作业-灰色预测模型
灰色模型算术公式

灰色模型算术公式灰色模型是一种用于预测和分析数据的方法,其基本思想是将数据分为两类:已知数据和未知数据。
已知数据是指已经确定并可以用来建模的数据,而未知数据则是需要预测或者分析的数据。
为了对未知数据进行预测或分析,灰色模型使用了灰色系统理论中的灰色预测方法。
灰色模型的算术公式包括:灰色微分方程、灰色模型GM(1,1)、灰色关联度等。
其中,灰色微分方程是灰色预测方法的核心公式,它的形式为:$$ frac{dx}{dt} + a x = u $$其中,$x$ 表示原始数据序列,$t$ 表示时间,$a$ 表示灰色微分方程的参数,$u$ 表示灰色微分方程的非齐次项。
通过对该方程进行求解,可以得到灰色模型的预测结果。
另外,灰色模型GM(1,1)是一种常用的灰色预测模型,它的基本形式为:$$ x(k+1) = (x(1)-frac{u}{a})e^{-ak} + frac{u}{a} $$ 其中,$x(k+1)$ 表示预测值,$x(1)$ 表示初始值,$a$ 和$u$ 分别表示灰色微分方程的参数。
通过对历史数据进行处理,可以得到灰色模型GM(1,1)的预测结果。
此外,灰色关联度是用于分析数据间关系的一种方法,在灰色系统理论中被广泛应用。
灰色关联度的计算公式为:$$ r_{ij} = frac{sum_{k=1}^nmin(x_i(k),x_j(k))}{sum_{k=1}^n x_i(k)} $$其中,$x_i(k)$ 和 $x_j(k)$ 分别表示第 $i$ 个和第 $j$ 个数据在第 $k$ 个时刻的值,$n$ 表示时刻数。
通过计算灰色关联度,可以了解数据之间的关系,从而对其进行进一步的分析和预测。
总之,灰色模型的算术公式包括灰色微分方程、灰色模型GM(1,1)、灰色关联度等,这些公式是灰色预测和分析方法的核心内容。
在实际应用中,可以根据具体情况选择合适的公式进行计算和分析。
灰色理论预测模型

灰⾊理论预测模型灰⾊理论通过对原始数据的处理挖掘系统变动规律,建⽴相应微分⽅程,从⽽预测事物未来发展状况。
优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较⼩;缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
灰⾊预测模型在多种因素共同影响且内部因素难以全部划定,因素间关系复杂隐蔽,可利⽤的数据情况少下可⽤,⼀般会加上修正因⼦使结果更准确。
灰⾊系统是指“部分信息已知,部分信息未知“的”⼩样本“,”贫信息“的不确定系统,以灰⾊模型(G,M)为核⼼的模型体系。
灰⾊预测模型建模机理灰⾊系统理论是基于关联空间、光滑离散函数等概念,定义灰导数与会微分⽅程,进⽽⽤离散数据列建⽴微分⽅程形式的动态模型。
灰⾊预测模型实验以sin(pi*x/20)函数为例,以单调性为区间检验灰⾊模型预测的精度通过实验可以明显地看出,灰⾊预测对于单调变化的序列预测精度较⾼,但是对波动变化明显的序列⽽⾔,灰⾊预测的误差相对⽐较⼤。
究其原因,灰⾊预测模型通过AGO累加⽣成序列,在这个过程中会将不规则变动视为⼲扰,在累加运算中会过滤掉⼀部分变动,⽽且由累加⽣成灰指数律定理可知,当序列⾜够⼤时,存在级⽐为0.5的指数律,这就决定了灰⾊预测对单调变化预测具有很强的惯性,使得波动变化趋势不敏感。
本⽂所⽤测试代码:1 clc2 clear all3 % 本程序主要⽤来计算根据灰⾊理论建⽴的模型的预测值。
4 % 应⽤的数学模型是 GM(1,1)。
5 % 原始数据的处理⽅法是⼀次累加法。
6 x=[0:1:10];7 x1=[10:1:20];8 x2=[0:1:20];9 y=sin(pi*x/20);10 n=length(y);11 yy=ones(n,1);12 yy(1)=y(1);13 for i=2:n14 yy(i)=yy(i-1)+y(i);15 end16 B=ones(n-1,2);17 for i=1:(n-1)18 B(i,1)=-(yy(i)+yy(i+1))/2;19 B(i,2)=1;20 end21 BT=B';22 for j=1:n-123 YN(j)=y(j+1);24 end25 YN=YN';26 A=inv(BT*B)*BT*YN;27 a=A(1);28 u=A(2);29 t=u/a;30 t_test=5; %需要预测个数31 i=1:t_test+n;32 yys(i+1)=(y(1)-t).*exp(-a.