苏教版八年级下册数学压轴题(非常好的题目)

合集下载

苏科版八年级下学期数学期末压轴题练习

苏科版八年级下学期数学期末压轴题练习

八年级下学期期末压轴题特训【选择填空题】1. 如图,已知等边△ABC 的面积为43, P 、Q 、R 分别为边AB 、BC 、AC 上的动点,则PR +QR 的最小值是2. 如图,A 、B 是反比例函数ky x 图像上的两点,过点A 作AC y ⊥轴,垂足为C ,交OB 于点D ,且D 为OB 的中点,若ABO △的面积为4,则k 的值为________.3. 如图,已知正方形ABCD 的顶点A 在y 轴的正半轴上,顶点B 在x 轴的正半轴上,顶点C 的坐标为(3,2),M 、N 分别为AB 、AD 的中点,则MN 长为 .4. 如图,等腰直角△ABC 位于第二象限,BC =AC =3,直角顶点C 在直线y =-x 上,且点C 的横坐标为-4,边BC 、AC 分别平行于x 轴、y 轴.若双曲线y =kx 与△ABC 的边AB 有2个公共点,则k 的取值范围为 .RACP Q By NO xDC B AM AB CxyO5. 如图,将△ABC 绕点B 逆时针旋转60°得△DBE ,连接CD ,若AB=AC=5,BC=6,则CD= .6. 如图,ABC ∆的面积为9,点P 在ABC ∆的边上运动.作点P 关于原点O 的对称点Q ,再以PQ 为边作等边PQM ∆.当点P 在ABC ∆的边上运动一周时,点M 随之运动所形成的图形面积为7. 如图在四边形ABCD 中,BC CD =,90BCD ∠=︒。

若4AB =cm ,3AD =cm ,8. 如图,在正方形ABCD 中,22=AB ,将BAD ∠绕着点A 顺时针旋转 α(450<<α),得到''AD B ∠,其中过点B 作与对角线BD 垂直的直线交射线'AB 于点E ,射线'AD 与对角线BD 交于点F ,连接CF ,并延长交AD 于点M ,当满足CDM AEBF S S ∆=2四边形时,线段BE 的长度为 .9. 如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G处,点D 与点H 重 合,CG 与EF 交于点p ,取GH 的中点Q ,连接PQ ,则△GPQ的周长最小值是10.将四边形纸片ABCD(AD<AB)沿着AC折叠(如图1),点D恰好落在AB 上的D'处(如图2),再将点A折向点C,使得A、C两点重合,折痕刚好过点B(如图3),展开后出现折痕AC、BE(如图4),量得AD=7,AB=9,∠DAB=60°,则四边形纸片ABCD的面积为。

最新苏教版八年级数学下复习反比例函数的四边形压轴题

最新苏教版八年级数学下复习反比例函数的四边形压轴题

反比例函数和四边形压轴题精选【精讲精练】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA B,判断四边形OABC的形状并证明你的结论.ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(-4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数kyx的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.1,直角梯形ABCD 中,AD ∥BC ,∠ADC=90°,AD=8,BC=6,点M 从点D 出发,以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP ⊥AD 于点P ,连接AC 交NP 于点Q ,连接MQ .设运动时间为t 秒. (1)AM= ,AP= .(用含t 的代数式表示) (2)当四边形ANCP 为平行四边形时,求t 的值(3)如图2,将△AQM 沿AD 翻折,得△AKM ,是否存在某时刻t ,①使四边形AQMK 为为菱形,若存在,求出t 的值;若不存在,请说明理由 ②使四边形AQMK 为正方形,则AC= .1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线y=3x-4经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=(x >0)也恰好经过点A . (1)求k 的值;(2)如图2,过O 点作OD ⊥AC 于D 点,求22CD AD -的值;(3)如图3,点P 为x 轴上一动点.在(1)中的双曲线上是否存在一点Q ,使得△PAQ 是以点A 为直角顶点的等腰三角形.若存在,求出点P 、点Q 的坐标,若不存在,请说明理由.ABCD 中,AB=3,BC=4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P ,Q 运动速度均为每秒1个单位长度,当点P 到达点C 时停止运动,点Q 也同时停止.连结PQ ,设运动时间为t (t >0)秒. (1)求线段AC 的长度; (2)当点Q 从B 点向A 点运动时(未到达A 点),求△APQ 的面积S 关于t 的函数关系式,并写出t 的取值范围;(3)伴随着P ,Q 两点的运动,线段PQ 的垂直平分线为l : ①当l 经过点A 时,射线QP 交AD 于点E ,求AE 的长; ②当l 经过点B 时,求t 的值.1,已知点A (a ,0),B (0,b ),且a 、b ()230a b ++=,▱ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线ky x=经过C 、D 两点. (1)求k 的值; (2)点P 在双曲线ky x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点P 、Q 的坐标; (3)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.(在Rt △ABC 中,∠ACB=90°,∠B=60°;在Rt △DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.例8 .从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中有一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线。

