高数函数,极限和连续总结

合集下载

高数函数极限与连续

高数函数极限与连续
表示方法
通常用符号"lim(x->x0) f(x) = f(x0)"表示函数f(x)在点x0处连 续。
间断点类型及判定方法
第一类间断点
左右极限都存在,包括可去间断 点(左右极限相等但不等于函数 值)和跳跃间断点(左右极限不 相等)。
第二类间断点
左右极限至少有一个不存在,包 括无穷间断点(极限为无穷大) 和震荡间断点(极限震荡不存 在)。
高数函数极限与连续
contents
目录
• 函数极限概念与性质 • 数列极限与收敛性判断 • 函数连续性概念与性质 • 闭区间上连续函数性质研究 • 极限与连续在实际问题中应用 • 总结回顾与拓展延伸
01 函数极限概念与性质
函数极限定义及表示方法
函数极限的定义
设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数 ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x0|<δ时,对应的函 数值f(x)都满足不等式|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0时的极限。
数列极限的符号表示
若数列{an}的极限为a,则记作lim(n→∞)an=a。
收敛数列性质与判定定理
1 2 3
收敛数列的有界性
收敛数列一定是有界数列,但反之不一定成立。
收敛数列的保号性
若数列收敛于a,且a>0(或a<0),则存在正 整数N,使得当n>N时,数列的通项an也大于0 (或小于0)。
判定定理
洛必达法则
对于0/0型或∞/∞型的未定式极限,可通过 求导后求极限来解决。
因式分解法
通过因式分解简化数列的通项表达式,进而 求极限。

大一高数知识点总结全

大一高数知识点总结全

大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。

希望这份总结对你的学习有所帮助。

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高数中的函数极限与连续性研究

高数中的函数极限与连续性研究

高数中的函数极限与连续性研究函数的极限和连续性是高等数学中的重要概念和工具,对理解和解决各种数学问题起着关键的作用。

本文将研究和介绍高数中的函数极限和连续性的相关内容,包括定义、性质和应用等方面。

一、函数极限的定义与性质函数极限是指当自变量趋于某一特定值时,函数的值趋于无限接近于某一确定的值。

在高数中,我们常用极限符号“lim”来表示函数极限。

设函数f(x)的定义域为D,x是定义域内的变量,则对于实数a,如果存在实数L,使得对于任意小的正实数ε,都存在一个正实数δ,使得只要x满足0 < |x - a| < δ,则可推出|f(x) - L| < ε,则称函数f(x)在x趋于a时的极限为L。

这通常用以下数学符号表示:lim┬(x→a)⁡〖f(x) = L〗函数极限有以下几个重要的性质:1.极限的唯一性:如果函数f(x)在x趋于某一实数a时极限存在,则该极限是唯一确定的。

2.局部有界性:如果函数f(x)在x趋于某一实数a时极限存在,那么它在a的某个邻域内是有界的。

3.极限运算法则:两个函数的极限之和等于它们的极限之和,两个函数的极限之积等于它们的极限之积。

二、连续性的定义与性质函数连续性是指函数在某一点上没有断裂和跳跃,并且函数值与自变量的变化呈现连续的关系。

具体而言,函数f(x)在定义域内的某点a处连续,需满足以下三个条件:首先,f(a)存在;其次,lim┬(x→a)⁡〖f(x)存在〗;最后,lim┬(x→a)⁡〖f(x) = f(a)〗。