*i)+t;33 yys(1)=y(1);34 for j=n+t_test:-1:235 ys(j)=yys(j)-yys(j-1);36 end37 x=1:n;38 xs=2:n+t_test;39 yn=ys(2:n+t_test);40 det=0;41 for i=2:n42 det=det+abs(yn(i)-y(i));43 end44 det=det/(n-1);4546 subplot(2,2,1),plot(x,y,'^r-',xs,yn,'b-o'),title('单调递增' ),legend('实测值','预测值');47 disp(['百分绝对误差为:',num2str(det),'%']);48 disp(['预测值为: ',num2str(ys(n+1:n+t_test))]);495051 %递减52 y1=sin(pi*x1/20);53 n1=length(y1);54 yy1=ones(n1,1);55 yy1(1)=y1(1);56 for i=2:n157 yy1(i)=yy1(i-1)+y1(i);58 end59 B1=ones(n1-1,2);60 for i=1:(n1-1)61 B1(i,1)=-(yy1(i)+yy1(i+1))/2;62 B1(i,2)=1;63 end64 BT1=B1';65 for j=1:n1-166 YN1(j)=y1(j+1);67 end68 YN1=YN1';69 A1=inv(BT1*B1)*BT1*YN1;70 a1=A1(1);71 u1=A1(2);72 t1=u1/a1;73 t_test1=5; %需要预测个数74 i=1:t_test1+n1;75 yys1(i+1)=(y1(1)-t1).*exp(-a1.*i)+t1;76 yys1(1)=y1(1);77 for j=n1+t_test1:-1:278 ys1(j)=yys1(j)-yys1(j-1);79 end80 x21=1:n1;81 xs1=2:n1+t_test1;82 yn1=ys1(2:n1+t_test1);83 det1=0;84 for i=2:n185 det1=det1+abs(yn1(i)-y1(i));86 end87 det1=det1/(n1-1);8889 subplot(2,2,2),plot(x1,y1,'^r-',xs1,yn1,'b-o'),title('单调递增' ),legend('实测值','预测值');90 disp(['百分绝对误差为:',num2str(det1),'%']);91 disp(['预测值为: ',num2str(ys1(n1+1:n1+t_test1))]);9293 %整个区间93 %整个区间94 y2=sin(pi*x2/20);95 n2=length(y2);96 yy2=ones(n2,1);97 yy2(1)=y2(1);98 for i=2:n299 yy2(i)=yy2(i-1)+y2(i);100 end101 B2=ones(n2-1,2);102 for i=1:(n2-1)103 B2(i,1)=-(yy2(i)+yy2(i+1))/2;104 B2(i,2)=1;105 end106 BT2=B2';107 for j=1:n2-1108 YN2(j)=y2(j+1);109 end110 YN2=YN2';111 A2=inv(BT2*B2)*BT2*YN2;112 a2=A2(1);113 u2=A2(2);114 t2=u2/a2;115 t_test2=5; %需要预测个数116 i=1:t_test2+n2;117 yys2(i+1)=(y2(1)-t2).*exp(-a2.*i)+t2;118 yys2(1)=y2(1);119 for j=n2+t_test2:-1:2120 ys2(j)=yys2(j)-yys2(j-1);121 end122 x22=1:n2;123 xs2=2:n2+t_test2;124 yn2=ys2(2:n2+t_test2);125 det2=0;126 for i=2:n2127 det2=det2+abs(yn2(i)-y2(i));128 end129 det2=det2/(n2-1);130131 subplot(2,1,2),plot(x2,y2,'^r-',xs2,yn2,'b-o'),title('全区间' ),legend('实测值','预测值'); 132 disp(['百分绝对误差为:',num2str(det2),'%']);133 disp(['预测值为: ',num2str(ys2(n2+1:n2+t_test2))]);。
灰色预测法GM(1,1)模型

灰色预测法GM (1,1)模型作业一、GM (1,1)模型的建立:原始数据:{142,340,200,500,900,800,490,980,463,1100}记作}1100,463,980,490,800,900,500,200,340,142{)0(=X 。
(1)、一次累加生成序列为:).()1()(),1()1()0()1()1()0()1(k X k X k X X X +-==2≥k那么 }5915,4815,4352,3372,2882,2082,1182,682,482,142{)1(=X 。
(2)、由一次累加序列)1(X生成紧邻均值序列)1(Z [],...3,2,)1()(21)1()1(=-+=k k X k X 那么)1(Z }5365,5.4583,3862,3127,2482,1632,932,582,312{=。