苏教版数学八年级下册第11章反比例函数压轴题专项训练

苏教版数学八年级下册第11章反比例函数压轴题专项训练

反比例函数压轴题专项训练1.如图,在平面直角坐标系中,O 为坐标原点,ABO ∆的边AB 垂直于x 轴,垂足为B ,已知4AB BO ==.反比例函数(0,0)k y k x x=>>的图象经过AO 的中点(2,2)C ,交AB 于点D .(1)求反比例函数k y x=的表达式; (2)求经过C 、D 两点的直线所对应的函数表达式;(3)设点E 是x 轴上的动点,请直接写出使OCE ∆为直角三角形的点E 的坐标.2.如图,在ABC ∆中,AC BC =,AB x ⊥轴,垂足为A .反比例函数(0)k y x x=>的图象经过点C ,交AB 于点D .已知4AB =,52BC =.(1)若4OA =,求k 的值;(2)连接OC ,若BD BC =,求OC 的长.(3)连接OC ,若OCA ∠是钝角,求k 的取值范围.3.如图,已知一次函数y =2x 的图象与反比例函数y =2x(x >0),y =k x (x >0)的图象分别交于P ,Q 两点,点P 为OQ 的中点,Rt△ABC 的直角顶点A 是双曲线y =kx (x >0)上一动点,顶点B ,C 在双曲线y =2x(x >0)上,且两直角边均与坐标轴平行.(1)直接写出k 的值;(2)△ABC 的面积是否变化?若不变,求出△ABC 的面积;若变化,请说明理由; (3)直线y =2x 是否存在点D ,使得以A ,B ,C ,D 为顶点的四边形是平行四边形,若存在,求出点A 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy 中,双曲线m y x =与直线2y kx =-交于点(3,1)A .(1)求直线和双曲线的解析式.(2)直线2y kx =-与x 轴交于点B ,点P 是双曲线m y x=上的一点,过点P 作PQ y ⊥轴于Q ,且2PQ OB =,直接写出点P 的坐标.5.如图,点P 为x 轴负半轴上的一个点,过点P 作x 轴的垂线,交函数1y x =-的图像于点A ,交函数4y x =-的图像于点B ,过点B 作x 轴的平行线,交1y x=-于点C ,连接AC .(1)当点P 的坐标为(–1,0)时,求ABC ∆的面积;(2)若AB BC =,求点A 的坐标;(3)连接OA 和OC .当点P 的坐标为(t ,0)时,OAC ∆的面积是否随t 的值的变化而变化?请说明理由.6.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为()2,3,双曲线k y (x 0)x=>,的图象经过BC 上的点D 与AB 交于点E ,连接DE ,若若E 是AB 的中点﹒(1)求D 点的坐标;(2)点F 是OC 边上一点,若FBC 和DEB 相似,求BF 的解析式;(3)若点()P m,3m 6+也在此反比例函数的图象上(其中m 0>),过P 点作x 轴的垂线,交x 轴于点M ,若线段PM 上存在一点Q ,使得OQM 的面积是12,设Q 点的纵坐标为n ,求2n 2n 9-+的值.7.如图,一次函数y =kx +1与反比例函数y =m x (m ≠0)相交于A 、B 两点,与x 轴,y轴分别交于D 、C 两点,已知sin∠CDO =√55,ΔBOD 的面积为1. (1)求一次函数和反比例函数的解析式;(2)连接OA ,OB ,点M 是线段AB 的中点,直线OM 向上平移ℎ(ℎ>0)个单位将ΔAOB 的面积分成1:7两部分,求ℎ的值.8.如图,在平的直角坐标系中,直线y 2x 2=-+与x 轴、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,曲线k y x=在第一象限经过点D .求双曲线表示的函数解析式.9.已知A(-2,1)、B(n ,-2)是一次函数y=kx+b 的图象与反比例函数y=m x的图象的两个交点.(1) 求此反比例函数和一次函数的解析式; (2) 根据图象直接写出使一次函数的值大于反比例函数的值的x 的取值范围.10.如图,已知一次函数y kx b =+的图像与反比例函数m y x =的图像交于点(4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式. (2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD ,求ACD ∆的面积.。

苏教版八年级下册数学压轴题(非常好的题目)之欧阳学文创编之欧阳索引创编

苏教版八年级下册数学压轴题(非常好的题目)之欧阳学文创编之欧阳索引创编

压轴题精选欧阳家百(2021.03.07)1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. ⑴求直线AB 的解析式; ⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB在x 轴上、边OA 与函数x y 1 的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使y xO P QA B点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由;(2)求过点A 的反比例函数解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。

苏教版八年级下册数学压轴题(非常好的题目)之欧阳体创编

苏教版八年级下册数学压轴题(非常好的题目)之欧阳体创编

压轴题精选时间:2021.02.03创作:欧阳体1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数x y 1 的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(b b R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使y xOPQ A B点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由;(2)求过点A 的反比例函数解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。