函数连续性的性质与应用:1.连续函数的性质:连续函数的和、差、积、商(除以不为零的函数)仍然是连续函数。

2.零点定理:如果连续函数f(x)在区间[a, b]内有两个函数值异号的点,则在这两个点之间至少存在一个零点。

3.介值定理:如果连续函数f(x)在区间[a, b]内取到两个不同的函数值,那么它在这个区间内取到介于这两个值之间的任意值。

三、函数极限与连续性的应用函数极限和连续性在高等数学中有广泛的应用,特别是在微积分和数学分析方面。

同济版高数知识点归纳总结大全

同济版高数知识点归纳总结大全

同济版高数知识点归纳总结大全# 同济版高数知识点归纳总结大全## 一、极限与连续1. 极限的定义:数列极限、函数极限、无穷小量。

2. 极限的性质:唯一性、有界性、保号性、夹逼定理。

3. 无穷小的比较:高阶无穷小、同阶无穷小。

4. 极限的运算法则:四则运算、复合函数的极限。

5. 连续性:连续点、连续函数、间断点的分类。

6. 连续函数的性质:局部有界性、最值定理、零点定理。

## 二、导数与微分1. 导数的定义:导数的几何意义、物理意义。

2. 基本初等函数的导数:幂函数、指数函数、对数函数、三角函数。

3. 导数的运算法则:和差法则、积商法则、链式法则。

4. 高阶导数:二阶导数、三阶导数及其应用。

5. 隐函数与参数方程的导数:隐函数求导、参数方程求导。

6. 微分:微分的定义、微分与导数的关系。

## 三、中值定理与导数的应用1. 罗尔定理:定理条件、几何意义。

2. 拉格朗日中值定理:定理条件、几何意义、应用。

3. 柯西中值定理:定理条件、应用。

4. 泰勒公式:泰勒展开、麦克劳林公式。

5. 导数在几何上的应用:曲线的切线、法线、弧长、曲率。

6. 导数在物理上的应用:速度、加速度、变速运动。

## 四、不定积分1. 不定积分的定义:原函数、积分号。

2. 基本积分公式:基本积分表。

3. 换元积分法:第一类换元法、第二类换元法。

4. 分部积分法:分部积分公式、应用。

5. 有理函数的积分:部分分式分解、积分。

6. 三角函数的积分:正弦函数、余弦函数的积分。

## 五、定积分1. 定积分的定义:黎曼和、定积分的性质。

2. 定积分的计算:牛顿-莱布尼茨公式、定积分的换元法、分部积分法。

3. 定积分的应用:面积、体积、平均值、物理意义。

4. 反常积分:无穷区间上的积分、无界函数的积分。

## 六、多变量函数微分学1. 偏导数:偏导数的定义、高阶偏导数。

2. 全微分:全微分的定义、全微分与偏导数的关系。

3. 多元函数的极值:拉格朗日乘数法、条件极值。

高数大一知识点总结基础

高数大一知识点总结基础

高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。

函数具有定义域、值域、奇偶性、周期性等性质。

2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。

极限的存在性与唯一性可以通过数列极限的定义来判定。

3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。

连续函数具有局部性质及整体性质。

4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。

凸凹性指函数图像在某一区间上的弯曲程度。

二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。

微分的计算可以使用导数。

2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。

高阶导数的计算可以使用导数的性质和公式。

3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。

4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。

三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。

2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。

3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。

4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。

四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。

2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。

3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。

幂级数常用于函数展开与近似计算。

五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。

大一高数知识点总结

大一高数知识点总结

大一高数知识点总结大一高等数学是一门基础课程,重点讲解一元函数的极限、连续性、导数以及定积分等内容。

以下是对大一高等数学知识点的总结:一、函数及极限1. 函数的概念:定义域、值域、对应关系2. 极限的概念:数列极限和函数极限的定义3. 极限的性质:唯一性、局部有界性、保号性、保序性、夹逼定理4. 无穷大与无穷小:无穷大的定义与性质、无穷小的定义与性质、等价无穷小5. 极限运算法则:四则运算、复合函数、极限的存在准则6. 常用极限:基本极限、反函数极限、三角函数极限、指数函数和对数函数极限、洛必达法则二、连续性与间断点1. 连续函数的定义:初等函数的连续性、反函数的连续性、复合函数的连续性2. 间断点的分类:第一类间断点、第二类间断点、可去间断点、跳跃间断点、无穷间断点3. 连续函数的性质:介值定理、零点定理、连续函数的保号性、闭区间上连续函数的最值定理三、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的性质:四则运算法则、复合函数求导、反函数求导、常用函数的导数3. 高阶导数:二阶导数、高阶导数4. 导数的几何应用:切线与法线、函数图形的凹凸性、极值与变曲率5. 微分的概念:微分的定义、微分的性质、微分近似计算四、函数的应用1. 泰勒公式与函数展开:泰勒公式及其应用、函数展开与近似计算、求极限与展开2. 极值问题:最值问题的转化、最大最小值的判断方法、约束最值问题的求解3. 曲线的拟合与函数模型:最小二乘法及其应用、曲线拟合的方法与模型选择五、定积分1. 定积分的概念:黎曼和、不定积分与原函数、定积分的定义与性质2. 定积分的计算:定积分的基本性质、定积分的换元法、分部积分法、换限积分法、参数方程与极坐标下的定积分3. 定积分的应用:定积分的几何应用、物理应用、平均值与积分中值定理、变限积分与定积分的微分学应用总之,大一高等数学是培养学生逻辑思维和分析问题的能力的基础课程。