(3)、GM (1,1)的灰微分方程模型为:b k aZ k X=+)()()1()0(。
设∧α为待估计参数向量,⎥⎦⎤⎢⎣⎡=∧b a α。
利用最小二乘法得到Y B B B ')'(1-∧=α, 其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=1)10(......1)3(1)2()1()1()1(Z Z Z B ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)10(...)3()2()0()0()0(X X X Y 。
解得⎥⎦⎤⎢⎣⎡=∧b a α⎥⎦⎤⎢⎣⎡-=6018.3711062.0。
(4)、GM (1,1)的灰微分方程模型 b k aZ k X=+)()()1()0(的时间相应序列为:ab e a b X k X ak +⋅-=+-∧))1(()1()0()1(。
由.6018.371,1062.0=-=b a 令.)1(,)0(u X v ab u -== 计算得到1.3499-=u , 1.3641=v 。
所以ab e a b X k X ak +⋅-=+-∧))1(()1()0()1(1.34991.36411062.0-=k e 。
灰色预测模型在企业财务分析中的应用

灰色预测模型在企业财务分析中的应用现代企业财务分析中,灰色预测模型是一种常用的预测工具。
灰色预测模型能提供准确的财务预测和决策支持,帮助企业实现有效的财务管理和风险控制。
灰色预测模型的应用在企业财务分析中具有以下几个重要方面。
首先,灰色预测模型可以用来分析企业的财务状况。
在企业财务分析中,灰色预测模型可以通过对历史财务数据的分析,预测未来的财务指标,包括利润、销售额、现金流等。
通过灰色预测模型的应用,企业可以更好地了解其财务状况,及时调整经营策略,提升盈利能力。
其次,灰色预测模型可以用来评估企业的风险。
在企业财务分析中,灰色预测模型可以通过对历史财务数据的分析,预测未来的风险指标,包括财务杠杆比率、流动比率等。
通过灰色预测模型的应用,企业能够提前识别到潜在的风险,采取相应的风险控制措施,保护企业的利益和稳定经营。
再次,灰色预测模型可以用来优化企业的资金管理。
在企业财务分析中,灰色预测模型可以通过对历史财务数据的分析,预测未来的资金需求和资金流动情况。
通过灰色预测模型的应用,企业可以优化资金的使用,提高资金利用效率,降低资金成本,确保企业的资金充足,并实现良好的财务管理和资金运作。
此外,灰色预测模型还可以用来指导企业的投资决策。
在企业财务分析中,灰色预测模型可以通过对市场需求和竞争环境的分析,预测未来的市场趋势和竞争态势。
通过灰色预测模型的应用,企业可以制定合理的投资计划,提高投资收益率,降低投资风险,实现投资决策的科学化和精细化。
灰色预测模型在企业财务分析中的应用还具有一些优势。
首先,灰色预测模型相对于其他预测模型来说更加简单、易于理解和操作。
不同于传统的统计模型,灰色预测模型可以通过对数据的分析和处理,得出准确的预测结果,无需过多的数学推导和复杂计算。
其次,灰色预测模型在样本数据量较少或数据质量较差的情况下也能够给出可靠的预测结果。
灰色预测模型在处理非线性和非平稳时间序列数据时更有优势,这些是传统预测模型难以解决的问题。
灰色预测GM(1,1)模型分析

SPSS分析SPSS教程SPSSAU 灰色预测模型GM11 灰色模型灰色预测GM(1,1)模型分析Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)灰色预测模型可针对数量非常少(比如仅4个),数据完整性和可靠性较低的数据序列进行有效预测,其利用微分方程来充分挖掘数据的本质,建模所需信息少,精度较高,运算简便,易于检验,也不用考虑分布规律或变化趋势等。
但灰色预测模型一般只适用于短期预测,只适合指数增长的预测,比如人口数量,航班数量,用水量预测,工业产值预测等。
灰色预测模型有很多,GM(1,1)模型使用最为广泛,第1个数字表示进行一阶微分,第2个数字1表示只包含1个数据序列。
特别提示:GM(1,1)模型仅适用于中短期预测,不建议进行长期预测;GM(1,1)模型适用于数量少(比如20个以内)时使用,大量数据时不适合。
灰色预测模型案例Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)1背景当前某城市1986~1992共7年的道路交通噪声平均声级数据,现希望预测出往后一期器械声平均声级数据。
数据如下:年份城市交通噪声/dB(A)198671.10198772.40198872.40198972.10199071.40199172.00199271.602理论灰色预测GM(1,1)模型一般针对数据量少,有一定指数增长趋势的数据。
在进行模型构建时,通常包括以下步骤:第一步:级比值检验;此步骤目的在于数据序列是否有着适合的规律性,是否可得到满意的模型等,该步骤仅为初步检验,意义相对较小。