江苏八年级下期末真题精选(压轴60题19个考点专练)~【满分全攻略】2022~2023

江苏八年级下期末真题精选(压轴60题19个考点专练)~【满分全攻略】2022~2023

江苏八年级下期末真题精选(压轴A.6B.3(2020•重庆)4.如图,在平面直角坐标系中,是x轴上一点,连接AE.若ADA.6B.12(2022春•泰州期末)5.如图,A(a,b)、B(-a,-b A、B作y轴的平行线,与反比例函数(2022春•高邮市期末)8.如图,在平面直角坐标系中,的图像经过OA 的中点C 和点9.如图,在平面直角坐标系中,边,在第一象限内作矩形点O 重合,折痕为MN ,点()0ky k =≠的图像恰好过A.27 4五.反比例函数与一次函数的交点问题(共(2021•武威二模)11.已知反比例函数y(1)求这两个函数的关系式;a___________(1)直接写出=(2)结合图象直接写出关于x的不等式C n在反比例函数y(3)点(),2(2022春•安居区期末)(1)求该反比例函数和一次函数的表达式;的面积;(2)连接AO,求AOB(3)直接写出关于x的不等式mx (2014•巴中)15.如图,在平面直角坐标系(1)求反比例函数和直线EF(2)求△OEF的面积;(3)请结合图象直接写出不等式(2018春•秦淮区期末)16.如图,在直角坐标系中,函数(1)点A 、B 的坐标分别是 、 ;(2)在同一平面直角坐标系中,画出函数34y x=-的图象;(3)垂直于y 轴的直线l 与函数1y 、2y 、3y 的图象分别交于点3(N x ,3)y ,若123x x x <<,结合函数的图象,直接写出六.反比例函数的应用(共5小题)(2022•青秀区校级一模)17.学校的自动饮水机,开机加热时每分钟上升10开始下降,此时水温y ℃与通电时间x (min )成反比例关系.当水温降至机再自动加热,若水温在20︒时接通电源,水温y 则下列说法中正确的是( )A .水温从20︒升高到100B .水温下降过程中,y 与C .早晨8点接通电源从20D .在单次加热—降温的过程中,水温不低于100℃,停止加热,水温开始下降,此时水温()℃与开机后用时()min 成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温()y ℃和时间()min 的关系如图,为了在上午第一节下课时()8:45能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )A .7:20B .7:30C .7:45D .8:00(2022春•海州区校级期末)19.某车队要把4000吨货物运到灾区,已知每天的运输量不变.(1)从运输开始,每天运输的货物吨数n (吨)与运输时间t (天)之间有怎样的函数表达式?(2)因灾区道路受阻,实际每天比原计划少运20%,推迟2天完成任务,求原计划完成任务的天数.(2021•蒸湘区校级一模)20.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1)=a _____________;(2)当5100≤≤x 时,y 与x 之间的函数关系式为_____________;当100x >时,y 与x 之间的函数关系式为_____________;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多(1)求k的值;(2)恒温系统在一天内保持大棚内温度不低于七.三角形中位线定理(共(2019•铁西区二模)22.如图,△ABC中,∠A=60° ,AC(2015•呼伦贝尔)26.如图,在平行四边形ABCD (1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形一十.平行四边形的判定与性质(共2022春•南京期末).在ABCD 中,6cm AB =(2011•北京)30.在▱ABCD 中,∠一十一.菱形的性质(共(2021春•滨湖区期末)32.如图,已知菱形ABCD=,连接动点,且PC CQA.45B.(2022•新市区校级三模)33.已知如图,在菱形ABCD(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形一十二.菱形的判定与性质(共(2023•郧西县模拟)34.在Rt△ABC中,∠BAC=90°,A .逐渐增大C .不变(2022春•靖江市校级期末)36.如图,线段AB 的长为10,点(2018•邵阳模拟)38.如图,矩形ABCD 中,点边于点,E F AF AE =、.(1)求证:四边形AFCE 是菱形;(2)若8,6BC AB ==,求EF 的长.(2021春•淮安区期末)39.如图所示,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,垂足为O ,连接AE ,CF .(1)求证:四边形AFCE 为菱形;(2)求AF 的长.(2019•无锡模拟)40.已知:如图,在平行四边形ABCD 和矩形ABEF 中,AC 与DF 相交于点G .(1) 试说明DF =CE ;(2) 若AC =BF =DF ,求∠ACE 的度数.(2011•福州)41.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.(2022春•工业园区期末)42.已知,如图,在长方形ABCD 中,46AB AD ==,.延长BC 到点E ,使3CE =,连接DE .(1)动点P 从点B 出发,以每秒1个单位的速度沿BC CD DA --向终点A 运动,设点P 运动的时间为t 秒,求当t 为何值时,ABP 和DCE △全等?(2)若动点P 从点B 出发,以每秒1个单位的速度仅沿着BE 向终点E 运动,连接DP .设点P 运动的时间为t 秒,是否存在t ,使PDE △为等腰三角形?若存在,请求出t 的值;否则,说明理由.(2012•云南)43.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM 、DN .(1)求证:四边形BMDN 是菱形;(2)若4AB =,8AD =,求MD 的长.一十四.正方形的性质(共5小题)(2012•黔东南州)44.点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE,连接BE,则∠CBE 等于( )(2022春•仪征市期末)46.在正方形ABCD中,点(1)当α=20°时,求∠DAE的度数;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.一十五.正方形的判定(共(2022春•隆安县期末)(1)求证:BC=BE;(2)连接CF,若∠ADF=∠BCF(1)证明四边形EGFH是平行四边形;形EGFH是正方形.一十六.正方形的判定与性质(共(2022春•仪征市期末)51.我们知道菱形与正方形的形状有差异,“接近度”.A .424-(2022•南京模拟)53.在矩形ABCD 中,点A 顺时针旋转90°得到A .25B .(2022•常熟市模拟)54.如图,在Rt ABC △中,动点,A B C ABC ''△△≌,将(2022•平邑县一模)56.在正方形ABCD 中,点E 在射线BC 上(不与点B 、C 重合),连接DB ,DE ,将DE 绕点E 逆时针旋转90 得到EF ,连接BF .(1)如图1,点E 在BC 边上.①依题意补全图1;②若=6AB ,=2EC 求BF 的长;(2)如图2,点E 在BC 边的延长线上,用等式表示线段BD ,BE ,BF 之间的数量关系.(2016春•工业园区期末)57.如图,在△ABC 中,∠BAC =50°,将△ABC 绕点A 按逆时针方向旋转后得△AB 1C 1.当B 1B ∥AC 时,求∠BAC 1的度数.(2021•厦门二模)58.在正方形ABCD 中,将边AD 绕点A 逆时针旋转()090a a ︒<<︒得到线段AE ,AE 与CD 延长线相交于点F ,过B 作//BG AF 交CF 于点G ,连接BE .(1)如图1,求证:2BGC AEB ∠=∠;(2)当(4590a ︒<<︒)时,依题意补全图2,用等式表示线段AH EF DG ,,之间的数量关系,并证明.一十八.作图-旋转变换(共1小题)(2022春•盱眙县期末)59.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()()()5,1,2,2,1,4A B C ---,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到111A B C △,画出111A B C △;(2)222A B C △与ABC 关于原点O 成中心对称,画出222A B C △.一十九.条形统计图(共1小题)(2022春•盱眙县期末)60.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A (体操)、B (乒乓球)、C (毽球)、D (跳绳)四项活动.为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图.请根据统计图回答下列问题:(1)这次被调查的学生共有_____人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是_____度;(4)已知该校共有学生1000人,根据调查结果估计该校喜欢体操的学生有_____人.∵△AOB 和△ACD 均为正三角形,∴60AOB CAD ∠=∠=︒,∴AD ∥OB ,∴ABP AOP S S = ,∵四边形ABCD为矩形,O为对角线,∴AO=OD,∴∠ODA=∠OAD,又∵AD为∠DAE的平分线,∴∠OAD=∠EAD,∴∠EAD=∠ODA,∵AD AC =,∴,ABD ABC EAD EACS S S S == ∴23BED BEC S S ∆∆==∵AB AC AD AC ==,,∴AD AB =,∵AB y ∥轴,∴AD x ⊥轴.∵反比例函数()0k y x x=<∴设k B x x ⎛⎫ ⎪⎝⎭,,令0x =,则077y =-=-,()0,7H ∴- 直线AB 的解析式为y x =-∴设直线CG 的表达式为y =将点()3,2C -代入y x t =+;(3)解:由图象可知,若123x x x <<,垂直于y 轴的直线l 在x 轴与直线=2y -之间,∴饮水机的一个循环周期为1003分钟,每一个循环内,在水温不超过50℃.∵7:20至8:45之间有85分钟,100 85-段内,A选项不符合题意;100设AD 的解析式为:y mx n =+,把()0,10D 、()2,20A 代入y mx =∵在▱ABCD中,AE=4,∴22=-= EC AC AE∵在▱ABCD中,AE=4,AB=∴222016=-=-EC AC AE∴BC=BE-EC=3-2=1,的周长=2(AB+BC∴ABCD故答案为:20或12.考点:平行四边形的性质;坐标与图形性质.26.(1)证明见解析;(2)若。

