构成直角三角形,故选项B错误;∵a=9,b=16,c=25,92+162≠252,∴用a、b、c作三角形的三边,不能构成直角三角形,故选项C正确;∵a=6,b=8,c=10,62+82=102,∴用a、b、c作三角形的三边,能构成直角三角形,故选项D错误;故选C.4.正比例函数y=(2k﹣3)x的图象过点(3,﹣9),则k的值为()A.0 B.1 C.2 D.3【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:∵正比例函数y=(2k﹣3)x的图象过点(3,﹣9),∴﹣9=3(2k﹣3),解得:k=0.故选A.5.如图,在Rt△ABC中,∠A=90°,斜边BC的垂直平分线交BC于点D,交AB于点E,连接CE,若AE=3,BE=5,则BC的长为()A.8 B.6 C.4 D.2【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到EC=EB=5,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴EC=EB=5,∴AC==4,∴BC==4,故选:C.6.如图,A,B是数轴上两点,过点B作BC⊥x轴,若BC=2,以A为圆心,AC 为半径作圆弧交数轴于点P,若点P所表示的数是﹣2,则点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.0【考点】实数与数轴.【分析】首先在直角三角形中,利用勾股定理可以求出线段CA的长度,然后根据AC=AP即可求出AP的长度,接着可以求出数轴上点A所表示的数.【解答】解:∵在Rt△ABC中,CA==,∴AC=AP=,∵点P所表示的数是﹣2,∴点P所表示的数是﹣2﹣=﹣2.故选:B.7.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2 C.它的图象经过点(﹣2,0)D.函数图象与y轴的交点坐标是(0,4)【考点】一次函数的性质.【分析】根据一次函数的性质对各选项进行判断.【解答】解:A、函数的图象经过第一、二、四象限,不经过第三象限,所以A 选项的说法正确;B、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2,所以B选项的说法正确;C、∴令y=0,则y=2,∴此函数的图象图象经过点(﹣2,0),故本选项的说法错误;D、函数的图象与y轴的交点坐标是(0,4),所以D选项的说法正确;故选C.8.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(1,2)表示小明的位置,(﹣1,1)表示小刚的位置,则小红的位置可表示为()A.(﹣3,﹣2)B.(﹣3,﹣1)C.(﹣2,﹣2)D.(﹣2,﹣1)【考点】坐标确定位置.【分析】根据小刚的位置向右一个单位,向下一个单位为坐标原点建立平面直角坐标系,然后写出小红的位置即可.【解答】解:建立平面直角坐标系如图所示,小红的位置可表示为(﹣2,﹣1).故选D.9.满足﹣<x<的所有整数x的和是()A.7 B.9 C.11 D.13【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:﹣<x<的所有整数x有﹣2,﹣1,0,1,2,3,4,满足﹣<x<的所有整数x的和是﹣2+(﹣1)+0+1+2+3+4=7,故选:A.10.一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,下列说法不正确的是()A.汽车在行驶途中停留了0.5小时B.汽车在行驶途中的平均速度为千米/小时C.汽车共行驶了240千米D.汽车自出发后3小时至4.5小时之间行驶的速度是80千米/小时【考点】一次函数的应用.【分析】根据函数图形的s轴判断行驶的总路程,从而得到C正确;根据s不变时为停留时间判断出A正确;根据平均速度=总路程÷总时间列式计算即可判断出C错误;再根据一次函数图象的实际意义判断出D正确.【解答】解:A汽车在行驶途中停留了2﹣1.5=0.5小时,故本小题正确;B汽车在整个行驶过程中的平均速度为千米/时,故本小题错误;C由图可知,汽车共行驶了120×2=240千米,故C正确;D汽车自出发后3小时至4.5小时之间行驶离出发地越来越近,是匀速运动,速度是80千米/小时,故本小题正确;故选B.二、填空题(共4小题,每小题3分,计12分)11.的绝对值是.【考点】实数的性质;绝对值.【分析】根据负的绝对值是负数,可得答案.【解答】解:=﹣的绝对值是,故答案为:.12.已知点P(﹣4,2)关于y轴的对称点为Q(m,n),则m﹣4n的值是﹣4.【考点】关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由P(﹣4,2)关于y轴的对称点为Q(m,n),得m=4,n=2.m﹣4n=4﹣4×2=﹣4,故答案为:﹣4.13.