大一下册高数复习知识点

大一下册高数复习知识点

大一下册高数复习知识点大一下册高等数学是大一学生在学习数学方面的重要课程之一。

本文将为大家总结大一下册高数的复习知识点,供大家参考和学习。

一、极限与连续1. 函数的极限函数的极限是指当自变量无限接近某一特定值时,函数的取值接近于一个常数的性质。

其中包括左极限、右极限和无穷极限。

2. 连续与间断函数在某一点上连续是指函数在该点的极限与函数在该点的值相等,否则函数在该点上间断。

根据间断的性质,可以将间断分为可去间断、跳跃间断和无穷间断。

3. 介值定理与零点存在定理介值定理表明,若函数在区间[a, b]上连续,则函数在该区间上可以取到任意两个介于f(a)和f(b)之间的值。

零点存在定理指出,若函数在区间[a, b]上连续,并且f(a)和f(b)异号,则在该区间上至少存在一个零点。

二、导数与微分1. 导数的定义导数表示函数在某一点上的变化率,可以用极限的概念进行定义。

对于函数f(x),在点x处的导数定义为f'(x) = lim(△x→0)[f(x+△x) - f(x)]/△x。

2. 基本导数公式常见的基本导数公式包括常数函数、幂函数、指数函数、对数函数和三角函数等,应熟练掌握它们的导数表达式和求导法则。

3. 导数的几何意义导数可以表示函数在某一点处的切线斜率,通过导数可以分析函数的单调性、极值和拐点等性质。

三、积分与不定积分1. 定积分的概念定积分表示函数在一个闭区间上的面积值,可以看作是函数在该区间上的累积效应。

2. 不定积分的概念不定积分表示函数在某一点的原函数,也可称为反导函数。

3. 基本积分公式常见的基本积分公式包括常数函数、幂函数、指数函数、对数函数和三角函数等的积分表达式和求积法则。

四、微分方程1. 微分方程的定义微分方程是含有未知函数及其导数的方程,描述了函数与其导数之间的关系。

2. 常微分方程的解法常微分方程包括一阶和二阶微分方程,可以使用分离变量法、齐次方程法、二阶线性常系数齐次方程法等方法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数.极限和连续
第一节 函数
1. 决定函数的要素:对应法则和定义域
2. 基本初等函数:(六类)
(1) 常数函数(y=c );(2)幂函数(y=x a );
(3)指数函数(y=a x ,a>0,a ≠1);(4)对数函数(y=log a x ,a>0,a ≠1)
(5)三角函数;(6)反三角函数。

注:分段函数不是初等函数。

特例:y =√x 2是初等函数
3.构成复合函数的条件:内层函数的值域位于外层函数的定义域之内。

4.复合函数的分解技巧:对照基本初等函数的形式。

5.函数的几种简单性质:有界性,单调性,奇偶性,周期性。

第二节 极限
1.分析定义
∀&>0(任意小) ∃∂>0
当|x |>ð(或0<|x −x 0|<ð )时
总有 |f (x )−A |<&
称 lim x→∞f (x )=0 (或lim x→x0f (x )=A)
2.极限存在的充要条件
lim x→x0f (x )=A ↔lim x→x 0+f (x )=lim x→x 0
−f (x )=A 3.极限存在的判定准则
(1)夹逼定理
f 1(x )≤f(x)≪f 2(x) ,且 lim x→x0f 1(x )=A = lim x→x0f 2(x ) 所以lim x→x0f (x )=A
(2)单调有界准则
单调有界数列一定有极限。

4.无穷小量与无穷大量
,则称 时,f (x )为无穷小量 , 则称 时,f (x )为无穷大量 注:零是唯一的可作为无穷小的常数。

性质1 有限多个无穷小的代数和或乘积还是无穷小。

注:无限个无穷小量的代数和不一定是无穷小量
性质2 有界变量或常数与无穷小的乘积还是无穷小。

5. 定义 设 是同一极限过程中的无穷小, 则
若 则称 α 是β比高阶的无穷小,记作
若 则称α是比β 低阶的无穷小
∞=→)(lim 0x f x x )(或∞→→x x x 0
0)(lim 0=→x f x x )(或∞→→x x x 0
)(,)(x x ββαα==,
0)(≠x β且,0lim =βα);
(βαo =,lim ∞=βα,0lim ≠=C βα
若 则称 α 是β的同阶无穷小;
特别地,当c=1 时,则称α 是β的等价无穷小,记作
若 则称α是关于β 的 k 阶无穷小。

6.在求两个无穷小量之比的极限时,分子及分母都可以用各自的等价无穷小, 当x →0时,
sin x ~x , tan x~x , arc sin x ~x, 1−cos x~12x 2, √1+x n −1~1n
x, ln(1+x )~x
第二节 函数的连续性
1.f(x)在x 0处连续的充要条件: lim x→x 0+f (x )=f (x 0)=lim x→x 0
−f (x ) 2.函数的间断点
3.初等函数的连续性
性质1:连续函数的四则运算也连续。

性质2:连续函数的复合运算也连续。

对连续函数求极限时,极限符号和连续函数符号,可交换顺序。

4.闭区间连续函数的性质
(1)最值定理 (2)介值定理(零点定理)
);
(βαO =;
~βα,0lim ≠=C k βα。

相关文档
最新文档