级比值=当期值/上一期值。
一般情况下级比值介于[0.982,1.0098]之间则说明很可能会得到满意的模型,但并不绝对。
第二步:后验差比检验;在进行模型构建后,会得到后验差比C值,该值为残差方差/ 数据方差;其用于衡量模型的拟合精度情况,C值越小越好,一般小于0.65即可。
关于“灰色预测模型”讲解

7.8205 11.184
1
14.7185
1
1
1 1
y = [x (0)(2), x (0)(3), x (0)(4), x (0)(5)]T
= [3.278, 3.337, 3.390, 3.679]T
谢谢观赏!
有不足之处,请老师和同 学指正。若有疑问之处 ,请课后交流!
由于
涉及到累加列
(1) 的两个时刻的值,因此,
(1)
t
取前后两个时刻的平均代替更为合理,即将 x(i) (i) 替换为
1 [x(i) (i) x(i) (i 1)], (i 2,3,..., N ). 2
将(7.5)写为矩阵表达式
xxx(((000))M)(((N23)))xxx(((000))M)(((N12231212 [[[))x)xx(((111)))
概率统计、模糊数学和灰色系统理论是三种最常用的不确定性 系统研究方法。其研究对象都具有某种不确定性。
模糊数学着重研究“认知不确定”问题,其研究对象具有“内 涵明确,外延不明确”的特点问题,主要是凭经验借助于隶 属函数进行处理。例:年轻人
概率统计研究的是“随机不确定”现象,着重于考察“随机不 确定”现象的历史统计规律,考察具有多种可能发生的结果 之“随机不确定”现象中每一种结果发生的可能性大小。其 出发点是大样本,并要求对象服从某种典型分布。
灰色系统理论的研究内容 灰哲学、灰哲学、灰生成、灰分析、灰建模、灰预 测、灰决策、灰控制、灰评估、灰数学等。
灰色系统理论的应用领域 农业科学、经济管理、环境科学、医药卫生、矿业 工程、教育科学、水利水电、图像信息、生命科 学、控制科学等。
灰色系统的模型
通过下面的数据分析、处理过程,我们将了解 到,有了一个时间数据序列后,如何建立一个基 于模型的灰色预测。 1. 数据的预处理 首先我们从一个简单例子来考察问题. 【例】 设原始数据序列
灰色预测模型※※分析

灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X有n 个观察值,()()()()()()(){}00001,2,,Xx x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X,()()()()()()(){}11111,2,,Xx x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为当t =1时,()(1)x t x =,即(1)c x a=-,则可根据上述公式得到离散形式微分方程的具体形式为 ()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()lim t dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2xx t x t ⎡⎤=++⎣⎦将其值带入式子,整理得 (0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1TT B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u ux t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e ea --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式. 或对()atux t cea-=+求导还原得 (0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验. 设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表:检验指标好合格勉强不合格P >0.95 >0.80 >0.70 <0.70 C <0.35 <0.50 <0.65 >0.65表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt xx x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()xt x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为()11nt r t n ξ==∑精度等级 关联度均方差比值小误差概率好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级)0.70< 0.65>0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()Xx x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()ee e e n =的均值e 和方差22s()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t xt t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.