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+1.【考点】一次函数图象与几何变换.【分析】根据一次函数的图象平移的法则即可得出结论.【解答】解:直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故答案为:y=﹣7x+1.14.为了测算出学校旗杆的高度,爱动脑筋的小明这样设计出了一个方案如图,将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,则旗杆的高度是12米.【考点】勾股定理的应用.【分析】如图,设旗杆的高度为xm,则AC=xm,AB=(x+1)m,BC=5m,利用勾股定理得到52+x2=(x+1)2,然后解方程求出x即可.【解答】解:如图,设旗杆的高度为xm,则AC=xm,AB=(x+1)m,BC=5m,在Rt△ABC中,52+x2=(x+1)2,解得x=12,答:旗杆的高度是12m.故答案为12.三、解答题(共11小题,计78分)15.计算:×+÷﹣8×.【考点】二次根式的混合运算.【分析】先根据二次根式的乘除法则运算,然后化简后合并即可.【解答】解:原式=+﹣4=3+2﹣4=.16.已知正比例函数图象上一个点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,求该正比例函数的表达式.【考点】待定系数法求正比例函数解析式;点的坐标.【分析】由点A所在的位置即可得出点A的坐标,再利用待定系数法即可求出正比例函数的表达式,此题得解.【解答】解:∵点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,∴点A的坐标为(2,﹣4).设正比例函数的表达式为y=kx(k≠0),将点(2,﹣4)代入y=kx中,﹣4=2k,解得:k=﹣2,∴该正比例函数的表达式为y=﹣2x.17.已知x=2﹣3,求x2﹣(2+3)x﹣5的值.【考点】二次根式的化简求值.【分析】将x的值代入原式,然后化简求值即可.【解答】解:当x=2﹣3,∴原式=(2﹣3)2﹣(2+3)(2﹣3)﹣5=12+9﹣12﹣3﹣5=13﹣1218.已知x+4的平方根是±3,3x+y﹣1的立方根是3,求y2﹣x2的算术平方根.【考点】立方根;平方根;算术平方根.【分析】先根据平方根求出x的值,再根据立方根求出y的值,然后代入求值即可求出答案.【解答】解:由题意可知:x+4=9,解得:x=5,3x+y﹣1=27,解得y=13,∴y2﹣x2=144,∵122=144,∴y2﹣x2的算术平方根为12,19.某居民生活小区需要建一个大型的球形储水罐,需储水36立方米,这个球形蓄水池的半径约为多少米?(球的体积V=πr3,r是球的半径,π取3.14,结果精确到0.01米)【考点】立方根.【分析】根据球的体积公式,得出球形蓄水池的半径.【解答】解:设球形蓄水池的半径约为r米,则V=πr3=36,r3≈8.60,r≈2.05(米)答:这个球形蓄水池的半径约为2.05米20.如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(﹣2,2),(2,0),完成以下问题.(1)请根据题意在图上建立直角坐标系;(2)写出图上其它地点的坐标;(3)在图中标出体育馆(﹣5,4)的位置.【考点】坐标确定位置.【分析】(1)根据图书馆、校门口的坐标分别为(﹣2,2),(2,0),即可找出直角坐标系的x、y轴,依此建立直角坐标系即可;(2)根据其它地点在直角坐标系中的位置,找出坐标即可;(3)找出点(﹣5,4),标记为体育馆即可.【解答】解:(1)坐标系如图所示.(2)行政楼(3,3),实验楼(﹣3,0),综合楼(﹣4,﹣3),信息楼(2,﹣2).(3)在坐标系中标出体育馆(﹣5,4)的位置,如图所示.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)画出△ABC关于x轴对称的图形△A1B1C1;(点A与点A1对应,点B与点B1对应,点C与点C1对应)(2)画出(1)中得到的△A1B1C1关于y轴对称的△A2B2C2,并写出点C1的对应点C2的坐标.【考点】作图﹣轴对称变换.【分析】(1)根据轴对称的性质作出△ABC关于x轴对称的图形△A1B1C1;(2)根据轴对称的性质作出△A1B1C1关于y轴对称的△A2B2C2,并根据点C2的位置得出其坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;点C1的对应点C2的坐标为(4,﹣3).22.如图,已知AB=,AC=2,AB⊥AC,BD=3,CD=4.(1)求BC的长度;(2)求四边形ABDC的面积.【考点】勾股定理.【分析】(1)直接根据勾股定理求出BC的长即可;(2)先根据勾股定理的逆定理判断出△BCD是直角三角形,再由S四边形ABDC =S△ABC+S△BDC,即可得出结论.