苏教版八年级下册数学压轴题非常好的题目精修订

苏教版八年级下册数学压轴题非常好的题目精修订

苏教版八年级下册数学压轴题非常好的题目 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个着名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由;yxOPQAB(2)求过点A 的反比例函数解析式; (3)设(2)中的反比例函数图象交EF于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。

苏科版 八年级下册第十一章《反比例函数》压轴题专题训练(含解析)

苏科版 八年级下册第十一章《反比例函数》压轴题专题训练(含解析)

《反比例函数》压轴题专题训练一.选择题(共10小题)1.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12第1题第2题第3题2.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数y=在第二象限的图象经过点E,则正方形AOBC和正方形CDEF的面积之差为()A.12B.10C.8D.63.如图,平行四边形ABCO的顶点B在双曲线y=上,顶点C在双曲线y=上,BC中点P恰好落在y轴上,已知S▱OABC=10,则k的值为()A.﹣8B.﹣6C.﹣4D.﹣24.如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4B.6C.7D.8第4题第5题第6题5.如图,在平面直角坐标系xOy中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,4),反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是()A.B.C.﹣12D.6.如图,A、C两点在反比例函数y=的图象上,B、D两点在反比例函数y=的图象上,AB⊥x轴于点E,CD⊥x轴于点F,AB=3,CD=2,EF=,则k1﹣k2的值为()A.﹣3B.﹣2C.D.﹣17.如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y轴于点F,则点F的坐标是()A.(0,﹣)B.(0,﹣)C.(0,﹣3)D.(0,﹣)第7题第8题8.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)9.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.若点A和点D在同一个反比例函数y=的图象上,则OB的长是()A.2B.3C.2D.310.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.1二.填空题(共13小题)11.如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=.12.如图,直线y=﹣x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b=时,△ACE、△BDF与△ABO面积的和等于△EFO面积的.13.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形P AOB的面积为.14.y=kx﹣6的图象与x,y轴交于B、A两点,与的图象交于C点,CD⊥x轴于D点,如果△CDB的面积:△AOB的面积=1:9,则k=.15.如图,A、B是第二象限内双曲线y=上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6,则k的值为.16.如图,点A、B在反比例函数y=(k≠0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C.若OM=MN=NC,△AOC的面积为9,则k 的值为.17.如图,A,B是反比例函数y=(x>0)图象上的两点,过点A作AP∥y轴,过点B 作BP∥x轴,交点为P连接OA,OP,若△AOP的面积为2,则△ABP的面积为.18.如图,在以O为原点的直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B在第一象限,四边形OABC是矩形,反比例函数y=(x>0)与AB相交于点D,与BC 相交于点E,若BE=3CE,四边形ODBE的面积是9,则k=.19.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为8,则△ABC的面积是.20.如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为.21.如图,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).则k的值为.22.如图,已知反比例函数y=在第一象限内的图象上一点A,且OA=4,AB⊥x轴,垂足为B,线段OA的垂直平分线交x轴于点C(点C在点B的左侧),则△ABC的周长等于.23.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值范围是.三.解答题(共11小题)24.如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB=8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.25.如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.26.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.求OF的长.27.如图,反比例函数y=(x>0,k是常数)的图象经过A(1,3),B(m,n),其中m>1.过点B作y轴的垂线,垂足为C.连接AB,AC,△ABC的面积为.(1)求k的值和直线AB的函数表达式:(2)过线段AB上的一点P作PD⊥x轴于点D,与反比例函数y=(x>0,k是常数)的图象交于点E,连接OP,OE,若△POE的面积为1,求点P的坐标.28.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.29.如图,△AOB的边OB在x轴上,且∠ABO=90°反比例函数的图象与边AO、AB分别相交于点C、D,连接BC.已知OC=BC,△BOC的面积为12.(1)求k的值;(2)若AD=6,求直线OA的函数表达式.30.如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=在第一象限内交于点C(1,m).(1)求m和n的值;(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线AB和双曲线y=交于点P、Q,且PQ=2QD,求△APQ的面积.31.如图,函数y=x与函数y=(x>0)的图象相交于点A(n,4).点B在函数y=(x>0)的图象上,过点B作BC∥x轴,BC与y轴相交于点C,且AB=AC.(1)求m、n的值;(2)求直线AB的函数表达式.32.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.33.如图,在平面直角坐标系xOy中,正比例函数y=10x与反比例函数y=交于点A,点A的横坐标为,反比例函数y=图象上有一点B,过点B作BC∥x轴,过点A作AC⊥BC,垂足为点C.(1)求k的值;(2)已知点B在AC的右侧,若△ABC的面积为4,求直线AB的解析式.34.已知点P(m,n)是反比例函数y=(x>0)的图象上的一动点,P A∥x轴,PB∥y 轴,分别交反比例函数y=(x>0)的图象于点A,B,点C是直线y=2x上的一点.(1)点A的坐标为(,),点B的坐标为(,);(用含m的代数式表示)(2)在点P运动的过程中,连接AB,证明:△P AB的面积是一个定值,并求出这个定值;(3)在点P运动的过程中,以点P,A,B,C为顶点的四边形能否为平行四边形?若能,求出此时m的值;若不能,请说明理由.答案与解析一.选择题(共10小题)1.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选:C.【点评】此题考查了反比例函数的综合知识,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.2.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数y=在第二象限的图象经过点E,则正方形AOBC和正方形CDEF的面积之差为()A.12B.10C.8D.6【分析】设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(b﹣a,a+b),再根据反比例函数图象上点的坐标特征得(a+b)•(b﹣a)=8,因为S正方形AOBC=a2,S正方=b2,从而求得正方形AOBC和正方形CDEF的面积之差为8.形CDEF【解答】解:设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(b﹣a,a+b),∴(a+b)•(b﹣a)=﹣8,整理为a2﹣b2=8,∵S正方形AOBC=a2,S正方形CDEF=b2,∴S正方形AOBC﹣S正方形CDEF=8,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=|k|;也考查了正方形的性质.3.如图,平行四边形ABCO的顶点B在双曲线y=上,顶点C在双曲线y=上,BC中点P恰好落在y轴上,已知S▱OABC=10,则k的值为()A.﹣8B.﹣6C.﹣4D.