>0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70>0.65不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k x k =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k t δ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%. 进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析例:则该学生成绩时间序列如下:()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x ==对(1)X做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]Taa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值 相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。
灰色预测模型

泰山教育版权所有 淘宝ID:liuxingma123
灰色系统理论简介
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
GM(1,1)模型精度检验
计算后验差比为
C = S2 / S1
指标C 和p是后验差检验的两个重要指标.指标C 越小 越好, C 越小表示S1大而S2 越小. S1大表示原始数据方差 大,即原始数据离散程度大.S2小表示残方差小,即残 差离散程度小.C 小就表明尽管原始数据很离散,而模 型所得计算值与实际值之差并不太离散.
灰色预测模型
主讲人:泰山教育 小石老师
灰色系统理论简介
灰色预测模型(Gray Forecast Model)是通过 少量的、不完全的信息,建立数学模型并做出预 测的一种预测方法.当我们应用运筹学的思想方法 解决实际问题,制定发展战略和政策、进行重大 问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律, 借助于科学的方法对其未来的发展趋势和状况进 行描述和分析,并形成科学的假设和判断.
泰山教育版权所有 淘宝ID:liuxingma123
灰色系统理论简介
灰色系统是黑箱概念的一种推广。我们把既含 有已知信息又含有未知信息的系统称为灰色系统. 作为两个极端,我们将称信息完全未确定的系统为 黑色系统;称信息完全确定的系统为白色系统.区 别白色系统与黑色系统的重要标志是系统各因素之 间是否具有确定的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表2 交通事故次数统计
城市火灾发生次数 的灰色预测
城市火灾发生次数的灰色预测
[3】某市2001—2005年火灾的统计数据见表4. 试建 立模型,并对该市2006年的火灾发生状况做出预测。
表4 某市2001-2005年火灾数据
年份 火灾(起)
2001 87
2002 97
2003 120
2004 166
2005 161
灾变与异常值预测
灾变与异常值预测
实际问题—旱灾预测
【例】某地年降水量原始数据序列如表7.9所示, 根据多年的时间观测,每当年降水量小于430~ 440mm时,该地区将发生旱灾.所以,选择阈值 =435mm, 利用GM(1,1)模型进行旱灾预报.
灾变与异常值预测
表 某地年降水量(mm)原始Fra bibliotek据销售额预测
销售额预测
随着生产的发展、消费的扩大,市场需求通常总是 增加的,一个商店、一个地区的销售额常常呈增长趋 势. 因此,这些数据符合建立灰色预测模型的要求。 【1】 表1列出了某公司1999—2003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
销售额预测
【1】 表7.2列出了某公司1999—2003年逐年的销
售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
表1 逐年销售额(百万元)
年份 序号
1999 1 2.874
2000 2 3.278
2001 3 3.337
2002 4 3.390
2003 5 3.679
x (0)
城市道路交通事故次数 的灰色预测
城市道路交通事故次数的灰色预测 【2】某市2016年1-6月的交通事故次数统计见表2.试建立灰 色预测模型.