【解答】解:(1)∵AB⊥BC,∴∠BAC=90°.在Rt△ABC中,∵AB=,AC=2,∴BC==;(2)∵BC=,BD=3,∴BC2+BD2=()2+32=16.∵CD2=16,∴BC2+BD2=CD2,∴△BCD是直角三角形,∴S四边形ABDC=S△ABC+S△BDC=AB•AC+BD•BC=×2×+×3×=.23.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)当x=2200时,方案A和方案B哪种方案付款少?(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,他应选择哪种方案?【考点】一次函数的应用.【分析】(1)根据题意,可以分别表示出方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)根据(1)中的函数解析式,将x=2200代入,求出相应的函数值,然后再比较大小,即可解答本题;(3)根据(1)中的函数解析式可以分别求得用20000元,两种方案各购买多少苹果,然后比较大小,即可解答本题.【解答】解:(1)由题意可得,方案A购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式:y=5.8x,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式:y=5x+2000;(2)当x=2200时,方案A:y=5.8×2200=12760(元),方案B:y=5×2200+2000=13000(元),∵12760<13000,∴方案A付款少;(3)由题意可得,方案A可以购买的苹果数量为:20000÷5.8≈3448(kg),方案B可以购买的苹果数量为:÷5=3600(kg),∵3600>3448,∴他应选择方案B购买.24.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线﹣﹣螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30cm,绕一圈升高(即圆柱的高)40cm,则它爬行一圈的路程是多少?(2)如果树干的周长为80cm,绕一圈爬行100cm,它爬行10圈到达树顶,则树干高多少?【考点】平面展开﹣最短路径问题.【分析】(1)如图,将圆柱展开,可知底面圆周长,即为AC的长,圆柱的高即为BA的长,求出CB的长即为葛藤绕树的最短路程.(2)先根据勾股定理求出绕行1圈的高度,再求出绕行10圈的高度,即为树干高.【解答】解:(1)如图,⊙O的周长为30cm,即AC=30cm,高是40cm,则BA=40cm,BC==50cm.故绕行一圈的路程是50cm;(2)⊙O的周长为80cm,即AC=80cm,绕一圈100cm,则BC=100cm,高AB==60cm.∴树干高=60×10=600cm=6m.故树干高6m.25.甲、乙两车分别从A,B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;(2)当乙车行驶多少时间时,甲乙两车的距离是280千米.【考点】一次函数的应用.【分析】(1)根据题意和图象中的数据可以分别求得两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;(2)根据题意和(1)中的函数解析式可以求得乙车行驶多少时间时,甲乙两车的距离是280千米.【解答】解:(1)相遇前,设甲车和B地的距离y(千米)与甲车出发时间x(小时)的函数关系式为y=kx+b,,得,即甲车和B地的距离y(千米)与甲车出发时间x(小时)的函数关系式为y=﹣120x+300(0≤x≤1.5),相遇前,设乙车和B地的距离y(千米)与乙车出发时间x(小时)的函数关系式为y=mx,1.5m=120,得m=80,即相遇前,设乙车和B地的距离y(千米)与乙车出发时间x(小时)的函数关系式为y=80x(0≤x≤1.5);(2)当0≤x≤1.5时,(﹣120x+300)﹣80x=280,解得,x=0.1,∵当x=3时,80x=80×3=240<280,∴当80x=280时,x=3.5,由上可得,乙车行驶0.1小时或3.5小时时,甲乙两车的距离是280千米.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
【八年级数学试题】2018年八年级上册期中考试数学试卷(含答案和解释)

2018年八年级上册期中考试数学试卷(含答案和解释)
轴对称变换.
【分析】利用关于x轴对称点的性质以及关于轴对称点性质分别得出对应点坐标进而得出答案.
【解答】解△ABc关于x轴对称的△A1B1c1的各顶点坐标分别为A1(﹣3,﹣2),B1(﹣4,3),c1(﹣1,1),
如图所示△A2B2c2,即为所求.