﹣2【分析】连接BO,过B点和C点分别作y轴的垂线段BE和CD,证明△BEP≌△CDP (AAS),则△BEP面积=△CDP面积;易知△BOE面积=×6=3,△COD面积=|k|.由此可得△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|=10,解k 即可,注意k<0.【解答】解:连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在B在双曲线y=上,所以△BOE面积=×6=3.∵点C在双曲线y=上,且从图象得出k<0,∴△COD面积=|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(3+|k|),∴2(3+|k|)=10,解得k=±4,因为k<0,所以k=﹣4.故选:C.【点评】本题主要考查了反比例函数k的几何意义、平行四边形的面积,解决这类问题,要熟知反比例函数图象上点到y轴的垂线段与此点与原点的连线组成的三角形面积是k.4.如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4B.6C.7D.8【分析】连结BD,由四边形EBCD的面积是△ABE面积的3倍得平行四边形ABCD的面积是△ABE面积的4倍,根据平行四边形的性质得S△ABD=2S△ABE,则AD=2AE,即点E为AD的中点,E点坐标为(0,2),A点坐标为(﹣,0),利用线段中点坐标公式得D点坐标为,再利用反比例函数图象上点的坐标特征得k的值.【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD=2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.【点评】本题考查了反比例函数图象上点的坐标特点,以及平行四边形的性质,关键是正确分析出S△ABD=2S△ABE.5.如图,在平面直角坐标系xOy中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,4),反比例函数y=的图象与菱形对角线AO交于D 点,连接BD,当BD⊥x轴时,k的值是()A.B.C.﹣12D.【分析】先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC ∥OB,则B(﹣5,0),A(﹣8,4),接着利用待定系数法确定直线OA的解析式为y=﹣x,则可确定D(﹣5,),然后把D点坐标代入y=中可得到k的值.【解答】解:∵C(﹣3,4),∴OC==5,∵四边形OBAC为菱形,∴AC=OB=OC=5,AC∥OB,∴B(﹣5,0),A(﹣8,4),设直线OA的解析式为y=mx,把A(﹣8,4)代入得﹣8m=4,解得m=﹣,∴直线OA的解析式为y=﹣x,当x=﹣5时,y=﹣x=,则D(﹣5,),把D(﹣5,)代入y=,∴k=﹣5×=﹣.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.6.如图,A、C两点在反比例函数y=的图象上,B、D两点在反比例函数y=的图象上,AB⊥x轴于点E,CD⊥x轴于点F,AB=3,CD=2,EF=,则k1﹣k2的值为()A.﹣3B.﹣2C.D.﹣1【分析】直接利用反比例函数的性质和k的意义分析得出答案.【解答】解:过点A作AM⊥y轴,BN⊥y轴,DQ⊥y轴,CN⊥y轴垂足分别为M,N,Q,R,由题意可得:S矩形AMEQ=S矩形FCRO=﹣k1,S矩形EBNO=S矩形QDFO=k2,则S矩形AMEQ+S矩形EBNO=S矩形FCRO+S矩形QDFO=﹣k1+k2,∵AB=3,CD=2,∴设EO=2x,则FO=3x,∵EF=,∴EO=1,FO=1.5,∴S矩形ABNM=1×3=3,则﹣k1+k2=3,故k1﹣k2=﹣3.故选:A.【点评】此题主要考查了反比例函数图象上点的坐标性质,正确得出EO,FO的长是解题关键.7.如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y轴于点F,则点F的坐标是()A.(0,﹣)B.(0,﹣)C.(0,﹣3)D.(0,﹣)【分析】由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.【解答】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=﹣,∴直线l的解析式为y=x﹣当x=0时,y=﹣,∴点F的坐标为(0,﹣),故选:A.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.8.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.9.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.若点A和点D在同一个反比例函数y=的图象上,则OB的长是()A.2B.3C.2D.3【分析】作DE⊥x轴于E,根据三角函数值求得∠ACD=∠ACB=60°,即可求得∠DCE =60°,根据轴对称的性质得出CD=BC=2,解直角三角形求得CE=1,DE=,设A(m,2),则D(m+3,),根据系数k的几何意义得出k=2m=(m+3),求得m=3,即可得到结论.【解答】解:作DE⊥x轴于E,∵Rt△ABC中,∠ABC=90°,BC=2,AB=2,∴=,∴∠ACB=60°,∴∠ACD=∠ACB=60°,∴∠DCE=180°﹣60°﹣60°=60°,∵CD=BC=2,∴CE=CD=1,DE=CD=,设A(m,2),则D(m+3,),∵k=2m=(m+3),解得m=3,∴OB=3,故选:B.10.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.1【分析】设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y=,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【解答】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得:y=m,则点A的坐标为:(m,m),线段AB的长度为m,点D的纵坐标为m,∵点A在反比例函数y=上,∴k=m2,即反比例函数的解析式为:y=,∵四边形ABCD为正方形,∴四边形的边长为m,点C,点D和点E的横坐标为m+m=m,把x=m代入y=得:y=m,即点E的纵坐标为m,则EC=m,DE=m﹣m=m,=,故选:A.【点评】本题考查了反比例函数图象上的点的坐标特征和正方形的性质,正确掌握代入法和正方形的性质是解题的关键.二.填空题(共13小题)11.如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=3.【分析】作DE⊥x轴,垂足为E,连OD.证出△BOA≌△AED,得到AE=BO,AO=DE,从而求出S△DOE,根据反比例函数k的几何意义,求出k的值.【解答】解:作DE⊥x轴,垂足为E,连OD.∵∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,∴∠DAE=∠OBA,又∵∠BOA=∠AED,AB=DA,∴△BOA≌△AED(HL),∴OA=DE.∵y=﹣2x+2,可知B(0,2),A(1,0),∴OA=DE=1,∴OE=OA+AE=1+2=3,∴S△DOE=•OE•DE=×3×1=,∴k=×2=3.故答案为:3.【点评】本题主要考查了反比例函数k的几何意义,构造△BOA≌△AED是解题的关键.12.如图,直线y=﹣x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b=2时,△ACE、△BDF与△ABO面积的和等于△EFO面积的.【分析】△ACE、△BDF与△ABO面积的和等于△EFO面积的,即S△OBD+S△AOC=S,根据反比例函数的解析式与三角形的面积的关系即可求解.△EOF【解答】解:直线y=﹣x+b中,令x=0,解得:y=b,则OF=b;令y=0,解得:x=b,则OE=b.则S△EOF=OE•OF=b2.∵S△OBD=S△AOC=,又∵△ACE、△BDF与△ABO面积的和等于△EFO面积的,∴S△OBD+S△AOC=S△EOF,即:×b2=1,解得:b=±2(﹣2舍去),∴b=2.故答案是:2.【点评】本题主要考查了反比例函数中k的几何意义,正确理解△ACE、△BDF与△ABO 面积的和等于△EFO面积的,即S△OBD+S△AOC=S△EOF是解题的关键.13.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形P AOB的面积为1.【分析】此题所求的四边形P AOB的面积可由分割法,S四边形P AOB=S□PCOD﹣S△DBO﹣S△ACO.【解答】解:由于P点在y=上,则S□PCOD=2,A、B两点在y=上,则S△DBO=S△ACO=×1=.∴S四边形P AOB=S□PCOD﹣S△DBO﹣S△ACO=2﹣﹣=1.∴四边形P AOB的面积为1.故答案为:1.【点评】本题考查了反比例函数k的几何意义,|k|可以表示为图象上一点到两坐标轴作垂线所围成的矩形的面积.14.y=kx﹣6的图象与x,y轴交于B、A两点,与的图象交于C点,CD⊥x轴于D点,如果△CDB的面积:△AOB的面积=1:9,则k=4.【分析】由于△CDB的面积:△AOB的面积=1:9,且两三角形相似,则=,C(,2)代入直线y=kx﹣6求得k值.【解答】解:由题意得:△CDB的面积:△AOB的面积=1:9,且两三角形相似,则=,又A(0,﹣6),则C(,2),代入直线y=kx﹣6,可得:k=4.故答案为:4.【点评】本题考查了反比例函数系数k的几何意义,这里相似三角形的相似比是解决问题的突破口.15.如图,A、B是第二象限内双曲线y=上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6,则k的值为﹣4.