【点评】此题主要考查了关于坐标轴对称点的性质,正确把握横纵坐标关系是解题关键.
21.求出下列图形中的x值.
【考点】多边形内角与外角.
【分析】根据五边形的内角和等于540°,列方程即可得到结果.【解答】解∵五边形的内角和为(5﹣2)×180°=540,
∴90°x°+(x﹣10)°+x°+(x+20)°=540°,
解得x=110°.
【点评】本题考查了五边形的内角和,熟记五边形的内角和是解题的关键.
22.如图,△ABc,∠c=90°,∠ABc=60°,BD平分∠ABc,若AD=8,求cD的长.
【考点】含30度角的直角三角形;等腰三角形的判定与性质.【分析】根据题意得出∠A=30°,根据角平分线的性质得出∠A=∠ABD,根据30°角所对的直角边等于斜边的一半,得cD= DB,即可得出cD=4.
【解答】解∵∠c=90°,∠ABc=60°,
∴∠A=30°,
∵BD平分∠ABc,
∴∠ABD=∠cBD=30°,
∴∠A=∠ABD,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB C D 第8题图 第1题图第9题图 ③②2018--2019(上)八年级数学期中考试卷(考试用时:100分钟 ; 满分: 120分)班级: 姓名: 分数:一、选择题(共12小题,每小题3分,共36分.请将正确答案的序号填入对应题目后的括号内) 1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).2. 对于任意三角形的高,下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 94. 等腰三角形的一个角是80°,则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80°5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。
A.(—3,2) B.(-3,-2) C. (3,-2) D. (2,-3)6. 如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。
A .30° B. 40° C. 50° D. 60°7. 现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm .从中任取 三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个 8. 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。
其中正确的有( )。
A .1个 B. 2个 C. 3个 D. 4个9. 如图,△ABC 中,AC =AD =BD ,∠DAC =80º, 则∠B 的度数是( ) A .40º B .35º C .25º D .20º10. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是 ( ) A .30º B .36º C .60º D .72º11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A B C Dcab 第16题图第12题图第17题图第15题图 第14题图 12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在相应题目后的横线上) 13. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ , 点A 关于x 轴的对称点的坐标是___________ 。
14.如图:ΔABE ≌ΔACD ,AB=10cm ,∠A=60°,∠B=30°,则AD=_____ cm ,∠ADC=_____。
15. 如图,已知线段AB 、CD 相交于点O ,且∠A=∠B ,只需补充一个条件_______,则有△AOC ≌△BOD 。
16.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 处.17. 如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G = 18. 如图,小亮从A 点出发前进10m ,向右转15°, 再前进10m ,又向右转15°…… 这样一直走下去, 他第一次回到出发点A 时,一共走了 m三、解答题(本大题共8小题,共96分) 19.(本题10分)一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?20(本题12分)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .…第一个图案第二个图案第三个图案_A_B_C_E_D_ACB O DB EADGC F 第18题图A15°15°21.(本题12分)如图,△ABC 中,AB=AC=CD ,BD=AD ,求△ABC 中各角的度数。
22.(本题12分)△ABC 在平面直角坐标系中的位置如图所示.A 、B 、C 三点在格点上. (1)作出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标; (2)作出△ABC 关于y 对称的△A 2B 2C 2,并写出点C 2的坐标.23.(本题12分) 如图,点B 和点C 分别为∠MAN 两边上的点,AB=AC . (1)按下列语句画出图形:(要求不写作法,保留作图痕迹) ① AD ⊥BC ,垂足为D ;② ∠BCN 的平分线CE 与AD 的延长线交于点E ; ③ 连结BE .(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD ≌△ACD 外的两对全等三角形: ≌ , ≌ ;并选择其中的一对全等三角形予以证明.y x NM AB C第21题图 第22题图(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少。
第24题图25.(本题12分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB =CB,M,N分别是AE,CD的中点。
试探索BM和BN的关系,并证明你的结论。
26、(本题14分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论。
第26题图2018-2019(上)期中试卷八年级数学答题卡一、选择题(每小题3分,共36分)二、填空题(每小题4分,共24分)三、解答题:(本大题共8小题,共96分)yx25. (本题满分12分)26. (本题满分142分)新人教版八年级数学(上)期中测试试卷参考答案一、选择题1、D2、B3、B4、C5、A6、D7、C8、D9、C 10、A 11、C 、 12、C 二、 填空题13、2,3, (2,-3) 14、5, 90° 15、CO =DO 或AO=BO 或AC =DB (只能填一个) 16、4 17、180° 18、240 三、解答题: 19、(1)解:设多边形的边数为n ,依题意得 ……………1分(n -2).180°= 3×360°-180° ……………3分解得n =7 -----------5分答:这个多边形的边数是7 ……………6分20、证明:(1)∵AC ∥DF ∴∠ACB =∠F在△ABC 与△DEF 中ACB F A D AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (2) ∵△ABC ≌△DEF ∴BC=EF∴BC –EC=EF –EC即BE=CF ……………8分21、 解: ∵AB=AC ,AC=CD ,BD=AD , ∴∠B =∠C =∠BAD,∠CAD =∠CDA,(等边对等角) 设∠B =x ,则∠CDA =∠BAD+∠B =2x , 从而∠CAD =∠CDA =2x ,∠C =x∴△ADC 中,∠CAD+∠CDA+∠C =2x+2x+x= 180° 解得x= 36°∴在△ABC 中,∠B =∠C =36°,∠CAB =108°22、 作图略,作出△ABC 关于x 轴的对称图形△A 1B 1C 1.-----3分, 点C1的坐标(3,﹣2)-----4分作出△ABC 关于y 对称的△A2B2C2 -----7分 点C2的坐标 (﹣3,2) -----8分23.解:(1)①②③每画对一条线给1分 ……………………………………………(3分) (2)△ABE ≌△ACE ;△BDE ≌△CDE . ………………………………(5分)(3)选择△ABE ≌△ACE 进行证明.∵ AB =AC ,AD ⊥BC ∴∠BAE =∠CAE …………………………(6分)在△ABE 和△ACE 中 AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩………………………(7分)∵ AB =AC ,AD ⊥BC ∴ BD =CD ………………………………(6分)在△BDE 和△CDE 中 90BD CD BDE CDE DE DE ︒=⎧⎪∠=∠=⎨⎪=⎩…………………(7分)∴△BDE ≌△CDE (SAS ) …………………………………………(8分)24、解:(1)∵∠BED=∠ABE+∠BAE …………… (1分)∠ABE=15°, ∠BAD=40∴∠BED=15°+ 40°=55° …………… (3分) (2)∵S △ABC=40,AD 是△ABC 的中线∴S △ABD=20 …………… (4分) ∵BE 是△ABD 的中线∴S △EDB=10 …………… (5分) 过E 作EH ⊥BC …………… (6分) ∵S △EDB=(BD ×EH) /2 S △EDB=10, BD=5∴EH=4 …………… (7分) 即:E 到BC 边的距离为4. …………… (8分) 25、解:BM =BN ,BM ⊥BN 。
……………2分,证明:在 △ABE 和△DBC 中⎪⎩⎪⎨⎧=∠=∠=CB EB DBC ABD DB AB ∴△ABE E ≌△DBC (SAS )……………4分 ∴∠BAE =∠BDC∴AE =CD ……………5分 ∵M 、N 分别是AE 、CD 的中点 ∴AM =DN ……………6分 在 △ABM 和△DBN 中⎪⎩⎪⎨⎧=∠=∠=DN AM BDN BAM DB AB ∴△BAM E ≌△BDN (SAS ) ……………7分 ∴BM =BN ……………8分 ∠ABM =∠DBN∵∠ABD =∠DBC, ∠ABD +∠DBC =180°∴∠MBE+∠DBN=90°即:BM⊥BN ……………9分∴BM=BN,BM⊥BN ……………10分26、(12分)证明:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA∴ED=EC∵OE=OE∴Rt△OED≌Rt△OEC∴OC=OD∵OE平分∠AOB∴OE是CD的垂直平分线.……………6分(2)OE=4EF……………8分理由如下:∵OE平分∠AOB, ∠AOB=60º,∴∠AOE=∠BOE=30º∵ED⊥OA∴OE=2DE∵∠E FD=90º,∠DEO=90º-∠DOE=90º-30º=60º∴∠E DF=30º∴DE=2EF∴OE=4EF ……………12分。