【分析】分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x 轴于点E,由于反比例函数的图象在第二象限,所以k<0,由点A是反比例函数图象上的点可知,S△AOD=S△AOF=,再由A、B两点的横坐标分别是a、2a可知AD=2BE,故点B是AC的二等分点,故DE=a,CE=a,所以S△AOC=S梯形ACOF﹣S△AOF=6,故可得出k的值.【解答】解:分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵反比例函数y=的图象在第二象限,∴k<0,∵点A是反比例函数图象上的点,∴S△AOD=S△AOF=,∵A、B两点的横坐标分别是a、2a,∴AD=2BE,∴点B是AC的二等分点,∴DE=a,CE=a,∴S△AOC=S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣=×4a×﹣=6,解得k=﹣4,故答案为:﹣4.【点评】本题考查的是反比例函数系数k的几何意义,根据题意得出辅助线得出S△AOC =S梯形ACOF﹣S△AOF=6是解答此题的关键.16.如图,点A、B在反比例函数y=(k≠0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C.若OM=MN=NC,△AOC的面积为9,则k 的值为6.【分析】根据三角形面积公式得到S△AOM=S△AOC=3,再根据反比例函数的比例系数k 的几何意义得到S△AOM=|k|=3,然后利用k>0去绝对值求解.【解答】解:∵OM=MN=NC,∴S△AOM=S△AOC=×9=3,∴S△AOM=|k|=3,而k>0,∴k=6.故答案为6.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17.如图,A,B是反比例函数y=(x>0)图象上的两点,过点A作AP∥y轴,过点B 作BP∥x轴,交点为P连接OA,OP,若△AOP的面积为2,则△ABP的面积为4.【分析】根据反比例函数特征,设A(m,),B(n,),根据题意可得AP=﹣,且A点到y轴的距离为m,依据已知△AOP的面积为2,得到m和n的关系式n=3m,计算△ABP面积=AP×BP,即可得到结果.【解答】解:设A(m,),B(n,),根据题意可得AP=﹣,且A点到y轴的距离为m,则AP×m=(﹣)×m=2,整理得,所以n=3m,B点坐标可以表示为(3m,)△ABP面积=AP×BP=(﹣)×(3m﹣m)=4.故答案为4.【点评】本题主要考查了反比例函数图象上点的坐标特征,解决此类型问题,一般设某个点坐标为(x,),而后用横纵坐标的绝对值表示线段的长度.18.如图,在以O为原点的直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B在第一象限,四边形OABC是矩形,反比例函数y=(x>0)与AB相交于点D,与BC 相交于点E,若BE=3CE,四边形ODBE的面积是9,则k=3.【分析】把所给的四边形面积分割为长方形面积减去两个直角三角形的面积,然后即可求出B的横纵坐标的积即是反比例函数的比例系数.【解答】解:设B点的坐标为(a,b),∵BE=3CE,∴E的坐标为(,b),又∵E在反比例函数y=的图象上,∴k=,∵S四边形ODBE=9,∴S矩形ABCD﹣S△OCE﹣S△OAD=9,即ab﹣﹣=9,∴ab=12,∴k==3.故答案为:3.【点评】此题考查了反比例函数的综合知识,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.19.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为8,则△ABC的面积是.【分析】过C作CD⊥y轴于D,交AB于E,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),因为B、C都在反比例函数的图象上,列方程可得结论.【解答】解:如图,过C作CD⊥y轴于D,交AB于E.∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B,C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),解得x=a,∵S△OAB=AB•DE=•2a•x=8,∴ax=8,∴a2=8,∴a2=,∵S△ABC=AB•CE=•2a•a=a2=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.20.如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为k=.【分析】分析题意,要求k的值,结合图形只需求出点B的坐标即可;设y轴与BC的交点为M,连接OB,根据周长为12的正六边形ABCDEF的对称中心与原点O重合可知OB=2,BM=1,OM⊥BC;接着,利用直角三角形勾股定理求出OM的值,结合点B在反比例函数位于第一象限的图象上,可以得到点B的坐标;【解答】解:如图,连接OB∵周长为12的正六边形ABCDEF的对称中心与原点O重合,∴正六边形ABCDEF的边长为2,∴OB=2,BM=1,∵OM⊥BC,∴OM===•点B在反比例函数y=位于第一象限的图象上,点B的坐标为(1,).将点(1,)代入y=中,得k=.故故答案为k=【点评】本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.21.如图,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).则k的值为32.【分析】根据题意可以求得菱形的边长,从而可以求得点A的坐标,进而求得k的值.【解答】解:由题意可得,点D的坐标为(4,3),∴CD=5,∵四边形ABCD是菱形,∴AD=CD=5,∴点A的坐标为(4,8),∵点A在反比例函数y=(k>0,x>0)的图象上,∴8=,得k=32,故答案为:32.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.22.如图,已知反比例函数y=在第一象限内的图象上一点A,且OA=4,AB⊥x轴,垂足为B,线段OA的垂直平分线交x轴于点C(点C在点B的左侧),则△ABC的周长等于2.【分析】根据线段垂直平分线的性质可知AC=OC,由此推出△ABC的周长=OB+AB,设OB=a,AB=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:∵OA的垂直平分线交OB于C,∴AC=OC,∴△ABC的周长=OB+AB,设OB=a,AB=b,则:,解得a+b=2,即△ABC的周长=OB+AB=2.故答案是:2.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OB+AB即可解决问题.23.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值范围是1≤k≤16.【分析】根据题意求出点A的坐标,根据正方形的性质求出点C的坐标,根据反比例函数图象上点的坐标特征解答即可.【解答】解:∵点A在直线y=x上,横坐标为1,∴点A的坐标为(1,1),∵正方形ABCD的边长为3,∴点C的坐标为(4,4),当双曲线y=经过点A时,k=1×1=1,当双曲线y=经过点C时,k=4×4=16,∴双曲线y=与正方形ABCD公共点,则k的取值范围是1≤k≤16,故答案为:1≤k≤16.【点评】本题考查的是反比例函数与一次函数的交点问题以及正方形的性质,掌握反比例函数图象上点的坐标特征、以及正方形的性质是解题的关键.三.解答题(共21小题)24.如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB=8,BC =6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.【分析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入y=可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.【解答】解:(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=得k=5×4=20;(2)∵AC==10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1移动,同时动点Q 从点B 开始在线段BA 上以每秒速度向点A 移动,设点P 、Q 移动的时间为t 秒. ⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1 的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(aa P 、)1,(b b R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).xOP B(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请1∠AOB.说明Q点在直线OM上,并据此证明∠MOB=33、(14分)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)判断△OGA和△OMN是否相似,并说明理由;(2)求过点A的反比例函数解析式;(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG的对称中心,并说明理由.4、如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象经过点()B,且与x0,2轴的正半轴相交于点A,点P、点Q在线段AB上,点M、N在线段AO 上,且OPM与QMN是相似比为3∶1的两个等腰直角三角形,OPM MQN∠=∠=。

试求:90(1)AN∶AM的值;(2)一次函数y kx b=+的图象表达式。

5、(本题满分10分)当x =6时,反比例函数y =xk和一次函数y =-x -7的值相等.(1)求反比例函数的解析式;(2)若等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个反比例函数的图象上,且BC ∥AD ∥y 轴,A 、B 两点的横坐标分别是a 和a +2(a >0),求a 的值.6、如图,一人工湖的对岸有一条笔直的小路,湖上原有一座小桥与小路垂直相通,现小桥有一部分已断裂,另一部分完好. 站在完好的桥头A测得路边的小树D在它的北偏西30°,前进32米到断口B处,又测得小树D在它的北偏西45°,请计算小桥断裂部分的长(结果用根号表示).(7分)7、(本题6分)如图,点C、D在线段AB上,△PCD是等边三角形,若2.DB=ACCD⋅求∠APB的度数.8、如图,ABM∠为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B 重合),连结AD ,作BE AD ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F . (1)求证:BF FD =;(2)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由; (3)A ∠在什么范围内变化时,线段DE 上存在点G ,满足条件14DG DA =,并说明理由.9、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP=x cm(0x ),四边形BCDP的面积为y cm2.①求y关于x的函数关系式;②当x为何值时,△PBC的周长最小,并求出此时y的值.·10、如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.⑴求证:CE=CF;⑵在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗为什么⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.11、如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动。

点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101<<t )。

(1)求直线2l 的解析式。

(2)设△PCQ 的面积为S ,请求出S 关于t 的函数关系式。

(3)试探究:当t 为何值时,△PCQ 为等腰三角形图1图2B CA DE12、已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形若存在,求出此时菱形的边长;若不存在,说明理由.A QCP图①AQPB13、已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图,过点A 作直线AC 与函数y =8m x-(x<0)的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标. (3)求△AOB 的面积。

(9分)14°,P 为BC 的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P ,三角板绕P 点旋转. (1)如图1,当三角板的两边分别交AB 、AC 于点E 、F 时.说明:△BPE ∽△CFP ;(2)操作:将三角板绕点P旋转到图2情形时,三角板的两边分别交BA的延长线、边AC于点E、F.①探究1:△BPE与△CFP还相似吗(只需写出结论)②探究2:连结EF,△BPE与△PFE是否相似请说明理由;(3) 将三角板绕点P旋转的过程中,三角板的两边所在的直线分别与直线AB、AC于点E、F.①△PEF是否能成为等腰三角形若能,求出△PEF为等腰三角形时∠BPE的度数;若不能,请说明理由.②设BC=8,EF=m,△EPF的面积为S,试用m的代数式表示S.图图15、在△ABC中,AB=BC,∠ABC=90°,在△ADE中,AD=DE,∠ADE=90°连结EC,取EC中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,证明:BM=DM且BM⊥DM;(2)若将图1中的△ADE绕点A逆时针旋转45°的角,如图2,那么(1)中的结论是否成立如果成立,请给予证明;如果不成立,请举出反例;(3)若将图1中的△ADE绕点A逆时针旋转小于45°的角,如图3,那么(1)中的结论是否仍成立如果成立,请给予证明;如果不成立,请举出反例.图116、如图,点O是边为2的正方形ABCD的中心,点E从A点开始沿AD边运动,点F从D点开始沿AD边运动,并且AE=DE。

(1)求正方形ABCD的对角线AC的长;(2)若点E、F同时运动,连结OE、OF,请你探究:四边形DEOF的FEC BAB'C'面积S 与正方形ABCD 的面积关系,并求出四边形DEOF 的面积S ;(3) 在(2)的基础上,设AE=x ,△EOF 的面积为y ,求y 与x 之间的函数关系式,写出自变量x 的取值范围,并利用图象说明当x 在什么范围时,y 58。

17、 (本题满分10分)如图,Rt△ABC 在中,∠A =90°,AB =6,AC =8,D ,E 分别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使△PQR 为等腰三角形若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.18、(本题满分10分)如图,Rt△AB C 是由Rt△ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.AB CDER PH Q19、(本题满分10分)如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQ RQ是否为定值,若是,试求这个定值;若不是,请说明理由.ABCD(备用图1)ABCD(备用图2)Q A BCDl M PE20、(本题满分10分)如图,在Rt ABC ∆中,AD 是斜边BC 上的高,ABE ACF ∆∆、是等边三角形.(1)试说明: ABD ∆∽CAD ∆;(2)连接DE 、DF 、EF ,判断DEF ∆的形状,并说明理由.21、(本题满分10分)如图,一次函数y ax b =+的图象与x 轴、y 轴交于A 、B 两点,与反比例函数k y x=的图象相交于C 、D 两点,分别过C ,D 两点作y 轴、x 轴的垂线,垂足为E 、F ,连接CF 、DE .(1)△CEF 与△DEF 的面积相等吗为什么(2)试说明:△AOB ∽△FOE .FEDCBA22、(本题满分14分)阅读:如图1把两块全等的含45°的直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,把三角板ABC固定不动,让三角板DEF绕点D旋转,两边分别与线段AB、BC相交于点P、Q,易说明△APD∽△CDQ.猜想(1):如图2,将含30°的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰三角形ABC(其中∠ABC= 120°)的底边中点O 重合,两边分别与线段AB、BC相交于点P、Q.写出图中的相似三角形(直接填在横线上);验证(2):其它条件不变,将三角板DEF旋转至两边分别与线段AB的延长线、边BC相交于点P、Q.上述结论还成立吗请你在图3上补全图形,并说明理由.连结PQ,△APD与△DPQ是否相似为什么探究(3):根据(1)(2)的解答过程,你能将两三角板改为一个更为一般的条件,使得(1)(2)中所有结论仍然成立吗请写出这两个三角形需满足的条件.探究(4):在(2)的条件下,若AC = 4,CQ = x,AP = y,请你求出y与x的函数关系式,并写出自变量x的取值范围.D小朋友,本来你用10元钱买一盒饼干是多的,但要再买一袋牛奶就不够阿姨,我买一盒 饼干和一袋牛奶23、 (本题满分8分)仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元24、(本题12分)、如图,已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG=CG ;(2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1结论(均不要求证明)FBCBC第24题图②25、(本题满分10分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC 固定不动,∆AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E(点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m 与n 的函数关系式,直接写出自变量n 的取值范围. (3)以∆ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD=CE ,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2. (4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若不成立,请说明理由.FBACE第24题图③D26、(10分)如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2,AB=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以2cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以2cm/s的速度、沿C→D→A方向,向点A运动.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形若存在,请求出所有符合条件的t的值;若不存在,请说明理由.27、(本题满分8分)如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形并证明你的结论.28、(本题满分12分)如图,一条直线与反比例函数k y x的图象交于A (1,4),B (4,n )两点,与x 轴交于D 点,AC ⊥x 轴,垂足为C .(1)如图甲,①求反比例函数的关系式;②求n 的值及D 点坐标;(2)如图乙,若点E 在线段AD 上运动,连接CE ,作∠CEF=45°,EF 交AC 于F 点.①试说明△CDE ∽△EAF ;②当△ECF 为等腰三角形时,求F 点坐标.A DB EFO CM29、(本题满分10分)如图,已知△ABC ∽△111C B A ,相似比为)1(>k k ,且△ABC 的三边长分别为a 、b 、c )(c b a >>,△111C B A 的三边长分别为1a 、1b 、1c .⑴若1a c =,求证: kc a =;⑵若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k 请说明理由.30、(本题满分10分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点p的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等⑵若点Q以②中运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇31、(本题12分)如图, 四边形ABDC 中,∠ABD=∠BCD=Rt ∠,AB=AC,AE ⊥BC 于点F,交BD 于点E.且BD=15,CD=9.点P 从点A 出发沿射线AE 方向运动,过点P 作PQ ⊥AB 于Q,连接FQ,设AP=x,(x>0). (1) 求证:BC ·BE=AC ·CD(2) 设四边形ACDP 的面积为y, 求y 关于x 的函数解析式.(3) 是否存在一点P ,使△PQF 是以PF 为腰的等腰三角形若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.32、(本题满分11分)如图,在直角梯形OABC 中,已知B 、C 两点的坐标分别为B(8,6)、C(10,0),动点M 由原点O 出发沿OB 方向匀速运动,速度为1QP FEDCBA单位/秒;同时,线段DE由CB出发沿BA方向匀速运动,速度为1单位/秒,交OB于点N,连接DM,过点M作MH⊥AB于H,设运动时间为t(s)(0<t<8).(1)试说明: △BDN∽△OCB ;(2)试用t的代数式表示MH的长;(3) 当t为何值时,以B、D、M为顶点的三角形与△OAB相似(4) 设△DMN的面积为y,求y与t之间的函数关系式.H33、(本题满分12分)如图,在锐角ABCAH=,点D 为BC=,AH BC△中,9⊥于点H,且6AB 边上的任意一点,过点D 作DE//BC ,交AC 于点E .设ADE △的高AF 为(06)x x <<,以DE 为折线将ADE △翻折,所得的A DE '△与梯形DBCE 重叠部分的面积记为y (点A 关于DE 的对称点A '落在AH 所在的直线上).(1)当x=1时,y=____________(2)求出当03x <≤时,y 与x 的函数关系式;(3)求出36x <<时,y 与x 的函数关系式。

相关文档
最新文档